Articles | Volume 17, issue 5
https://doi.org/10.5194/gmd-17-2187-2024
https://doi.org/10.5194/gmd-17-2187-2024
Model description paper
 | Highlight paper
 | 
15 Mar 2024
Model description paper | Highlight paper |  | 15 Mar 2024

Minimum-variance-based outlier detection method using forward-search model error in geodetic networks

Utkan M. Durdağ

Related subject area

Integrated assessment modeling
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model
Mengqi Zhao, Thomas B. Wild, Neal T. Graham, Son H. Kim, Matthew Binsted, A. F. M. Kamal Chowdhury, Siwa Msangi, Pralit L. Patel, Chris R. Vernon, Hassan Niazi, Hong-Yi Li, and Guta W. Abeshu
Geosci. Model Dev., 17, 5587–5617, https://doi.org/10.5194/gmd-17-5587-2024,https://doi.org/10.5194/gmd-17-5587-2024, 2024
Short summary
CLASH – Climate-responsive Land Allocation model with carbon Storage and Harvests
Tommi Ekholm, Nadine-Cyra Freistetter, Aapo Rautiainen, and Laura Thölix
Geosci. Model Dev., 17, 3041–3062, https://doi.org/10.5194/gmd-17-3041-2024,https://doi.org/10.5194/gmd-17-3041-2024, 2024
Short summary
Carbon Monitor Power-Simulators (CMP-SIM v1.0) across countries: a data-driven approach to simulate daily power generation
Léna Gurriaran, Yannig Goude, Katsumasa Tanaka, Biqing Zhu, Zhu Deng, Xuanren Song, and Philippe Ciais
Geosci. Model Dev., 17, 2663–2682, https://doi.org/10.5194/gmd-17-2663-2024,https://doi.org/10.5194/gmd-17-2663-2024, 2024
Short summary
Intercomparison of multiple two-way coupled meteorology and air quality models (WRF v4.1.1–CMAQ v5.3.1, WRF–Chem v4.1.1, and WRF v3.7.1–CHIMERE v2020r1) in eastern China
Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, Guangyi Yang, Mengduo Zhang, and Shengjin Xie
Geosci. Model Dev., 17, 2471–2492, https://doi.org/10.5194/gmd-17-2471-2024,https://doi.org/10.5194/gmd-17-2471-2024, 2024
Short summary
MESSAGEix-GLOBIOM nexus module: integrating water sector and climate impacts
Muhammad Awais, Adriano Vinca, Edward Byers, Stefan Frank, Oliver Fricko, Esther Boere, Peter Burek, Miguel Poblete Cazenave, Paul Natsuo Kishimoto, Alessio Mastrucci, Yusuke Satoh, Amanda Palazzo, Madeleine McPherson, Keywan Riahi, and Volker Krey
Geosci. Model Dev., 17, 2447–2469, https://doi.org/10.5194/gmd-17-2447-2024,https://doi.org/10.5194/gmd-17-2447-2024, 2024
Short summary

Cited articles

Aydin, C.: Power of global test in deformation analysis, J. Surv. Eng., 138, 51–56, https://doi.org/10.1061/(ASCE)SU.1943-5428.0000064, 2012. 
Baarda, W.: A testing procedure for use in geodetic networks. Publications on Geodesy, 2 = 5, Netherlands Geodetic Commission, Delft, the Netherlands, ISBN 90 6132 209 X, 1968. 
Batilović, M., Sušić, Z., Kanović, Ž., Marković, M. Z., Vasić, D., and Bulatović, V.: Increasing efficiency of the robust deformation analysis methods using genetic algorithm and generalised particle swarm optimisation, Surv. Rev., 53, 193–205, https://doi.org/10.1080/00396265.2019.1706294, 2021. 
Duchnowski, R.: Sensitivity of robust estimators applied in strategy for testing stability of reference points. EIF approach, Geodesy and Cartography, 60, 123–134, https://doi.org/10.2478/v10277-012-0011-z, 2011. 
Durdağ, U. M.: Godesist/OutlierDetectionForGeodeticLevelingNetwork: Initial Release (0.1.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.10417506, 2023. 
Download
Executive editor
Robust outlier detection is a challenge for all areas of science that deal with real data. Here, the author describes a new approach to this in the field of geodesy, but does so in a readable and accessible way. It will therefore be valuable reading for those beyond that field.
Short summary
This study introduces a novel approach to outlier detection in geodetic networks, challenging conventional and robust methods. By treating outliers as unknown parameters within the Gauss–Markov model and exploring numerous outlier combinations, this approach prioritizes minimal variance and eliminates iteration dependencies. The mean success rate (MSR) comparisons highlight its effectiveness, improving the MSR by 40–45 % for multiple outliers.