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Abstract. Effective observation of the ocean is vital for
studying and assessing the state and evolution of the ma-
rine ecosystem and for evaluating the impact of human activ-
ities. However, obtaining comprehensive oceanic measure-
ments across temporal and spatial scales and for different
biogeochemical variables remains challenging. Autonomous
oceanographic instruments, such as Biogeochemical (BGC)-
Argo profiling floats, have helped expand our ability to ob-
tain subsurface and deep-ocean measurements, but measur-
ing biogeochemical variables, such as nutrient concentration,
still remains more demanding and expensive than measur-
ing physical variables. Therefore, developing methods to es-
timate marine biogeochemical variables from high-frequency
measurements is very much needed. Current neural network
(NN) models developed for this task are based on a multi-
layer perceptron (MLP) architecture, trained over point-wise
pairs of input–output features. Although MLPs can produce
smooth outputs if the inputs change smoothly, convolutional
neural networks (CNNs) are inherently designed to handle
profile data effectively. In this study, we present a novel one-
dimensional (1D) CNN model to predict profiles leveraging
the typical shape of vertical profiles of a variable as a prior
constraint during training. In particular, the Predict Profiles
Convolutional (PPCon) model predicts nitrate, chlorophyll,
and backscattering (bbp700) starting from the date and ge-
olocation and from temperature, salinity, and oxygen pro-
files. Its effectiveness is demonstrated using a robust BGC-
Argo dataset collected in the Mediterranean Sea for training
and validation. Results, which include quantitative metrics
and visual representations, prove the capability of PPCon to
produce smooth and accurate profile predictions improving
upon previous MLP applications.

1 Introduction

Observation of the ocean is crucial for studying the state and
evolution of the marine ecosystem and for assessing the im-
pact of human activities (Campbell et al., 2016; Euzen et al.,
2017). Access to reliable and extensive oceanic measure-
ments remains restricted due to the challenges of collecting
comprehensive observations on multiple temporal and spa-
tial scales and of variability in the availability of observations
across different biogeochemical variables (Munk, 2000).

The introduction of autonomous oceanographic instru-
ments, such as Biogeochemical (BGC)-Argo floats, has no-
tably expanded our ability to obtain subsurface and deep-
ocean measurements (Miloslavich et al., 2019). BGC-Argo
floats are autonomous profiling platforms that incorporate
physical and biogeochemical sensors, enabling us to collect
time series of vertical profiles across various sea conditions
and throughout the complete annual cycle (d’Ortenzio et al.,
2014; Mignot et al., 2014). Over the past decade, there has
been a steady rise in the number of biogeochemical profiles
acquired using these platforms (Johnson et al., 2013; John-
son and Claustre, 2016). These instruments are essential to
advancing our knowledge of the biogeochemical state of the
ocean, as one of their principal use cases is the assimila-
tion into ocean biogeochemical models (Mignot et al., 2019;
D’ortenzio et al., 2020). This assimilation process is partic-
ularly promising for variables such as oxygen, nitrate, and
chlorophyll concentrations, as they serve as core state vari-
ables in most ocean biogeochemical models (Teruzzi et al.,
2021; Cossarini et al., 2019).

However, the measurement of biogeochemical variables,
such as nutrient concentration and carbonate system vari-
ables (e.g., nitrate, chlorophyll, and pH), remains more de-
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manding and expensive compared to physical variables (e.g.,
temperature and salinity) and oxygen. In fact, among the
BGC sensors, oxygen is the most commonly measured vari-
able: there have been approximately 250 000 oxygen profiles
collected worldwide, which is twice the number of profiles
for chlorophyll and more than 4 times the number of profiles
for nitrate and bbp700 (https://biogeochemical-argo.org, last
access: 18 June 2024). Thus, developing methods to estimate
low-frequency marine biogeochemical variables from high-
frequency measurements is essential to maximize the poten-
tial of observing systems such as the Argo program. Major
efforts have been devoted to the improvement of the long-
term reliability and accuracy of autonomous measurements
in recent years (Sauzède et al., 2017).

Artificial neural networks (ANNs) are computational mod-
els that are inspired by the structure and function of the hu-
man brain, and they have become a widely used approach
for solving complex problems in a variety of fields, from
computer vision and natural language processing to finance
and engineering (Krogh, 2008). ANNs have also emerged as
a powerful tool for modeling complex non-linear relation-
ships in the oceanographic field, where their use has seen
a significant increase in recent years (Ahmad, 2019). The
use of these models has found applications in a wide range
of areas, such as oceanic climate prediction and forecasting
(Mori et al., 2017), species identification (Goodwin et al.,
2014), coastal morphological and morphodynamic model-
ing (Goldstein et al., 2019), ocean current prediction (Bolton
and Zanna, 2019), interpolation and gap filling for remote-
sensing observation (Sammartino et al., 2020), and the in-
tegration of observation data into biogeochemical models
(Pietropolli et al., 2022). These examples demonstrate the
broad utility of ANNs in advancing our understanding of the
ocean and its processes.

Existing ANN-based techniques to infer low-sampled
variables starting from high-sampled ones are based on mul-
tilayer perceptron (MLP) architecture, a type of feed-forward
neural network (NN) that processes input data through inter-
connected layers of nodes, or neurons, with each neuron in
a layer receiving inputs from all the neurons in the previ-
ous layer (Taud and Mas, 2018). The initial model designed
for this task was proposed by Sauzède et al. (2017), where a
deterministic MLP network, named CANYON, was trained
on a global ocean dataset to estimate biogeochemically rel-
evant variables from concurrent in situ samples of temper-
ature, salinity, pressure, and oxygen and their latitude, lon-
gitude, depth, and date. Later, an improved version, called
CANYON-B, was introduced by Bittig et al. (2018). In this
approach, a Bayesian framework was utilized, and experi-
mental findings demonstrated that this method resulted in a
more robust output. This methodology was subsequently lim-
ited to the Mediterranean Sea, resulting in the development
of CANYON-MED by Fourrier et al. (2020), and empirical
results validated the effectiveness of restricting the model
to a smaller region. The latest advancement in this field is

presented in Pietropolli et al. (2023a), wherein the authors
enhance the performance related to Mediterranean Sea pre-
dictions by leveraging a more extensive training dataset and
implementing a two-step quality-check procedure to improve
its quality.

Despite their widespread use, applications based on MLPs
currently lack awareness of the typical shape of the bio-
geochemical variable profiles they aim to infer. When these
methods are used to predict profiles from Argo float measure-
ments, they may generate irregularities in the reconstruction,
possibly because they use point-wise data as input and out-
put.

To solve this problem effectively, our idea consists of
working directly with an architecture that infers the complete
vertical profile. This approach takes advantage of architec-
tures like the convolutional neural network (CNN) that oper-
ate on vector inputs instead of individual points. CNNs are
recognized as one of the most impressive forms of ANNs,
especially for their effectiveness in tackling complex pattern
recognition problems (O’Shea and Nash, 2015; Gu et al.,
2018). While CNNs are well known for their success in im-
age classification tasks, they can also be used for other tasks,
such as speech recognition (Shan et al., 2018), natural lan-
guage processing (Collobert et al., 2011), and even drug dis-
covery (Goh et al., 2017).

In this study, we evaluate the effectiveness of a one-
dimensional (1D) CNN model (Kiranyaz et al., 2021) for
predicting nutrient vertical profiles from input data, such
as sampling time, geolocation, and profiles of temperature,
salinity, and oxygen, using Argo float measurements as the
training dataset. This approach, called PPCon (Predict Pro-
files Convolutional), is applied to generate synthetic profiles
of nitrate, chlorophyll, and backscattering (bbp700). Thanks
to the intrinsic spatially aware nature of its CNN architec-
ture, PPCon can leverage the typical shape of vertical profiles
of a variable as a prior constraint during training. The PP-
Con approach is tested with a robust Argo dataset collected
in the Mediterranean Sea. The Mediterranean Sea, a semi-
enclosed marginal sea, presents a substantially high density
of BGC-Argo profiles thanks to dedicated programs such
as ARGO-Italy and the French NAOS initiative (D’ortenzio
et al., 2020). This particularly fortunate situation has already
made the Mediterranean a successful case study for the de-
velopment of biogeochemical modeling approaches based
on BGC-Argo. For example, BGC-Argo is being integrated
into the biogeochemical prediction model of the Mediter-
ranean component of the Copernicus Marine Service (Cos-
sarini et al., 2019; Teruzzi et al., 2021; Coppini et al., 2023).

This paper is organized as follows: Sect. 2 presents the
dataset utilized for training the deep learning (DL) architec-
ture, including its key characteristics. Section 3 provides a
detailed overview of the PPCon approach, encompassing the
architecture, the preprocessing techniques applied to input
data, and the specialized loss function employed for network
training. In Sect. 4, we outline the specific experimental set-
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tings employed to enable complete reproducibility of the PP-
Con architecture. Section 5 presents a summary of the key
results obtained during the experimental campaign we con-
ducted to validate our proposed techniques, and Sect. 6 dis-
cusses the results obtained. Finally, Sect. 7 presents the con-
clusions drawn from our work and directions for future re-
search.

2 Dataset: the Argo GDACs

The data used to train and test the architecture discussed in
this paper come from the BGC-Argo program (Bittig et al.,
2019), specifically the Argo float also collecting biogeo-
chemical variables (BGC-Argo float).

Our investigation used BGC-Argo S-profile data for the
Mediterranean Sea downloaded from the Coriolis Argo
GDAC (Argo, 2000; last visit in August 2022), and the anal-
ysis considered only delayed-mode (DM) and adjusted real-
time (RT) data for the period from 1 July 2013 to 31 Decem-
ber 2020, ensuring a larger number of DM data. A quality-
check procedure was applied as described in Amadio et al.
(2023). The Python package “bit.sea” (/float), available via
Zenodo (Bolzon et al., 2023), was used for this purpose.
The quality-checked BGC-Argo dataset used as input for the
present application can also be accessed via Zenodo (Amadio
et al., 2023).

Specifically, the dataset was checked by retrieving only
complete profiles with quality flags 1 (good data), 2 (prob-
ably good data), 5 (value changed), and 8 (interpolated) for
temperature, salinity, nitrate, oxygen, and chlorophyll. Addi-
tionally, three specific quality-check steps were applied for
bbp700 based on the study by Dall’Olmo et al. (2022): a
missing-data test (for profiles with a substantial number of
missing data), a high-deep-value test (for profiles with un-
usually high bbp700 value at depth), and a negative-bbp test
(for profiles with negative bbp700 values). If the vertical res-
olution of the profiles was more than 2 m, the data were av-
eraged to a 2 m resolution. A moving weighted average was
then applied to smooth out eventual small fluctuations, us-
ing the two upper and two lower neighboring points, with a
Gaussian function of the distance to the central point to deter-
mine the weights. The spatial distribution of the floats after
the quality check is shown in Fig. 1.

3 PPCon: Predict Profiles Convolutional neural
network

This section introduces the PPCon architecture, which is pri-
marily a 1D CNN with additional MLPs employed to trans-
form point-wise data into a vectorial shape – necessary for
training the convolutional component. The input for PPCon
includes sampling data, geolocation, temperature, salinity,
and oxygen, while the PPCon output comprises vertical pro-
files for nitrate, chlorophyll, and BBP. Despite using the

Table 1. The MLP component of the PPCon model illustrated in
diagram form. All four MLPs used in the PPCon architecture share
the same architecture.

Layer Output size Activation function

Input 1 –
Linear 80 SELU
Linear 140 SELU
Linear 200 SELU
Output 200 –

same architecture, a separate model is trained for each output
variable, and different hyperparameters (number of epochs,
weights of the loss function, and so on) are set for each of
them. This separate tuning is necessary due to some intrinsic
differences, such as the numerosity of the training set and the
variable ranges. The hyperparameters are tuned manually by
comparing performance on the test set composed of unseen
data, based on a fitness metric to be introduced later. A spe-
cific loss function is designed to promote good performances,
good generalization capabilities, and smooth predictions.

3.1 Input preprocessing

The data considered for feeding the DL architecture com-
prise a collection of measurements, where each input–output
pair consists of the information collected by a single float
profile. The inputs consist of two distinct categories of data,
namely point-wise and vectorial. Point-wise data encompass
temporal and geospatial parameters, such as the sample date
(specifically year and day) and geographic coordinates (lat-
itude and longitude), while vectorial data encapsulate pro-
files of temperature, salinity, and oxygen, as recorded by the
float instruments. Given that the 1D CNN architecture oper-
ates only on vectorial input data, a coherent transformation
of point-wise features into vectorial ones is required.

In this regard, we leverage an MLP architecture that ac-
cepts point-wise input and transforms it into vectorial form.
MLPs are employed to enable the NN to automatically learn
how to weigh the importance of such point-wise input fea-
tures differently in correspondence to different levels of
depth. A separate MLP is trained for each of the four point-
wise inputs. The MLP architectures have the same number of
layers and neurons contained in these layers (Table 1), since
there are no a priori reasons to make them different.

During training, the weights of the MLP are optimized
along with the weights of the 1D CNN architecture. Since the
MLP operates as a non-linear function, this training approach
enables the creation of a mapping between a point-wise in-
put and its vectorial equivalent. This enables PPCon to ef-
fectively exploit point-wise information and achieve optimal
learning outcomes. The output vectors generated by the MLP
are concatenated with the remaining vectorial input, yielding
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Figure 1. Positions of BGC-Argo float profiles for bbp700 (red), chlorophyll (blue), and nitrate (green) that also have oxygen data. Positions
of the four BGC-Argo float profiles used for the external validation (black and numeric labels). Geographical limits of sub-regions (dashed
boxes): northwestern Mediterranean Sea (NWM), southwestern Mediterranean Sea (SWM), Tyrrhenian Sea (TYR), Ionian and southern
Adriatic Sea (ION), and Levantine Sea (LEV).

Figure 2. Illustration of the principal architectural components of the PPCon model: (i) MLP network to transform the point-wise inputs (day,
year, latitude, and longitude) into vectorial form, (ii) vectorial inputs (output of the MLP and profiles of temperature, salinity, and oxygen),
(iii) structure of the encoder–decoder of a 1D CNN architecture, and (iv) output vector representing the vertical profile of one of the target
variables (nitrate, chlorophyll, or backscattering).

a seven-channel tensor that serves the input of the PPCon ar-
chitecture.

Thus, to sum up, the input to the PPCon architecture con-
sists of four point-wise inputs (latitude, longitude, day, and
year), which are transformed into a vectorial input using an
MLP architecture. In addition, for the training, the architec-
ture uses three 1×200 input vectors representing the profiles
of temperature, salinity, and oxygen.

3.2 PPCon architecture

The convolutional component of the PPCon architecture,
summarized in Table 2, is a DL model comprising multiple
1D convolutional and deconvolutional layers.

The input tensor has a one-dimensional shape, with a to-
tal of seven channels, one for each of the three variables to
reconstruct, i.e., nitrate, chlorophyll, and bbp700.

The architecture includes a total of nine layers, each of
which applies a set of filters to the input tensor. These fil-
ters are designed to detect specific features or patterns, with
the number and size of the filter kernels specified by the pa-
rameters of each layer. To enable effective feature extrac-
tion across different scales, various stride parameters are em-
ployed to specify the step size at which the filters are applied
to the input tensor. To ensure that the output tensor has the
same shape as the input tensor, padding parameters are in-
corporated, adding zero padding to the borders of the input
tensor. The output tensor is then normalized through a batch
normalization (Santurkar et al., 2018) layer after each con-
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Table 2. The convolutional component of the PPCon model is illustrated in diagram form. The key attributes of the NN are outlined,
encompassing parameters, output size (represented as [number of channels, input length]), and any additional layers. More specifically,
“BN” denotes the batch normalization layer, “SELU” represents the non-linear selu() activation layer, and “Dropout” indicates the presence
of a dropout layer along with the corresponding dropout rate.

Layer Kernel Stride Padding Output size Additional details

Input – – – [7,200] –
Conv. 1D 2 1 2 [64,203] BN, SELU, Dropout (rate: dr)
Conv. 1D 2 2 1 [128,102] BN, SELU, Dropout (rate: dr)
Conv. 1D 4 1 1 [128,101] BN, SELU, Dropout (rate: dr)
Conv. 1D 4 1 2 [128,102] BN, SELU, Dropout (rate: dr)
Deconv. 1D 2 2 2 [128,200] BN, SELU, Dropout (rate: dr)
Conv. 1D 3 1 1 [128,200] BN, SELU, Dropout (rate: dr)
Deconv. 1D 2 2 1 [64,398] BN, SELU, Dropout (rate: dr)
Conv. 1D 2 2 1 [32,200] BN, SELU, Dropout (rate: dr)
Conv. 1D 3 1 1 [1,200] BN, SELU
Output – – – [1,200] –

volutional layer. The normalization process ensures that the
output tensor has a mean of zero and a unit variance, thereby
minimizing the effect of covariate shifts and enhancing the
stability of the training process. Following normalization, the
output tensor is passed through a scaled exponential linear
unit (SELU) activation function (Rasamoelina et al., 2020),
which is defined as

f (x)=

{
λx if x ≥ 0

λα(ex) if x < 0,
(1)

where λ≈ 1.0507 and α ≈ 1.6732. SELU was selected as
an activation function, as it induces self-normalization prop-
erties. Dropout layers (Baldi and Sadowski, 2013) are also
incorporated to prevent overfitting during training, promot-
ing robust generalization and enhancing the NN’s ability to
learn diverse features from the input data. These layers ran-
domly drop out some of the network neurons, with the spe-
cific probability of dropout (dr) specified for each layer in the
architecture’s hyperparameters.

The final convolutional layer produces a one-channel out-
put tensor, which represents the final prediction of the model.

3.3 Loss function

The choice and design of a loss function is a crucial step in
the development of DL models, as it determines the objective
to be optimized during training and can have a significant im-
pact on the model’s ability to generalize to new data. Besides
the ability to skillfully reproduce output variable profiles, we
want the PPCon architecture to mitigate overfitting and pro-
duce a smooth prediction curve.

To fulfill these objectives, we define a loss function com-
prising three components: firstly, the root-mean-square error
(RMSE) between the target output and the PPCon architec-
ture’s prediction, to assess prediction quality. Secondly, to
mitigate overfitting phenomena, a regularization term known

as λ regularization is employed, which penalizes complex
curves in proportion to the square of the model’s weights
(Zou and Hastie, 2005). By promoting smaller weight val-
ues, this technique encourages the generation of more gen-
eral predictions. The severity of this penalty is determined
by a multiplicative factor λ, which is a hyperparameter of
the model. The final component of the loss function is in-
corporated to promote the generation of a smoother output
curve. This term, controlled by a hyperparameter αs, serves
as a regularization technique that penalizes sharp variations
in the output. The final loss formula is as follows:

L(y, ŷ)=
n∑
i=1
(yi−ŷi)

2
+λ

N∑
i=1
|θi |

2
+αs

n−1∑
i=1
(ŷi+1−ŷi)

2, (2)

where y represents the target value, ŷ is the output of the
PPCon model, n is the length of both y and ŷ, and N is the
total number of weights of the DL architecture.

4 Experimental study

This section presents the experimental settings for the PP-
Con architecture, which are defined for each predicted vari-
able under consideration. The complete code for the repro-
ducibility of the results presented in this paper is available
at https://doi.org/10.5281/zenodo.8369573 (Pietropolli et al.,
2023b).

Moreover, a Python library is provided, which can be in-
stalled via pip install ppcon, and the corresponding
code and documentation are available at https://github.com/
gpietrop/ppcon (last access: 15 September 2024). The library
allows users to train the PPCon architecture and use the pre-
trained architecture described in this paper to predict new
profiles, and it includes functions to reproduce all the plots
presented in this paper.
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4.1 Training

We divided the dataset into three subsets: training, testing,
and validation. The training set was used for model training
and parameter optimization. The testing set was utilized to
evaluate the model’s performance on unseen data and assess
its generalization ability. Finally, the validation set was em-
ployed for hyperparameter tuning and model selection. The
dataset was randomly partitioned, ensuring that each sub-
set contained a representative distribution of the overall data
characteristics. The sizes of the training, testing, and valida-
tion sets were chosen as 80 %, 10 %, and 10 % of the total
number of measurements. Moreover, before operating this
partition, a few float instruments were selected, and all of
their measurements were excluded from the training, test,
and validation sets. These samples will be used as an exter-
nal validation dataset. The metrics and the performances over
this external validation dataset are a more effective indicator
of the generalization capabilities of the PPCon model with
respect to the metrics on the test set.

To train the NN model efficiently, the input dataset is parti-
tioned into mini-batches, where each mini-batch contains 32
samples. The batch size is a hyperparameter that determines
the number of samples processed before updating the model
weights. By processing multiple samples in a mini-batch, the
model can update its parameters more frequently, which can
lead to faster convergence and improved generalization per-
formance (Bottou, 2010).

Adadelta (Zeiler, 2012) is the algorithm that is selected as
the optimizer for training the network due to its ability to dy-
namically adapt over time using only first-order derivatives
of the objective function. This method eliminates the need
for manual tuning of the learning rate and has been found to
exhibit robustness.

It is worth recalling that the PPCon architecture includes a
1D CNN and four MLPs, which convert point-wise input into
a vector form suitable for use by the CNN. The MLPs and the
CNN component of PPCon were trained using the same op-
timizer, with concurrent weight updates across all networks.
This approach enables the joint learning of optimal informa-
tion transfer from point-wise input to vector form and the
accurate generation of predicted profiles based on the input
tensor.

To accelerate the training process, the model was trained
using a graphics processing unit (GPU), which allowed par-
allelized computation of the forward and backward passes.

The model’s performance was evaluated once every 25
epochs by assessing its ability to predict outcomes on the
test set, which consists of previously unseen data. To prevent
overfitting and to minimize computational burden, we in-
troduced an early-stopping routine. Specifically, the training
was interrupted if the error metrics on the validation set in-
creased for two consecutive evaluations (i.e., after 50 epochs
of training). The final model selected was the one trained be-
fore the two 25 consecutive test loss increases.

4.2 Experimental settings

Since each output variable has intrinsic differences in train-
ing set size, range of values, and profile shapes and vari-
abilities, a separate hyperparameter-tuning step is performed
for each of them. These hyperparameters were tuned using
a systematic search over a range of values, guided by the
performance of the model on a held-out validation set. To
avoid overfitting in the test set, we employed cross-validation
techniques to estimate the generalization performance of the
model and selected the hyperparameters that yielded the best
performance.

The hyperparameters used for training the three PPCon ar-
chitectures are summarized in Table 3, together with the size
of the dataset, the total number of epochs performed, and the
batch size dimension, which have already been discussed in
previous sections.

In our experiments, we applied a dropout rate of 0.2, which
was consistent across all trained models. This means that,
during training, each neuron in the NN has a 20 % chance
of being randomly excluded from the computation. Dropout
regularization is a technique used to prevent overfitting by
encouraging each neuron to encode information indepen-
dently, thereby inhibiting co-dependencies among neurons.

Table 3 also reports the multiplicative factors that de-
termine the relative contributions of different elements that
compose the loss function defined in Sect. 3.3. The values of
these hyperparameters vary depending on the variable being
inferred, as these variables have different orders of magni-
tude and result in RMSE values that vary in magnitude as
well. It is crucial to accurately balance the regularization
term, governed by λ, and the smoothness term, governed
by αs, to prevent them from dominating the loss function’s
RMSE component. The optimal values reported in Table 3
guarantee a good and smooth prediction of the vertical pro-
file.

The last implementation detail to be addressed concerns
the creation of vectors used to feed the PPCon architecture.
As previously discussed, vectorial inputs of different natures
are fed into the CNN component of PPCon: firstly, the out-
puts of an MLP architecture; secondly, vectors representing
input variables (temperature, salinity, and oxygen) at differ-
ent depths. To ensure that all input vectors have the same
length, we adopted the following strategy: (i) the output and
input variables are interpolated on a regular grid of size 200,
and (ii) the outputs of MLPs have the same length and dis-
cretization of the input variable vectors. For nitrate, we con-
sidered a depth range of 0 to 1000 m with an interpolation
interval of 5 m, whereas, for chlorophyll and BBP, we con-
sidered a depth range of 0 to 200 m with an interpolation in-
terval of 1 m. Then, we set the output layer dimension of the
MLP to 200 to ensure that all input vectors have the same
length. As a result, the final dimension of the input tensor is
7 (the number of inputs)× 200 (the length of the input vec-
tor)× the number of dimensions in the training set.

Geosci. Model Dev., 17, 7347–7364, 2024 https://doi.org/10.5194/gmd-17-7347-2024
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Table 3. Summary of hyperparameters and dataset sizes.

Samples Epochs Batch size Dropout rate λ αs

Nitrate 2337 50 32 0.2 0.001 0.001
Chlorophyll 3189 150 32 0.2 0.0001 0.0001
BBP 3942 100 32 0.2 1× 10−7 1× 10−7

4.3 A posterior validation analysis of PPCon

To validate the PPCon architecture, we conducted a thor-
ough analysis of its performance in different geographic ar-
eas (NWM, TYR, SWM, ION, and LEV in Fig. 1) and
across the four seasons: winter (JFM), spring (AMJ), sum-
mer (JAS), and fall (OND). The specific geographical limits
related to different areas are also reported in Table 4. While
the PPCon model is trained on the entire dataset, this sub-
division is only used to analyze the performance retrospec-
tively to check whether the non-uniform geographical and
spatial distribution of the profiles and the natural variabil-
ity in the profiles (e.g., depth and slope of the nitracline or
depth and intensity of the DCM) have an influence. In par-
ticular, the RMSE is calculated for the reconstructed profiles
in each area and season to verify the presence of any bias in
the accuracy of PPCon in capturing the spatial and temporal
variability in the Mediterranean Sea.

5 Results

This section presents the results of the PPCon model in pre-
dicting nitrate, chlorophyll, and bbp700 profiles. The effec-
tiveness of the model is evaluated by presenting both quan-
titative skill metrics (i.e., RMSE) and visual representations
of the predicted profiles based on the test set.

Specifically, we assess the PPCon performance over dif-
ferent seasonal variations (Table 6) and different geographic
areas (Table 7). The absence of overfitting is supported by
reporting the RMSE for both the training and test sets, which
exhibit non-dissimilar values.

In terms of performances across different geographic ar-
eas (Table 7), it can be seen that the lowest RMSE values
for chlorophyll and bbp700 are in the eastern sub-basins,
while for nitrate the lowest and highest values are in the two
eastern sub-basins. Notably, the prediction accuracy for ni-
trate is significantly higher in the ION, SWM, and TYR,
with RMSE values below 0.5 mmol m−3. Considering the
temporal evolution of RMSE values (Table 6), the highest
values of chlorophyll and bbp700 are in spring and winter,
which appears reasonable given the higher variability in the
vertical pattern during these seasons (Cossarini et al., 2019;
Teruzzi et al., 2021). Errors for nitrate are fairly homoge-
neous among the seasons, with the highest values during the
vertical-mixing season (i.e., winter) and the lowest values
during the stratification seasons (i.e., spring and summer).

As for chlorophyll, the western basin of the Mediterranean
shows higher RMSE values. This can be attributed to the
naturally elevated chlorophyll levels observed in that specific
area, which consequently lead to higher RMSE values.

For each variable investigated, we present three instances
of vertical profile reconstruction using the PPCon architec-
ture compared to the profile measured by the float instru-
ment, whose corresponding identification number is indi-
cated above each profile. To ensure geographic and seasonal
diversity, we selected profiles representing different regions,
including at least one from the western Mediterranean and
one from the eastern Mediterranean. Figures 3–5 display ex-
amples of reconstructed nitrate, chlorophyll, and bbp700 pro-
files, respectively. For the nitrate variable, the reconstruction
performed by the MLP model (Pietropolli et al., 2023a; Four-
rier et al., 2020) is also reported in Appendix B. The informa-
tion related to these profiles, such as the date and geolocation
of sampling, are reported in Table 5.

The obtained results confirm the quality of the profiles
generated by the PPCon architecture, which appears to bet-
ter reconstruct the shape and smoothness of the profiles than
the previous MLP architecture. Indeed, PPCon can capture
different profile shapes associated with different geographic
and seasonal conditions, as demonstrated by the predicted
nitrate and chlorophyll profiles. The visual inspection of all
test profiles (not shown) revealed that higher quality in the
prediction is achieved for the nitrate variable, followed by
chlorophyll, and lastly by bbp700. This outcome is expected,
as the nitrate variable exhibits lower variability in the values
and profile shapes than chlorophyll and bbp700. For a more
detailed analysis of the behavior of the PPCon architecture
quality of the predicted profiles, Appendix A reports a com-
parison between the mean of PPCon-predicted profiles and
the mean of profiles measured by the float instruments (in
the test set), providing a more specific insight on the PPCon
performances in different geographic areas and seasons.

To understand the impact of the training set numerosity
and of the variability in profiles on the quality of the PPCon
predictions, we investigated the relation between these quan-
tities and the PPCon error. Specifically, Fig. 6 illustrates the
RMSE values computed for the reconstructed profiles sub-
divided into five geographic areas and four seasons. RMSE
values, which are indicated by the size of the symbols, are
plotted against the variability in the training set (quantified
by the standard deviation on the x axis) and the size of the
training set (on the y axis). This figure also offers valuable in-
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Table 4. Geographical limits of the five areas in which the Mediterranean is divided for the posterior analysis.

Northwestern Med. Southwestern Med. Tyrrhenian Ionian Levantine

Latitude 40–45° N 32–40° N 37–45° N 30–45° N 30–37° N
Longitude −2 to 9.5° E −2 to 9.5° E 9.5–15° E 14–22° E 22–36° E

Table 5. WMO, date, and geolocation of the float profiles reported in Figs. 1–3.

Nitrate Chlorophyll bbp700

WMO Date Lat. Long. WMO Date Lat. Long. WMO Date Lat. Long.

6901648 27 Dec 2014 41.94 4.02 6902954 1 Aug 2019 42.48 7.12 6901657 19 Jun 2016 40.60 10.52
6901769 20 Apr 2016 38.45 9.62 6901648 13 Aug 2015 40.60 4.25 6901776 26 Apr 2014 42.53 7.19
6901770 17 Nov 2015 36.44 19.65 6901496 27 Dec 2013 43.49 9.00 6901773 20 Aug 2015 33.01 29.03

sights into the geographical and seasonal distribution of the
training dataset dimension.

In terms of training size, the plots of the three variables
show that the SWM exhibits the smallest number of train-
ing profiles, while the largest numbers are in the NWM
and LEV areas. Natural variability changes across sub-basins
with higher values of standard deviations in the western sub-
basins (i.e., SWM, NWM, and TYR). Variability and sample
size show a roughly homogeneous distribution among sea-
sons.

The analysis of the nitrate plot reveals fairly homogeneous
errors across natural variability and training sample size, ex-
cluding the SWM profiles. The NWM is the basin predicted
with the lowest accuracy, while the SWM and ION gener-
ally have the lowest errors. In terms of seasonal variation,
the RMSE values appear slightly lower during summer com-
pared to winter and spring.

Chlorophyll and bbp700 exhibit similar behavior (central
and right plots in Fig. 6). In particular, data availability ap-
pears to have no significant impact on the error, whereas
RMSE tends to increase proportionally with the variability.

Regarding the chlorophyll, the performances of the west-
ern sub-basins (i.e., NWM, SWM, and TYR) are lower than
the eastern sub-basins (LEV and ION), likely due to higher
profile variability. Winter and fall are the seasons with lower
RMSE, while the highest error is predicted in spring.

Similarly, better performances for bbp700 are observed in
LEV and ION compared to in the western sub-basin.

Interestingly, summer and fall performances are almost
50 % better than winter and spring ones, despite the fact that
the natural variability and sample size do not show apprecia-
ble differences among the seasons.

5.1 PPCon performance over an external validation
dataset

For each inferred variable, Figs. 7–9 display Hovmöller di-
agrams of measured and reconstructed float instruments be-

longing to the external validation set, and Table 8 reports the
corresponding RMSE values. This represents a particularly
stringent validation test, since none of the profiles measured
by these floats were encountered by the PPCon model during
the training or validation phases. The figures compare the
in situ float measurements (upper diagram) and the predic-
tions generated by the PPCon architecture (lower diagram)
for floats that were specifically selected to cover different ge-
ographical regions of the Mediterranean Sea (e.g., one in the
eastern and one in the western Mediterranean Sea). White
lines in the diagrams indicate float measurements that can-
not be compared due to various reasons, such as the sensor’s
temporary inability to measure the specific variable inferred
or the absence of one of the inputs necessary for the PPCon
architecture (e.g., at least one between temperature, salinity,
and oxygen). This could be attributed to limitations in the
sensor or unacceptable quality flags associated with the col-
lected data. Nevertheless, the number of profiles that cannot
be calculated by PPCon is rather low and does not degrade
the very good capacity of the reconstructed profiles to repro-
duce the temporal evolution of the vertical dynamics shown
by the measured floats.

These plots also confirm the PPCon capability of perform-
ing accurate predictions regarding float devices which are to-
tally unseen by the model. The nitrate (Fig. 7) reconstruc-
tions exhibit a very good performance of PPCon in predict-
ing the vertical dynamics associated with the temporal evo-
lution of the nutricline depth (i.e., the depth at which the
sharp increase in the nitrate values is observed), the values
in the deep layers (which are different in the sub-areas sam-
pled by the two floats), and the occurrence of deep vertical
mixing when surface concentration increases to values higher
than 3 mmol m−3. Particularly impressive is the capability of
PPCon to reconstruct the temporal dynamics of chlorophyll
(Fig. 8). The reconstruction effectively captures the evolution
of the chlorophyll surface peaks during winter and the for-
mation of the deep chlorophyll maximum during summer in
both floats representing the two areas of the Mediterranean
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Table 6. RMSE calculated between the float measurements and the reconstructed values obtained from the PPCon architecture. This metric
is evaluated individually for the train and test sets. The RMSE is computed for different seasons of the year (described in Sect. 2).

Winter Spring Summer Fall

Train Test Train Test Train Test Train Test

Nitrate (mmol m−3) 0.51 0.51 0.51 0.52 0.51 0.49 0.48 0.51
Chlorophyll (mg m−3) 0.08 0.07 0.12 0.13 0.08 0.08 0.05 0.05
bbp700 (×10−4 m−1) 2.6 2.4 2.3 2.6 1.5 1.4 1.5 1.5

Table 7. RMSE calculated between the float measurements and the reconstructed values obtained from the PPCon architecture. This metric
is evaluated individually for the train and test sets. The RMSE is computed for different geographic areas (described in Sect. 2).

Northwestern Med. Southwestern Med. Tyrrhenian Ionian Levantine

Train Test Train Test Train Test Train Test Train Test

Nitrate (mmol m−3) 0.62 0.65 0.37 0.38 0.44 0.44 0.41 0.41 0.48 0.51
Chlorophyll (mg m−3) 0.14 0.13 0.10 0.12 0.08 0.08 0.04 0.04 0.05 0.05
bbp700 (×10−4 m−1) 2.6 2.4 2.1 2.0 2.3 2.3 1.4 1.6 1.4 1.7

Sea. Among the three variables, bbp700 (Fig. 9) shows the
least accurate predictions. However, the model still displays
the ability to infer the key characteristics of the variable’s
temporal behavior. Nonetheless, the generated predictions
for bbp700 appear slightly less detailed compared to the orig-
inal sampling, indicating a partial limitation of the model in
capturing small-scale variations.

Quantitatively, the prediction quality of the PPCon archi-
tecture (RMSE values in Table 8) is fairly well aligned with
the metrics calculated over the test set, as indicated in Ta-
ble 7. In particular, nitrate errors of the two floats are quite
homogeneous and 30 % lower than the RMSE values of the
test set. The errors in chlorophyll and bbp700 predictions ex-
hibit greater variability, with values almost double for the
floats in the western Mediterranean with respect to the east-
ern ones. This is, however, in line with results reported in
Table 7 and Fig. 6, where higher errors are associated with
higher variability.

6 Discussion

To our knowledge, the PPCon architecture is the first at-
tempt to predict vertical BGC-Argo profiles through a con-
volutional architecture. Its primary objective is the incorpo-
ration of typical profile shapes during the training phase, in
contrast with previous architectures, which all relied on MLP
architectures and point-wise strategy. There are notable dis-
tinctions between the two approaches: MLPs were trained
on cruise data, which are known to be more precise in col-
lecting data than autonomous sensors such as the BGC-Argo
(Johnson et al., 2013; Johnson and Claustre, 2016). However,
while MLP architectures have been demonstrated to provide
good training and test errors for point-wise input and out-

put (Pietropolli et al., 2023a; Fourrier et al., 2020; Bittig
et al., 2018; Sauzède et al., 2017), they can exhibit higher
errors when predicting BGC-Argo profiles, as demonstrated
in Pietropolli et al. (2023a) and Appendix B. In contrast, the
PPCon architecture, which relies directly on BGC-Argo float
measurements for the training, showed very good test and
external validation performances.

However, it should be noted that an intrinsic measure-
ment error is introduced by the higher uncertainty in the vari-
ables measured throughout the autonomous sensors. We al-
leviated this limitation by using only DT and high-quality
Argo and BGC-Argo float data that had been checked; how-
ever, the use of the present PPCon in operational oceanogra-
phy (Le Traon et al., 2021; Cossarini et al., 2019) should be
considered cautiously given the lower reliability of adjusted
or near-real-time (NRT) Argo data. According to the analy-
sis conducted by Mignot et al. (2019), the BGC-Argo float
data for nitrate and chlorophyll exhibit RMSE values eval-
uated at 0.25 mmol m−3 and 0.03 mg m−3, respectively. On
the other hand, PPCon architecture produced BGC-Argo pro-
file reconstruction with RMSE values of 0.52 mmol m−3 and
0.08 mg m−3 for nitrate and chlorophyll, respectively. There-
fore, a research question remains as to how the measurement
error of the float instrument impacts the performance of the
PPCon architecture and how to estimate an overall error that
combines the contribution of the instrument error and the er-
ror associated with the PPCon.

Although both MLPs and PPCon employ similar input in-
formation (date, geolocation, temperature, oxygen, and salin-
ity), their treatment of these data differs significantly. While
the current MLP applications process the input and output
as point-wise data, PPCon utilizes vector representations of
the vertical profiles. This approach effectively exploits the
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Figure 3. Profiles of nitrate for some selected floats (WMO numbers and cycles in the title). Profile dates and geolocations are reported in
Table 5. Comparison between measured profile (green lines) and PPCon reconstruction (dashed blue lines). Profiles are from the subset used
for the test.

Figure 4. Profiles of chlorophyll for some selected floats (WMO numbers and cycles in the title). Profile dates and geolocations are reported
in Table 5. Comparison between measured profile (green lines) and PPCon reconstruction (dashed blue lines). Profiles are from the subset
used for the test.

potential of a 1D CNN, which intrinsically preserves the
characteristic profile shape of the input and output variables
(Kiranyaz et al., 2021). When comparing the predictive per-
formance of these techniques in generating vertical profiles
from float data, distinct differences emerge. MLPs can pro-
duce profiles affected by artificial discontinuity, while the
profiles generated by PPCon exhibit a smoother and more
realistic appearance (Appendix B). Additionally, the RMSE
values computed on the reconstructed nitrate profiles of the
test subset confirm the better performance of the 1D CNN
approach with respect to an MLP approach trained on point-
wise data (Appendix B).

Moreover, the posterior study that we conducted shows
that there is no significant variation in the error across dif-
ferent geographic areas and seasons of the year (Tables 6–7),

confirming that PPCon can successfully be applied to all of
the float profiles collected in the Mediterranean Basin.

Specifically, the PPCon architecture serves as a valuable
tool for significantly enriching the BGC-Argo dataset. This
becomes useful, as ocean-observing systems, while essen-
tial for monitoring the health of the marine ecosystem (Eu-
zen et al., 2017), have considerable limitations given their
sparse and scarce spatiotemporal coverage. Surface satellite
observations are limited by cloud coverage and incomplete
swaths of satellite sensors (Donlon et al., 2012), while pro-
filing the ocean interior is limited by the capacity of deploy-
ing and retrieving sensors and measurements with sufficient
coverage. Gap-filling and interpolation of satellite observa-
tions (Volpe et al., 2018; Sammartino et al., 2020; Alvera-
Azcárate et al., 2005) are nowadays consolidated practices to
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Figure 5. Profiles of bbp700 for some selected floats (WMO numbers and cycles in the title). Profile dates and geolocations are reported in
Table 5. Comparison between measured profile (green lines) and PPCon reconstruction (dashed blue lines). Profiles are from the subset used
for the test.

Figure 6. Plot of the RMSE distribution with respect to the data variability (on the x axis) and the training dataset size (on the y axis).
Different sub-areas are represented by different symbol colors, and different seasons are represented by different symbol fill patterns. RMSE
values are categorized by the size of the symbols, and bigger symbols correspond to bigger RMSE values.

Figure 7. Hovmöller diagrams for the nitrate of two selected floats (WMO name in the title) belonging to the external validation set. BGC-
Argo measurements (a, b) and PPCon prediction (c, d) are compared. WMO 6901767 sampled the 39–41° N and 10–11° E area during
2015–2018, whereas WMO 691764 sampled the 31–34° N and 26–40° E area during 2015–2017.
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Table 8. RMSE calculated between the float measurements and the reconstructed values obtained from the PPCon architecture over the
external validation dataset.

Nitrate (mmol m−3) Chlorophyll (mg m−3) bbp700 (m−1)

6901767 0.44 6901648 0.14 6901649 1.9×10−4

6901764 0.31 6901496 0.13 6901496 2.2×10−4

Figure 8. Hovmöller diagrams for the chlorophyll of two selected floats (WMO name in the title) belonging to the external validation set.
BGC-Argo measurements (a, b) and PPCon prediction (c, d) are compared. WMO 6901648 sampled the 40–42° N and 2–6° E area during
2014–2016, whereas WMO 6901496 sampled the 42–43° N and 7–12° E area during 2013–2014.

provide gap-free and high-level products (Barth et al., 2020;
Sauzède et al., 2016). Our PPCon architecture presents a
valuable approach to harness the potential of the Argo and
BGC-Argo network by enabling the synthetic generation of
essential variables (chlorophyll, nitrate, and bbp700), even
when these costly sensors are not present in the deployed
floats. For instance, the application of PPCon on Argo and
oxygen profiles in the Mediterranean Sea for the period from
2013 to 2020 enabled the generation of 5234 (nitrate), 3879
(chlorophyll), and 3307 (bbp700) synthetic profiles, which
means doubling the chlorophyll and bbp700 BGC-Argo pro-
files and more than tripling those of nitrate. Enhancing the
float dataset through the inclusion of reconstructed nutrient
profiles (and possibly other biogeochemical variables) has
been proven successful in observing system simulation ex-
periments (Ford, 2021; Yu et al., 2018) and in real numeri-
cal assimilation experiments (Amadio et al., 2024). In par-
ticular, the assimilation of reconstructed profiles effectively
corrects a widespread positive bias observed in the opera-
tional system for short-term forecasting of the biogeochem-
istry of the Mediterranean (MedBFM), along with the addi-
tion of the reconstructed profiles increasing the spatial impact
of the BGC-Argo network from 20 % to 45 % (Amadio et al.,
2024).

7 Conclusions

This paper presents a novel approach for reconstructing low-
sampled variables, namely nitrate, chlorophyll, and bbp700,
using high-sampled variables such as date, geolocation, tem-
perature, salinity, and oxygen. The introduced model, named
PPCon, utilizes a spatially aware 1D CNN architecture that
effectively learns the characteristic shape of the vertical pro-
file, enabling precise and smooth reconstructions. PPCon
represents a potential advancement in predicting BGC-Argo
profiles over previous MLP applications, which operate on
point-wise input and output.

The training dataset consists of a collection of BGC-Argo
float measurements in the Mediterranean Basin. The pro-
posed architecture has been specifically designed to handle
both point-wise and vectorial input, with careful tuning of
the architecture and loss function for the task. An extensive
hyperparameter-tuning phase has been conducted to ensure
the best architecture for each variable.

To evaluate the accuracy of the profiles generated by the
PPCon architecture, both quantitative metrics and visual rep-
resentations of the results have been provided. Additionally,
the method has been validated on an external dataset to ver-
ify its generability. The results confirm the model’s abil-
ity to predict high-quality synthetic profiles, with particu-
larly accurate predictions for the nitrate variable, followed
by chlorophyll and, lastly, bbp700.
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Figure 9. Hovmöller diagrams for the bbp700 of two selected floats (WMO name in the title) belonging to the external validation set.
BGC-Argo measurements (a, b) and PPCon prediction (c, d) are compared. WMO 6901649 sampled the 39–41° N and 3–7° E area during
2014–2016, whereas WMO 6901496 sampled the 42–43° N and 7–12° E area during 2013–2014.

PPCon demonstrates its capacity to capture and learn dis-
tinct typical shapes in the profiles, which characterize the in-
ferred variables across different seasons and geographic ar-
eas. Detailed error analysis confirms the model’s robust per-
formance, accounting for seasonal and regional variations,
suggesting that PPCon’s ability to learn these differences
can make it successful for broader-scale training beyond the
Mediterranean Basin. Furthermore, the model exhibits accu-
rate performance on an external validation dataset, confirm-
ing its potential for generalization.

Appendix A: Extended results

Figure A1 presents a comparison between the mean values of
the PPCon predicted profiles and the mean values of the sam-
pled measurements obtained from the float instruments in the
test set. The mean values are computed based on the profiles
within a specific geographic area and season. These profiles
serve as additional indicators to assess the reliability of pre-
dictions within different frameworks, providing valuable in-
sights into the precision of predictions at various depth levels.
These results confirm the previous observations discussed in
Sect. 5, particularly the finding that the prediction quality is
superior for the nitrate, followed by chlorophyll and, lastly,
bbp700. Additionally, an interesting characteristic of the PP-
Con prediction is its higher quality in deep water compared
to surface water. This can be attributed to the higher variabil-
ity in profiles in the surface water, making it more challeng-
ing for the neural network to accurately capture the diverse
shapes.

https://doi.org/10.5194/gmd-17-7347-2024 Geosci. Model Dev., 17, 7347–7364, 2024



7360 G. Pietropolli et al.: PPCon 1.0

Figure A1. Comparison of the mean of PPCon predicted profiles with the mean of sampled values measured by the float instruments in the
test set. Results are divided among different geographic areas: the dashed lines represent sampled values, while continuous lines represent
PPCon predictions.

Appendix B: Comparison between reconstructed nitrate
profiles by PPCon and MLP architectures

The present appendix aims to show the performance of three
different ML architectures to reconstruct nitrate profiles that
use Argo profiles of temperature and salinity and BGC-Argo
profiles of oxygen. The three ML architectures are the 1D
CNN of the present work (PPCon), MLP trained on point-
wise data from EMODnet (Pietropolli et al., 2023a), and
MLP trained on point-wise data (Fourrier et al., 2020). Input
data from Argo and BGC-Argo for all approaches have been
interpolated to the regular 5 m discretization, as explained
in Sect. 4. The comparison is done on the subset of profiles
used in the test phase. Figure B1 shows some measured and
reconstructed float profiles. The visual comparison reveals
the higher performance of PPCon to match the shape of the
measured profiles (e.g., depth and intensity of the nitracline)
and to reproduce the nitrate values of the deepest part of the
profiles observed in the different Mediterranean sub-regions.
The quantitative assessment of the performance of the three
ML architectures is shown in Table B1, which reports the
RMSE computed over all profiles of the subset used in the
test phase. The RMSE of the reconstructed profile by PPCon
is more than 30 % lower than that computed on the MLP re-
constructions.

Table B1. RMSE of the three ML architectures computed over the nitrate profiles of the subset BGC-Argo dataset of the test phase.

PPCon CANYON-MED (Fourrier et al., 2020) MLP (Pietropolli et al., 2023a)

Nitrate RMSE (mmol m−3) 0.52 0.78 0.98

Geosci. Model Dev., 17, 7347–7364, 2024 https://doi.org/10.5194/gmd-17-7347-2024



G. Pietropolli et al.: PPCon 1.0 7361

Figure B1. Nitrate profiles from the BGC-Argo dataset (green, measured) and reconstructed by PPCon (dashed cyan line), MLP as in
(Pietropolli et al., 2023a) (dashed purple line) and CANYON-MED (dashed dark-blue line). Profiles are selected from the subset used in the
test phase of the present work. Float positions are as follows: 6901032 in NWM, 6903249 and 6901772 in ION, 6902904 in LEV, 6901767
in TYR, and 6901769 in SWM.
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