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Geomatics engineering, Artvin Coruh University, Artvin, 08100, Türkiye

Correspondence: Utkan M. Durdağ (umdurdag@artvin.edu.tr)
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Abstract. Geodetic observations are crucial for monitoring
landslides, crustal movements, and volcanic activity. They
are often integrated with data from interdisciplinary studies,
including paleo-seismological, geological, and interferomet-
ric synthetic aperture radar observations, to analyze earth-
quake hazards. However, outliers in geodetic observations
can significantly impact the accuracy of estimation results
if not reliably identified. Therefore, assessing the outlier de-
tection model’s reliability is imperative to ensure accurate in-
terpretations. Conventional and robust methods are based on
the additive bias model, which may cause type-I and type-II
errors. However, outliers can be regarded as additional un-
known parameters in the Gauss–Markov model. It is based
on modeling the outliers as unknown parameters, considering
as many combinations as possible of outliers selected from
the observation set. In addition, this method is expected to be
more effective than conventional methods as it is based on the
principle of minimal variance and eliminates the interdepen-
dence of decisions made in iterations. The primary purpose
of this study is to seek an efficient outlier detection model in
the geodetic networks. The efficiency of the proposed model
was measured and compared with the robust and conven-
tional methods by the mean success rate (MSR) indicator
of different types and magnitudes of outliers. Thereby, this
model enhances the MSR by almost 40 %–45 % compared
to the Baarda and Danish (with the variance unknown case)
method for multiple outliers. Besides, the proposed model
is 20 %–30 % more successful than the others in the low-
controllability observations of the leveling network.

1 Introduction

Conventional tests for outliers and robust M estimation are
based on the least squares estimation (LSE). If an observa-
tion contains an outlier, the LSE method ceases to be the
optimal estimation method in terms of a minimum-variance
unbiased estimator. Once outliers are detected and isolated,
the LSE can be called an efficient estimation. Otherwise, an
undetected outlier has a slight deviation from the normality
assumption that may cause a smearing effect on all estimated
parameters regardless of whether using LSE directly or in-
directly which may be named the local influence function
(IF) of the LSE (Gao et al., 1992; Hekimoglu et al., 2010;
Nowel, 2020). For different bias intervals, the smearing ef-
fect of the LSE that behaves systematically as a function of
partial redundancy has been proven by Durdag et al. (2022).
Normalized residuals, which would be exposed to the smear-
ing effect, are investigated to identify and isolate outliers by
conventional tests for outliers and some robust methods such
as M estimation (Zienkiewicz and Dąbrowski, 2023; Wang
et al., 2021; Batilović et al., 2021). Thereby the falsified test
result may induce type-I errors. In addition to the low effi-
ciency of LSE results, the low success of the F test shown
by Hekimoglu led researchers to seek a more reliable and
effective method such as the univariate method and original
observations (Hekimoglu, 1999; Erdogan, 2014; Hekimoglu
et al., 2014). Although these methods boost the reliabilities
of the conventional methods, the identification of outliers in
these models is based on the same procedure as the conven-
tional and robust methods. If the normalized residual exceeds
3 times its standard deviation (SD), also called the 3σ rule, an
observation is flagged as an outlier (Lehmann, 2013). How-
ever, tests for outliers can be dealt with sufficiently with a
single outlier since the LSE has an unbounded IF (Duch-
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nowski, 2011; Maronna et al., 2019; Huber, 1981; Durdag
et al., 2022). Studies show that the reliability of these tech-
niques, established with the additive bias model, decreases
significantly as the number of outliers increases. In the de-
cision stage, the outliers that mask or swamp other obser-
vations can produce a type-I error (false negative) and type-
II error (false positive). Multiple outliers can be identified
at most as the number of possible outliers (mmax ≤

n−u
2 ) by

repetitive test procedures (Hekimoglu, 2005). However, the
efficiency of conventional tests is rather small when the out-
lier value is close to the critical value, i.e., when small out-
liers lie between 3–6σ .

If the rate of successful detection of an outlier using con-
ventional and robust methods is 50 % and one outlier is de-
termined incorrectly, the probability of correctly determining
two outliers remains below 50 %. This condition is based on
the interdependence of each iteration. Incorrect determina-
tion at each step also reduces the possibility of identifying
more than one outlier in the next step. Therefore, besides
modeling the outliers as unknown, the proposed method is
based on two essential factors: the principle of the slightest
variance and the assumption of looking at all points with sus-
picion in each iteration. It has been proven by Hekimoglu et
al. (2015) for linear regression that the method with which
the outlier is modeled as an additional unknown gives more
successful results than the robust methods. The method sug-
gests carrying outlier detection until all possible combina-
tions are investigated. In the Cnk combination, observation(s)
is (are) included as an additional unknown parameter(s) in
the proposed model. Then, observations are viewed with sus-
picion considering combinations of k elements (groups of
two, three, and so forth) selected from a set of n elements
(Cnk ), where n is the number of observations and k denotes
the number of outliers. The observation with the smallest
variance among Cn1 combinations is determined. Consider-
ing the Cn2 combinations, the pair of observations was re-
garded as a model error and the two observations with the
smallest variance were flagged as candidates. All possible
combinations will be regarded until the maximum number
of burdened observations that would occur up to one-half
of the degrees of freedom (∼= f/2) for the geodetic network.
The potential observations are clustered separately and com-
pared with the specified critical values for each combination
step. The model errors of the potential outlier(s) exceeding
the critical value are flagged as suspicious for each combina-
tion step. The test values of all potential outliers must exceed
the critical value for each combination step, and, if not, the
previous candidates are detected as outliers.

The primary purpose of this study is to apply the proposed
outlier detection method to geodetic networks and to estab-
lish its efficiency. The suggested model was compared with
the robust methods by the mean success rate (MSR) indicator
of different types and magnitudes of outliers. As in the clas-
sic models, the number of outliers is inversely proportional
to the success of the presented method. When outliers have

various magnitudes (e.g., small, large, gross, and extreme
outliers) and specific observations are not available in the
network (observations with low controllability), it has been
found that the proposed method is quite successful compared
to the conventional and robust methods.

2 Gauss–Markov model

Let Anxu be a design matrix which has full column rank,
i.e., rank (A)= u; P a weight matrix of the observations;
xux1 a vector of the unknown parameter; lnx1 an observa-
tion vector; Cllnxn an a priori covariance matrix of observa-
tions; Qllnxn a weighted coefficient matrix of observations;
and σ 2

0 an a priori variance factor, where n and u are the num-
ber of observation and number of unknowns, respectively.
By adding vnx1 as a residual vector, one can get x̂, an es-
timated vector of unknown parameters presented in the fol-
lowing Gauss–Markov model (Koch, 1999):

l+ v = Ax̂ , Cll = σ 2
0 P−1

= σ 2
0 Qll, (1)

x̂ = (ATPA)+ATPl, (2)

Qxx = (ATPA)+, (3)

Qvv = P−1
−AQxxAT, (4)

where Qxx denotes a cofactor matrix of the unknown param-
eters and Qvv implies the cofactor matrix of the residuals.

2.1 Test for outliers

In Geodesy, procedures for the outlier detection were devel-
oped by Baarda (1968) and Pope (1976). If the observations
come from the normal distribution, they are called good ob-
servations, whereas the burdened observations that contain
outliers originate from another distribution. Let li be a bur-
dened observation that has δli as an outlier; the null hypoth-
esis,

H0 : δli = 0 against H1 : δli 6= 0, (5)

is tested. If the observations are uncorrelated and the variance
σ 2

0 is known, the normalized residuals can be written as

wi =
|vi |

σ0
√
qvivi

, (6)

where wi is the test value and qvv is the cofactor of the resid-
ual for i = 1. . .n. This is known as Baarda’s method (i.e., a
data-snooping test). A posteriori variance (m2

0) is calculated
in Pope’s method given by

τi =
|vi |

m0
√
qvivi

, (7)

where τi is the test value. The observation with the biggest
normalized or studentized residual is tested in one loop of
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the iterations. The test for outliers is used iteratively if the
observations contain more than one outlier. The flagged ob-
servation is removed whenH0 is rejected. The remaining ob-
servations are adjusted once more. Until no more outliers are
found, this process is repeated. However the multiple outliers
cause swamping or masking effects that make it impossible
to distinguish the burdened observations from the good ones.
In the following sections, the robust and the proposed meth-
ods will be demonstrated to prevent the smearing effect of
the LSE.

2.2 Robust methods

M estimation (Huber, 1964) is a generalized form of maxi-
mum likelihood estimation. In this paper M estimation from
the Huber and Danish methods, commonly chosen to handle
outliers in robust statistics, was used to compare the results
of the proposed method.

2.2.1 M estimation

The re-weighted LSE is applied iteratively to the non-linear
normal equation of the M estimation as follows:

x̂r = (ATWrA)+ATWr
l, (8)

Wr
= PW(vr−1), (9)

W(v0) = E, (10)

vr = Ax̂r − l, (11)
W(v)= diag((W (v1) , W (v2) , . . .,W(vn), (12)

where x̂r equals the x̂ from Eq. (2) for the first iteration and E
stands for a unit matrix. r implies a number of iterations and
is chosen as 5 in this paper. The weight function of Huber’s
M estimation is given as follows:

W
(
vri
)
=


1

∣∣vri ∣∣≤ c
c

|vri |

∣∣vri ∣∣> c ; i = 1. . .n, (13)

and the weight function of the Danish method is given by

W
(
vri
)
=

{
1

∣∣vri ∣∣< c
exp

(
−
|vri |
c

) ∣∣vri ∣∣≥ c ; i = 1. . .n, (14)

where vi is the residual and c is taken as 1.5σ0. After the
diagonal elements of the W weight matrix are determined,
vr and x̂r are recalculated for each iteration. The residual
that is computed in the final iteration is detected as an outlier
if it exceeds 3σ0.

3 Forward search of model error

The Gauss–Markov model (Eq. 1) is now expanded by the
u× 1 vector ε of additional unknown parameters, also with

the n× u design matrix M:

l+ v = [AM]
[
x̂

ε̂

]
, Cll = σ 2P−1

= σ 2Qll, (15)

where the variance σ 2 stands for the unit weight of the aug-
mented model and the vector ε contains the outliers which
are subtracted from the observations. If only the outlier1j is
present in the observation lj , then one should define ε =1j
and M= ej , where ej = [0, . . .,0,1,0, . . .,0] for j = 1. . .n.
The j th component of ej gets the value 1. For the j th obser-
vation with A= [A1, . . ., Aj , . . .]T, the observation equation
is given as

lj + vj = AT
j x̂+ 1̂j , (16)

where AT
j is the j th row vector of A and for the remainder

of the observations lk + vk = AT
k x̂(k = 1,2, . . .,n), k 6= j . If

the outliers exist in the observations, ε and M are rewritten
as follows:

ε =

∣∣∣1̂j , 1̂j+1. . ., 1̂t

∣∣∣T and M=
[
ej ,ej+1, . . .,et

]T
. (17)

The estimate of unknown parameters of the augmented
model can, therefore, be expressed as follows (Koch, 1999):[
x̂

ε̂

]
=

[
ATPA ATPM
MTPA MTPM

]−1[ ATPl
MTPl

]
, (18)

where[
ATPA ATPM
MTPA MTPM

]−1
=[

(ATPA)−1(E+ATPMSMTPA(ATPA)−1
−(ATPA)−1ATPMS

−SMTPA(ATPA)−1 S

]
, (19)

S= [MT
(

P−PA(ATPA)−1ATP
)

M]−1
= (MTPQvvPM)−1, (20)

ε̂ = SMTP(E−A(ATPA)−1ATP)l, (21)

The residuals are expressed for the Gauss–Markov model in
Eq. (1) by

v = Ax̂− l = A(ATPA)+ATPl− l =
(

E−A(ATPA)+ATP
)
(−l), (22)

whose right-hand side can be replaced in Eq. (21) as follows:

ε̂ = SMTP
(

E−A(ATPA)−1ATP
)
l =−SMTPv, (23)

and considering Eq. (20) the following equation yields

ε̂ =−(MTPQvvPM)−1MTPv. (24)

3.1 Testing procedure

The alternative hypothesis, in the case of the presence of out-
liers, takes the form against the null hypothesis as follows:

H0 : E {l} = Ax̂, (25a)

HA : E {l} = [AM]
[
x̂

ε̂

]
. (25b)

One should consider all possible combinations of potentially
burdened observations for the correct specification of the al-
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ternative hypothesis (Teunissen, 2006). All potential alterna-
tive hypotheses Cnb , where n is the number of observations
and b is the number of potential outliers, are considered in
the detection step. Firstly, the observations are assumed to be
unknown one by one in the model. The additional unknowns
of the model ε̂ are calculated by rewriting the relevant rows
for each observation in the coefficient matrix iteratively. The
design matrix can be rewritten as follows by including a di-
mension in the model as an unknown:

A1,1
Cn1
= [AM]=


1 0 0 0 −1 0 0 | 1
1 0 0 0 0 −1 0 | 0
1 −1 0 0 0 0 0 | 0
0 −1 0 0 0 1 0 | 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. |

.

.

.
0 0 0 0 −1 0 1 | 0

 ,

A1,2
Cn1
=


1 0 0 0 −1 0 0 | 0
1 0 0 0 0 −1 0 | 1
1 −1 0 0 0 0 0 | 0
0 −1 0 0 0 1 0 | 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. |

.

.

.
0 0 0 0 −1 0 1 | 0

 , (26)

where Ab,i denotes the matrix of coefficients for b =

1, . . .,f/2 and i = 1, . . .,n.

3.1.1 Calculation steps for model error

The rows of the additional column vector are rewritten it-
eratively for each observation, and the corresponding one is
modeled as an unknown using calculation steps given below.

1. After calculating the cofactor matrix, the unknowns ma-
trix is obtained:

Qb
xx = (A

bTPAb)+, (27)

x̂b =
(

AbTPAb
)+

AbTPl. (28)

2. To determine the observation that gives the smallest-
variance value, the step of calculating the residuals is
given by

vb = Abx̂b− l. (29)

3. The posteriori variance is calculated as

(sb)2 = vb
TPvb/f b. (30)

4. Determining the observation with minimum variance,

j =min(sb)2. (31)

5. After the relevant observation is determined, the test
value is calculated as given by

T = 1̂j/(s0
√
qjj ). (32)

Thus, the unit-weighted posteriori variances for each addi-
tional unknown parameter are calculated by

ŝ2
=
vTPv
n− uk

, i = 1. . .n, (33)

where uk = u+1 represents the number of the unknowns cal-
culated for the model given in Eq. (15). The number of ele-
ments in the set of the posterior variances calculated for each
observation appears as Cn1 . After the acceptance or rejection
of the H0 hypothesis is evaluated in the identification phase
mentioned below, the decision is made to rewrite the model,
where the unknowns are expanded for the observations two
by two for the Cn2 combination. It is identified to which ob-
servation the smallest-variance value min {ŝ2

i } belongs, and
the unknown of the relevant observation is compared with
the critical value. When min

{
ŝ2
i

}
= ŝ2

k , the absolute value of
T is compared with the t test. If |T | ≥ tf−1,1−α , H0 is re-
jected and the kth observation is flagged as an outlier. If the
null hypothesis is accepted, the process ends. The model is
expanded for another alternative hypothesis which assume
two potential blunders in case H0 is rejected. The coefficient
matrix is rewritten for each combination of Cn2 as

A2,1
Cn2
=


1 0 0 0 −1 0 0 | 1 0
1 0 0 0 0 −1 0 | 0 1
1 −1 0 0 0 0 0 | 0 0
0 −1 0 0 0 1 0 | 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. |

.

.

.
.
.
.

0 0 0 0 −1 0 1 | 0 0

 ,

A2,2
Cn2
=


1 0 0 0 −1 0 0 | 1 0
1 0 0 0 0 −1 0 | 0 0
1 −1 0 0 0 0 0 | 0 1
0 −1 0 0 0 1 0 | 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. |

.

.

.
.
.
.

0 0 0 0 −1 0 1 | 0 0

 . (34)

An important point to be emphasized here is that all com-
binations are taken into account independently of the previ-
ous result (i.e., regardless of the biased observation flagged
in the previous step). For example, all potential Cn2 combina-
tions are considered, neglecting the previous result where the
kth observation was flagged. The test values of model errors(
1i, 1j

)
for i = 1. . .n and j = 1. . .n and i 6= j , which have

the smallest variance, are compared with the tf−1,1−α thresh-
old value where α = 0.05, whether the model errors of the
observations that give the smallest-variance value are higher
than the critical value or not. If both are greater than the crit-
ical value, the relevant observations are flagged as outliers.
Possible Cn3 combinations are sought, and the coefficient ma-
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Figure 1. Flowchart of the forward search of model error.

trix is rewritten as follows:

A3,1
Cn3
=


1 0 0 0 −1 0 0 | 1 0 0
1 0 0 0 0 −1 0 | 0 1 0
1 −1 0 0 0 0 0 | 0 0 1
0 −1 0 0 0 1 0 | 0 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. |

.

.

.
.
.
.

.

.

.
0 0 0 0 −1 0 1 | 0 0 0

 ,

A3,2
Cn3
=


1 0 0 0 −1 0 0 | 1 0 0
1 0 0 0 0 −1 0 | 0 1 0
1 −1 0 0 0 0 0 | 0 0 0
0 −1 0 0 0 1 0 | 0 0 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. |

.

.

.
.
.
.

.

.

.
0 0 0 0 −1 0 1 | 0 0 0

 . (35)

If all three values of unknowns exceed the critical value, they
are flagged as outliers. This process is repeated for four or
more combinations until all the combinations of potentially
burdened observations have been considered. The ε̂ vector

of the observations corresponding to the minimum-variance
value calculated for each combination step is compared with
the critical value. If at least one of the relevant unknowns of
the observations does not exceed the critical value, the H0
hypothesis is accepted and the observations flagged in the
previous step (i.e., the latest rejectedH0) are approved as out-
liers. The flowchart of the FSME (forward search of model
error) model is presented in Fig. 1.

4 Leveling network

In statistics, there are different indicators to measure the re-
liability of tests and estimators. Hekimoglu and Koch (2000)
showed that a finite-sample breakdown point determined the
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Table 1. MSR of models (small outliers).

m Baarda Pope Danish Huber FSME
∗ ∗∗ ∗ ∗∗

0 99.99 95.96 85.00 94.97 96.99 99.00 95.00
1 56.71 36.70 69.76 72.44 63.41 52.93 88.78
2 24.48 2.32 49.26 27.21 38.45 19.92 70.40
3 7.86 0.04 29.58 6.32 20.25 10.36 46.15
4 1.26 0.00 15.27 2.22 8.93 5.20 21.17

Two cases which the variance is known and unknown were considered for robust methods
as follows: ∗ The a priori variance is known. Here, the c was taken to be 1.5, where
c = 1.5σ0 and σ0 = 1. When the residual from the robust techniques exceeded the 3σ0
threshold value, it was regarded as an outlier. In the case where the a priori variance is
known, it can be seen in Table 1 that the MSRs of the robust methods are higher by 0.001
than the Baarda test with α considered. Pope’s test had a lower MSR than Baarda’s test.
However, the MSRs of the FSME are higher than the robust methods in both cases where
the a priori variance is known and unknown. ∗∗ The a priori variance is unknown. The
standard deviation from the first iteration (LSE) was obtained for robust methods. So the c
was taken from 1.5m0. α was chosen as 0.05 for the Pope’s test, which had a lower MSR
than Baarda’s. Except for the Danish* method, all other models identified an excellent
observation as an outlier with a risk ranging from 0.01 % to 5 % if there was no outlier in
the observations. The a posteriori variance negatively impacted the robust method’s
results, and the outlier’s spoilt variance significantly contributed to the false detection. The
a priori variance significantly affects how reliable the procedures are.

Table 2. Local MSRs (small outliers).

hi Baarda Pope Danish Huber FSME Redundancy

h1 45.47 27.78 54.16 45.84 84.14 0.50
h7 43.53 30.66 51.66 42.65 80.07 0.50
h8 41.76 27.48 55.02 39.46 80.28 0.48
h9 66.52 42.23 80.04 77.40 93.33 0.69
h13 68.08 45.02 81.97 80.47 94.69 0.71

global reliability of an estimator and a test procedure. Using
the power function of the global test, a capacity in deforma-
tion networks is explored as suggested by Niemeier (1985).
Also, it has been shown that the MSR results of the two test-
ing procedures (χ2 and F test) are identical to their respec-
tive test powers known beforehand (Aydin, 2012). MSR de-
pends on the number of outliers, the magnitude of an out-
lier, the number of unknowns, the number of observations,
and the type of outliers. Since it considers these different
cases, MSR is more reliable, whereas the power of the test
is the same for all disparate conditions. Also, Erdogan et
al. (2019) has proven that the MSR is the empirical esti-
mation of the power of the test in outlier detection. In this
study, therefore, MSR is used to specify the ability of the
conventional, robust, and proposed models. By this purpose
three different leveling networks have been simulated. The
random errors εi for i = 1. . .n were generated using a nor-
mal distribution N(0, σ 2) with a mean of zero and a vari-
ance of σ 2. Also, the good and contaminated observations
were acquired by simulation technique as described in detail
by Hekimoglu and Erenoglu (2007). Since the outliers are
produced through simulation, it is easy to determine whether
an observation is burdened before analyzing. The method is

deemed successful if the observation recognized as an out-
lier matches the really burdened observation. The process is
considered unsuccessful if it fails. When the simulated ob-
servation is chosen randomly, the successful rate indicates
that the global MSR and the local MSR can be computed for
each particular observation in the leveling network for 10 000
samples. The same samples were subjected to conventional,
robust, and proposed methods to compare their MSRs with
different scenarios. This study simulated outliers randomly
chosen from small- and large-magnitudes outliers (variously
described as gross and influential outliers) for three level-
ing networks. An influential outlier is a situation that, either
independently or when combined with other biased observa-
tions, adversely affects the outcomes of an analysis. Even a
single influential outlier may ruin the estimation parameters.
A leveling network used for the simulation has 7 points and
15 observations as seen in Fig. 2. The precision is consid-
ered to be σ 2

i = σ0/
√
S, where S is the length of the level-

ing line in kilometers and σ0 = 1 mm
√

1km
−1

. MSRs for
10 000 samples were calculated for each method when there
were different magnitudes and different numbers of outliers
in the network. The small and large outliers were generated
in the intervals of [3–6σ ] and [6–12σ ], respectively.
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Figure 2. Leveling network.

As Table 1 shows, even if the number of outliers changes,
the MSRs of the proposed method increase significantly
compared to the conventional and robust methods. In cases
where there is no outlier (e.g., m= 0), the results in which
the H0 hypothesis is rejected are also seen in Table 1. The
proposed method generated type-II errors at the rate of 5 %,
where the significance level was at 0.05.

Additionally, the a posteriori variance is easily influenced
by outliers in the data set, which harms the abilities of meth-
ods that use the a posteriori variance. The a posteriori vari-
ance from the LSE is typically utilized as a threshold value
instead of the a priori variance if the a priori variance is un-
known. Therefore, the MSRs of the robust techniques of the
former case are higher than the latter. As a result of these
findings, only the case where the variance is known, which is
less affected by an outlier, is taken into account in the results
shown in the tables (Tables 2–8) to compare with the FSME
hereafter.

5 Results

Extensive experiments have been done to compare the pro-
posed method with robust methods, such as the Danish and
Huber methods, besides the conventional outlier detection
procedures (i.e., Baarda and Pope). The redundancies are an
important indicator to recognize the observations most vul-
nerable to bias (Durdag, 2022). The redundancy matrix is
calculated from R=H−E, where H= A(ATPA)−1ATP is a
hat matrix. The local MSRs have been calculated for the spe-
cific observations with the highest and lowest redundancy in
the leveling network. Among the observations, those with the
two largest redundancies are h13 and h9, and the three lowest
are h1, h7, and h8. As can be seen from the Table 4 below,
MSRs increase as the redundancy does.

It is apparent from Table 2 that the highest MSRs for the
biased observation h1 amongst the conventional and robust

Table 3. MSR of models (large outliers).

m Baarda Pope Danish Huber FSME

1 99.50 90.97 91.46 94.69 99.92
2 92.66 19.64 82.95 77.77 94.11
3 74.57 0.27 68.44 51.76 78.22
4 44.31 0.01 48.60 29.96 50.16

methods are from the Danish method (54 %). In addition, the
MSR of the proposed method is higher than the Danish one
by 30 %. The highest MSR has been obtained by the FSME
as 94 % for the observation with the highest redundancy h13.
As the redundancy gets smaller, the difference in MSR be-
tween the proposed method and other methods increases.

As shown in Table 3, the highest MSRs are obtained by the
FSME in contrast with other techniques for different num-
bers of outliers. When Tables 1 and 3 are compared, the
MSRs increase with an enlargement in the magnitude of out-
lier.

The smearing effect of the LSE, almost equivalent to its
SC (sensitivity curve), behaves systematically as a function
of the partial redundancy (Durdag, 2022). For this reason,
the MSRs have been calculated for the pair of observations
with the lowest and largest partial redundancy with small out-
liers in Table 4. The neighboring observations, especially the
point that has three leveling lines, are some of the most vul-
nerable to bias (e.g., h6h7 and h8h7) in the leveling network
(Fig. 2). The local MSRs are lower than the global MSRs,
in the case m= 2 in Table 1, for observations most vulnera-
ble to bias with both the lowest and highest redundancies as
shown in Table 4.

The results, as shown in Table 4, indicate that the MSRs
of observation h6h7 with the highest partial redundancies in-
creases compared to h13h1 with the lowest ones by almost
30 % for the Baarda and Danish models and 50 % for the
FSME model.

It is apparent from Table 5 that Baarda and Danish are
the two most successful methods against gross and influen-
tial outliers among classical and robust methods. In the case
of small outliers with gross or influential outliers, the robust-
ness of the models has been tested. Different types of outliers
have been generated to evaluate the MSRs of the models for
various scenarios as follows: (I) gross outlier (50σ ), (II) in-
fluential outliers (1000σ ), (III) a small outlier and a gross
outlier, (IV) a small outlier and an influential outlier, (V) two
small outliers and a gross outlier, and (VI) two small outliers
and an influential outlier.

Comparing Table 5 with Table 6, it is observable how
MSRs of these two methods were affected in case of one
or two small outliers. If a small outlier occurs, the MSRs
drop dramatically by about 40 %. The MSRs drop to 20 %
with two small outliers in the network. Furthermore, this loss
is around 35 %–40 % for the proposed method. The FSME,
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Figure 3. Leveling networks 2a and 2b with low redundancy.

Table 4. The effect of large and low partial redundancies on MSRs for a pair of observations.

m= 2 Baarda Pope Danish Huber FSME Redundancy

h6h7 0.67 4.45 20.95 27.39 30.47 0.21
h8h7 0.16 2.68 16.44 24.02 25.51 0.30
h11h15 12.73 3.22 28.28 28.54 54.37 0.15
h10h3 33.01 0.76 54.30 37.98 80.17 0.00
h5h11 28.20 0.88 41.77 29.23 75.80 0.00
h13h1 30.78 1.53 50.94 34.97 80.53 0.00

however, stands out as the model with an MSR of 60 %–70 %
in scenarios involving small outliers.

When the redundancies of the observations decrease in the
leveling network, difficulties arise in determining the outliers
due to the swamping and masking effects. Two different lev-
eling networks are considered to obtain the MSR of the meth-
ods in such cases. In the first of these, the MSR of the mod-
els has been compared by excluding an observation of the
network. As seen in Table 7, the MSR decreased by 30 %
in all models when m= 2, compared with the case m= 1.
Although the number of small outliers changes, the highest
MSRs have been obtained by the FSME for the leveling net-
work 2a. The network is further weakened, so only two lines
of the corner point P.5 remain in the leveling network 2b.

The results, as shown in Table 8, indicate that the FSME
is the model with the highest MSR for m= 1. When m>1 is
compared with the case m= 1 in Table 8, MSRs of the con-
ventional and robust methods show a more dramatic decrease
than the FSME model. Comparing the estimated results for
the networks 2a and 2b reveals an approximately 15 % drop
in MSR values when m= 1. MSRs decrease as the control-
lability of the observations in the network decreases.

6 Conclusion

Since geodetic observations are utilized in studies requir-
ing high accuracy for determining deformations, detecting
and identifying outliers become increasingly critical. Re-

searchers commonly favor conventional and robust meth-
ods based on the additive bias model. However, this study
contributes to our understanding by advancing the modeling
of outliers as an additional unknown parameter within the
Gauss–Markov model. The aim of this study was to evalu-
ate the suitability of the FSME method within geodetic net-
works. To achieve this objective, the FSME method was ap-
plied to a leveling network. The design of the FSME method
is based on identifying the minimum variance from all pos-
sible combinations that assume observations as model errors
in the Gauss–Markov model. Although only a leveling net-
work has been simulated, the functional and stochastic mod-
els of the FSME methods can be applied to all type of geode-
tic networks. This model yields more reliable results by pre-
venting the swamping and masking effect. The MSRs of the
suggested method were obtained for various outliers in three
different leveling networks. The results of this investigation
show that the FSME is a more efficient model than the ro-
bust and conventional methods. Specifically, the proposed
method enhanced the MSR by almost 40 %–45 % compared
to the Baarda and Danish (with the variance unknown case)
methods for multiple outliers (i.e., 1<m<4). Moreover, in
scenarios where specific observations were absent at corner
points in leveling network 1, the proposed method exhibited
20 %–30 % greater success than alternative methods. Despite
the proposed model demonstrating a higher MSR than other
methods, the FSME method may encounter numerous com-
binations depending on the presence of observations and out-
liers. To address this challenge, particularly in real-world ap-

Geosci. Model Dev., 17, 2187–2196, 2024 https://doi.org/10.5194/gmd-17-2187-2024
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Table 5. MSRs for gross and influential outliers.

Scenario m Baarda Pope Danish Huber FSME

I 1 99.69 99.74 90.87 92.24 100
2 92.79 10.77 85.92 61.39 90.52

II 1 99.69 93.25 91.53 6.91 100
2 92.70 2.94 90.05 2.10 90.41

Table 6. MSRs for small outliers with gross or influential outliers.

Scenario Baarda Pope Danish Huber FSME

III 52.55 19.17 53.82 48.17 70.40
IV 52.55 19.17 56.7 4.5 70.40
V 20.17 0.58 24.85 22.87 63.34
VI 20.17 0.58 31.66 2.62 63.36

Table 7. MSR of models (small outliers) for leveling network 2a.

m Baarda Pope Danish Huber FSME

1 49.55 24.15 63.31 53.72 83.78
2 15.19 0.37 36.99 26.88 55.08
3 2.38 0.00 16.69 10.97 23.54

Table 8. MSR of models (small outliers) for leveling network 2b.

m Baarda Pope Danish Huber FSME

1 36.59 10.13 52.93 37.82 68.32
2 5.43 0.04 23.69 14.31 24.57
3 0.13 0.00 8.07 4.90 3.89

plications, the MSS (maximum subsample method) proposed
by Neitzel (2004) and Ebeling (2014) offers a promising ap-
proach to reduce the number of combinations in outlier de-
tection procedures. As demonstrated by Ebeling in deforma-
tion monitoring, MSS holds potential as a valuable tool to
enhance the applicability of the proposed method, particu-
larly within extensive geodetic networks.
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from the project website: https://doi.org/10.5281/zenodo.10417506
(Durdağ, 2023) under the MIT license. The exact version of the
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