Articles | Volume 17, issue 20
https://doi.org/10.5194/gmd-17-7347-2024
https://doi.org/10.5194/gmd-17-7347-2024
Model description paper
 | 
16 Oct 2024
Model description paper |  | 16 Oct 2024

PPCon 1.0: Biogeochemical-Argo profile prediction with 1D convolutional networks

Gloria Pietropolli, Luca Manzoni, and Gianpiero Cossarini

Related authors

Combining neural networks and data assimilation to enhance the spatial impact of Argo floats in the Copernicus Mediterranean biogeochemical model
Carolina Amadio, Anna Teruzzi, Gloria Pietropolli, Luca Manzoni, Gianluca Coidessa, and Gianpiero Cossarini
Ocean Sci., 20, 689–710, https://doi.org/10.5194/os-20-689-2024,https://doi.org/10.5194/os-20-689-2024, 2024
Short summary

Related subject area

Oceanography
Evaluating an accelerated forcing approach for improving computational efficiency in coupled ice sheet–ocean modelling
Qin Zhou, Chen Zhao, Rupert Gladstone, Tore Hattermann, David Gwyther, and Benjamin Galton-Fenzi
Geosci. Model Dev., 17, 8243–8265, https://doi.org/10.5194/gmd-17-8243-2024,https://doi.org/10.5194/gmd-17-8243-2024, 2024
Short summary
An optimal transformation method for inferring ocean tracer sources and sinks
Jan D. Zika and Taimoor Sohail
Geosci. Model Dev., 17, 8049–8068, https://doi.org/10.5194/gmd-17-8049-2024,https://doi.org/10.5194/gmd-17-8049-2024, 2024
Short summary
Experimental design for the Marine Ice Sheet–Ocean Model Intercomparison Project – phase 2 (MISOMIP2)
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024,https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Development of a total variation diminishing (TVD) sea ice transport scheme and its application in an ocean (SCHISM v5.11) and sea ice (Icepack v1.3.4) coupled model on unstructured grids
Qian Wang, Yang Zhang, Fei Chai, Y. Joseph Zhang, and Lorenzo Zampieri
Geosci. Model Dev., 17, 7067–7081, https://doi.org/10.5194/gmd-17-7067-2024,https://doi.org/10.5194/gmd-17-7067-2024, 2024
Short summary
Spurious numerical mixing under strong tidal forcing: a case study in the south-east Asian seas using the Symphonie model (v3.1.2)
Adrien Garinet, Marine Herrmann, Patrick Marsaleix, and Juliette Pénicaud
Geosci. Model Dev., 17, 6967–6986, https://doi.org/10.5194/gmd-17-6967-2024,https://doi.org/10.5194/gmd-17-6967-2024, 2024
Short summary

Cited articles

Ahmad, H.: Machine learning applications in oceanography, Aquat. Res., 2, 161–169, 2019. a
Alvera-Azcárate, A., Barth, A., Rixen, M., and Beckers, J.-M.: Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature, Ocean Modell., 9, 325–346, 2005. a
Amadio, C., Teruzzi, A., Feudale, L., Bolzon, G., Di Biagio, V., Lazzari, P., Álvarez, E., Coidessa, G., Salon, S., and Cossarini, G.: Mediterranean Quality checked BGC-Argo 2013-2022 dataset, Zenodo [data set], https://doi.org/10.5281/zenodo.10391759, 2023. a, b
Amadio, C., Teruzzi, A., Pietropolli, G., Manzoni, L., Coidessa, G., and Cossarini, G.: Combining neural networks and data assimilation to enhance the spatial impact of Argo floats in the Copernicus Mediterranean biogeochemical model, Ocean Sci., 20, 689–710, https://doi.org/10.5194/os-20-689-2024, 2024. a, b
Argo: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC), https://doi.org/10.17882/42182, 2000. a, b
Download
Short summary
Monitoring the ocean is essential for studying marine life and human impact. Our new software, PPCon, uses ocean data to predict key factors like nitrate and chlorophyll levels, which are hard to measure directly. By leveraging machine learning, PPCon offers more accurate and efficient predictions.