Articles | Volume 17, issue 4
https://doi.org/10.5194/gmd-17-1789-2024
https://doi.org/10.5194/gmd-17-1789-2024
Model description paper
 | 
29 Feb 2024
Model description paper |  | 29 Feb 2024

Accounting for uncertainties in forecasting tropical-cyclone-induced compound flooding

Kees Nederhoff, Maarten van Ormondt, Jay Veeramony, Ap van Dongeren, José Antonio Álvarez Antolínez, Tim Leijnse, and Dano Roelvink

Related authors

Subgrid corrections for the linear inertial equations of a compound flood model – a case study using SFINCS 2.1.1 Dollerup release
Maarten van Ormondt, Tim Leijnse, Roel de Goede, Kees Nederhoff, and Ap van Dongeren
Geosci. Model Dev., 18, 843–861, https://doi.org/10.5194/gmd-18-843-2025,https://doi.org/10.5194/gmd-18-843-2025, 2025
Short summary
Generating reliable estimates of tropical-cyclone-induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks
Tim Willem Bart Leijnse, Alessio Giardino, Kees Nederhoff, and Sofia Caires
Nat. Hazards Earth Syst. Sci., 22, 1863–1891, https://doi.org/10.5194/nhess-22-1863-2022,https://doi.org/10.5194/nhess-22-1863-2022, 2022
Short summary
The effect of changing sea ice on wave climate trends along Alaska's central Beaufort Sea coast
Kees Nederhoff, Li Erikson, Anita Engelstad, Peter Bieniek, and Jeremy Kasper
The Cryosphere, 16, 1609–1629, https://doi.org/10.5194/tc-16-1609-2022,https://doi.org/10.5194/tc-16-1609-2022, 2022
Short summary
Simulating synthetic tropical cyclone tracks for statistically reliable wind and pressure estimations
Kees Nederhoff, Jasper Hoek, Tim Leijnse, Maarten van Ormondt, Sofia Caires, and Alessio Giardino
Nat. Hazards Earth Syst. Sci., 21, 861–878, https://doi.org/10.5194/nhess-21-861-2021,https://doi.org/10.5194/nhess-21-861-2021, 2021
Short summary
Estimates of tropical cyclone geometry parameters based on best-track data
Kees Nederhoff, Alessio Giardino, Maarten van Ormondt, and Deepak Vatvani
Nat. Hazards Earth Syst. Sci., 19, 2359–2370, https://doi.org/10.5194/nhess-19-2359-2019,https://doi.org/10.5194/nhess-19-2359-2019, 2019
Short summary

Related subject area

Numerical methods
Subgrid corrections for the linear inertial equations of a compound flood model – a case study using SFINCS 2.1.1 Dollerup release
Maarten van Ormondt, Tim Leijnse, Roel de Goede, Kees Nederhoff, and Ap van Dongeren
Geosci. Model Dev., 18, 843–861, https://doi.org/10.5194/gmd-18-843-2025,https://doi.org/10.5194/gmd-18-843-2025, 2025
Short summary
Introducing Iterative Model Calibration (IMC) v1.0: a generalizable framework for numerical model calibration with a CAESAR-Lisflood case study
Chayan Banerjee, Kien Nguyen, Clinton Fookes, Gregory Hancock, and Thomas Coulthard
Geosci. Model Dev., 18, 803–818, https://doi.org/10.5194/gmd-18-803-2025,https://doi.org/10.5194/gmd-18-803-2025, 2025
Short summary
Development of a high-order global dynamical core using the discontinuous Galerkin method for an atmospheric large-eddy simulation (LES) and proposal of test cases: SCALE-DG v0.8.0
Yuta Kawai and Hirofumi Tomita
Geosci. Model Dev., 18, 725–762, https://doi.org/10.5194/gmd-18-725-2025,https://doi.org/10.5194/gmd-18-725-2025, 2025
Short summary
A joint reconstruction and model selection approach for large-scale linear inverse modeling (msHyBR v2)
Malena Sabaté Landman, Julianne Chung, Jiahua Jiang, Scot M. Miller, and Arvind K. Saibaba
Geosci. Model Dev., 17, 8853–8872, https://doi.org/10.5194/gmd-17-8853-2024,https://doi.org/10.5194/gmd-17-8853-2024, 2024
Short summary
Assimilation of snow water equivalent from AMSR2 and IMS satellite data utilizing the local ensemble transform Kalman filter
Joonlee Lee, Myong-In Lee, Sunlae Tak, Eunkyo Seo, and Yong-Keun Lee
Geosci. Model Dev., 17, 8799–8816, https://doi.org/10.5194/gmd-17-8799-2024,https://doi.org/10.5194/gmd-17-8799-2024, 2024
Short summary

Cited articles

Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.: GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, 2013. 
Ayyad, M., Orton, P. M., El Safty, H., Chen, Z., and Hajj, M. R.: Ensemble forecast for storm tide and resurgence from Tropical Cyclone Isaias, Weather Clim. Extrem., 38, 100504, https://doi.org/10.1016/j.wace.2022.100504, 2022. 
Bakker, T. M., Antolínez, J. A. A., Leijnse, T., Pearson, S. G., and Giardino, A.: Estimating tropical cyclone-induced wind, waves, and surge: A general methodology based on representative tracks, Coast. Eng., 176, 104154, https://doi.org/10.1016/j.coastaleng.2022.104154, 2022. 
Brackins, J. T. and Kalyanapu, A. J.: Evaluation of parametric precipitation models in reproducing tropical cyclone rainfall patterns, J. Hydrol., 580, 124255, https://doi.org/10.1016/j.jhydrol.2019.124255, 2020. 
Cangialosi, J. P., Blake, E., Demaria, M., Penny, A., Latto, A., Rappaport, E., and Tallapragada, V.: Recent progress in tropical cyclone intensity forecasting at the national hurricane center, Weather Forecast., 35, 1913–1922, https://doi.org/10.1175/WAF-D-20-0059.1, 2020. 
Download
Short summary

Forecasting tropical cyclones and their flooding impact is challenging. Our research introduces the Tropical Cyclone Forecasting Framework (TC-FF), enhancing cyclone predictions despite uncertainties. TC-FF generates global wind and flood scenarios, valuable even in data-limited regions. Applied to cases like Cyclone Idai, it showcases potential in bettering disaster preparation, marking progress in handling cyclone threats.

Share