Articles | Volume 16, issue 21
https://doi.org/10.5194/gmd-16-6393-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-6393-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Design and evaluation of an efficient high-precision ocean surface wave model with a multiscale grid system (MSG_Wav1.0)
Jiangyu Li
Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, 266100, China
Shaoqing Zhang
CORRESPONDING AUTHOR
Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, 266100, China
Laoshan Laboratory, Qingdao, 266237, China
Qingxiang Liu
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, China
Xiaolin Yu
Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, 266100, China
Laoshan Laboratory, Qingdao, 266237, China
Zhiwei Zhang
Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, 266100, China
Laoshan Laboratory, Qingdao, 266237, China
Related authors
No articles found.
Xianghui Dong, Qingxiang Liu, Stefan Zieger, Alberto Alberello, Ali Abdolali, Jian Sun, Kejian Wu, and Alexander V. Babanin
Geosci. Model Dev., 18, 5801–5823, https://doi.org/10.5194/gmd-18-5801-2025, https://doi.org/10.5194/gmd-18-5801-2025, 2025
Short summary
Short summary
Ocean surface wave research is vital for coastal management, marine ecology, and ocean engineering. This study simulates waves along the Australian coast using advanced physical and numerical schemes. Model verification with altimeter and buoy data shows good performance. A two-step parameterization improves accuracy in the complex Great Barrier Reef. This study will help us better understand coastal wave climates and assess sea states, enabling us to better develop, protect, and use the sea.
Joey J. Voermans, Alexander D. Fraser, Jill Brouwer, Michael H. Meylan, Qingxiang Liu, and Alexander V. Babanin
The Cryosphere, 19, 3381–3395, https://doi.org/10.5194/tc-19-3381-2025, https://doi.org/10.5194/tc-19-3381-2025, 2025
Short summary
Short summary
Limited measurements of waves in sea ice exist, preventing our understanding of wave attenuation in sea ice under a wide range of ice conditions. Using satellite observations from ICESat-2, we observe an overall linear increase in the wave attenuation rate with distance into the marginal ice zone. While attenuation may vary greatly locally, this finding may provide opportunities for the modeling of waves in sea ice at global and climate scales when such fine detail may not be needed.
Xiaoya Zhang, Lei Liu, Jianfang Fei, Zhijin Li, Zexun Wei, Zhiwei Zhang, Xingliang Jiang, Zexin Dong, and Feng Xu
Ocean Sci., 21, 1033–1045, https://doi.org/10.5194/os-21-1033-2025, https://doi.org/10.5194/os-21-1033-2025, 2025
Short summary
Short summary
Our research evaluated the precision of mapping the ocean's surface with combined data from a couple of satellites, focusing on dynamic aspects revealed by sea level changes. The results show that 2DVAR (two-dimensional variation), a new mapping product, aligns more closely and with less error with the most advanced satellite observations than a widely used mapping product called AVISO (Archiving, Validation, and Interpretation of Satellite Oceanographic). The results suggest that 2DVAR detects minor ocean movements better, making it more valuable and reliable for ocean dynamic study.
Wenbin Kou, Yang Gao, Dan Tong, Xiaojie Guo, Xiadong An, Wenyu Liu, Mengshi Cui, Xiuwen Guo, Shaoqing Zhang, Huiwang Gao, and Lixin Wu
Atmos. Chem. Phys., 25, 3029–3048, https://doi.org/10.5194/acp-25-3029-2025, https://doi.org/10.5194/acp-25-3029-2025, 2025
Short summary
Short summary
Unlike traditional numerical studies, we apply a high-resolution Earth system model, improving simulations of surface ozone and large-scale circulations such as atmospheric blocking. Besides local heat waves, we quantify the impact of atmospheric blocking on downstream ozone concentrations, which is closely associated with the blocking position. We identify three major pathways of Rossby wave propagation, stressing the critical role of large-scale circulation in regional air quality.
Feifan Yan, Hang Su, Yafang Cheng, Rujin Huang, Hong Liao, Ting Yang, Yuanyuan Zhu, Shaoqing Zhang, Lifang Sheng, Wenbin Kou, Xinran Zeng, Shengnan Xiang, Xiaohong Yao, Huiwang Gao, and Yang Gao
Atmos. Chem. Phys., 24, 2365–2376, https://doi.org/10.5194/acp-24-2365-2024, https://doi.org/10.5194/acp-24-2365-2024, 2024
Short summary
Short summary
PM2.5 pollution is a major air quality issue deteriorating human health, and previous studies mostly focus on regions like the North China Plain and Yangtze River Delta. However, the characteristics of PM2.5 concentrations between these two regions are studied less often. Focusing on the transport corridor region, we identify an interesting seesaw transport phenomenon with stagnant weather conditions, conducive to PM2.5 accumulation over this region, resulting in large health effects.
Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Dexun Chen, Yang Gao, Xiaopei Lin, Zhao Liu, and Xiaojing Lv
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-10, https://doi.org/10.5194/gmd-2024-10, 2024
Preprint withdrawn
Short summary
Short summary
The hardware-related perturbations caused by the heterogeneous many-core architectures can blend with software or human errors, which can affect the accuracy of the model consistency verification. We develop a deep learning-based consistency test tool for ESMs on the heterogeneous systems (ESM-DCT) and evaluate it in CESM on new Sunway system. The ESM-DCT can detect the existence of software or human errors when taking hardware-related perturbations into account.
Chupeng Zhang, Shangfei Hai, Yang Gao, Yuhang Wang, Shaoqing Zhang, Lifang Sheng, Bin Zhao, Shuxiao Wang, Jingkun Jiang, Xin Huang, Xiaojing Shen, Junying Sun, Aura Lupascu, Manish Shrivastava, Jerome D. Fast, Wenxuan Cheng, Xiuwen Guo, Ming Chu, Nan Ma, Juan Hong, Qiaoqiao Wang, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 23, 10713–10730, https://doi.org/10.5194/acp-23-10713-2023, https://doi.org/10.5194/acp-23-10713-2023, 2023
Short summary
Short summary
New particle formation is an important source of atmospheric particles, exerting critical influences on global climate. Numerical models are vital tools to understanding atmospheric particle evolution, which, however, suffer from large biases in simulating particle numbers. Here we improve the model chemical processes governing particle sizes and compositions. The improved model reveals substantial contributions of newly formed particles to climate through effects on cloud condensation nuclei.
Zhenming Wang, Shaoqing Zhang, Yishuai Jin, Yinglai Jia, Yangyang Yu, Yang Gao, Xiaolin Yu, Mingkui Li, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev., 16, 705–717, https://doi.org/10.5194/gmd-16-705-2023, https://doi.org/10.5194/gmd-16-705-2023, 2023
Short summary
Short summary
To improve the numerical model predictability of monthly extended-range scales, we use the simplified slab ocean model (SOM) to restrict the complicated sea surface temperature (SST) bias from a 3-D dynamical ocean model. As for SST prediction, whether in space or time, the WRF-SOM is verified to have better performance than the WRF-ROMS, which has a significant impact on the atmosphere. For extreme weather events such as typhoons, the predictions of WRF-SOM are in good agreement with WRF-ROMS.
Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Lixin Wu, Dexun Chen, Yang Gao, Zhiqiang Wei, Dongning Jia, and Xiaopei Lin
Geosci. Model Dev., 15, 6695–6708, https://doi.org/10.5194/gmd-15-6695-2022, https://doi.org/10.5194/gmd-15-6695-2022, 2022
Short summary
Short summary
To understand the scientific consequence of perturbations caused by slave cores in heterogeneous computing environments, we examine the influence of perturbation amplitudes on the determination of the cloud bottom and cloud top and compute the probability density function (PDF) of generated clouds. A series of comparisons of the PDFs between homogeneous and heterogeneous systems show consistently acceptable error tolerances when using slave cores in heterogeneous computing environments.
Jingzhe Sun, Yingjing Jiang, Shaoqing Zhang, Weimin Zhang, Lv Lu, Guangliang Liu, Yuhu Chen, Xiang Xing, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev., 15, 4805–4830, https://doi.org/10.5194/gmd-15-4805-2022, https://doi.org/10.5194/gmd-15-4805-2022, 2022
Short summary
Short summary
An online ensemble coupled data assimilation system with the Community Earth System Model is designed and evaluated. This system uses the memory-based information transfer approach which avoids frequent I/O operations. The observations of surface pressure, sea surface temperature, and in situ temperature and salinity profiles can be effectively assimilated into the coupled model. That will facilitate a long-term high-resolution climate reanalysis once the algorithm efficiency is much improved.
Lu Yang, Hongli Fu, Xiaofan Luo, Shaoqing Zhang, and Xuefeng Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-92, https://doi.org/10.5194/tc-2022-92, 2022
Revised manuscript not accepted
Short summary
Short summary
During the melting season in Arctic, sea ice thickness is difficult to detect directly by the satellite remote sensing. A bivariate regression model is put forward in this study to construct sea ice thickness. Comparisons with observations show that the new sea ice thickness data has some advantages over other data sets. The experiment shows that the model is expected to provide an available data for improving the forecast accuracy of sea ice variables in the Arctic sea ice melting season.
Joey J. Voermans, Qingxiang Liu, Aleksey Marchenko, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Takuji Waseda, Takehiko Nose, Tsubasa Kodaira, Jingkai Li, and Alexander V. Babanin
The Cryosphere, 15, 5557–5575, https://doi.org/10.5194/tc-15-5557-2021, https://doi.org/10.5194/tc-15-5557-2021, 2021
Short summary
Short summary
We have shown through field experiments that the amount of wave energy dissipated in landfast ice, sea ice attached to land, is much larger than in broken ice. By comparing our measurements against predictions of contemporary wave–ice interaction models, we determined which models can explain our observations and which cannot. Our results will improve our understanding of how waves and ice interact and how we can model such interactions to better forecast waves and ice in the polar regions.
Zhao Liu, Shaoqing Zhang, Yang Shen, Yuping Guan, and Xiong Deng
Nonlin. Processes Geophys., 28, 481–500, https://doi.org/10.5194/npg-28-481-2021, https://doi.org/10.5194/npg-28-481-2021, 2021
Short summary
Short summary
A general methodology is introduced to capture regime transitions of the Atlantic meridional overturning circulation (AMOC). The assimilation models with different parameters simulate different paths for the AMOC to switch between equilibrium states. Constraining model parameters with observations can significantly mitigate the model deviations, thus capturing AMOC regime transitions. This simple model study serves as a guideline for improving coupled general circulation models.
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Cited articles
Abdolali, A., Roland, A., van der Westhuysen, A., Meixner, J., Chawla, A., Hesser, T. J., Smith, J. M., and Sikiric, M. D.: Large-scale hurricane modeling using domain decomposition parallelization and implicit scheme implemented in WAVEWATCH III wave model, Coast. Eng., 157, 103656, https:/doi.org/10.1016/j.coastaleng.2020.103656, 2020.
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA National Centers for Environmental Information, [data set], https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf (last access: 8 November 2023), 2009.
AQUAVEO-Software code: Surface-water Modeling System (SMS) Software, https://www.aquaveo.com/downloads?tab=2#TabbedPanels, last access: 5 November 2023.
Bao, J. W., Wilczak, J. M., Choi, J. K., and Kantha, L. H.: Numerical simulations of air-sea interaction under high wind conditions using a coupled model: a study of Hurricane development, Mon. Weather Rev., 128, 2190–2210, https://doi.org/10.1175/1520-0493(2000)128<2190:NSOASI>2.0.CO;2, 2000.
Bao, Y., Song, Z. Y., and Qiao, F. L.: FIO-ESM version 2.0: model description and evaluation, J. Geophys. Res.-Oceans, 125, e2019JC016036, https:/doi.org/10.1029/2019JC016036, 2020.
Brus, S. R., Wolfram, P. J., Van Roekel, L. P., and Meixner, J. D.: Unstructured global to coastal wave modeling for the Energy Exascale Earth System Model using WAVEWATCH III version 6.07, Geosci. Model Dev., 14, 2917–2938, https://doi.org/10.5194/gmd-14-2917-2021, 2021.
Cao, R. C., Chen, H. B., Rong, Z. R., and Lv, X. Q.: Impact of ocean waves on transport of underwater spilled oil in the Bohai Sea, Mar. Pollut. Bull., 171, 112702, https:/doi.org/10.1016/j.marpolbul.2021.112702, 2021.
Chawla, A. and Tolman, H. L.: Obstruction grids for spectral wave models, Ocean Model., 22, 12–25, https:/doi.org/10.1016/j.ocemod.2008.01.003, 2008.
Chen, X. Y., Ginis, I., and Hara, T.: Sensitivity of offshore tropical cyclone wave simulations to spatial resolution in wave models, J. Mar. Sci. Eng., 6, 116, https:/doi.org/10.3390/jmse6040116, 2018.
Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., Duvivier, A. K., Edwards, J., Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.: The community Earth system model version 2 (CESM2), J. Adv. Model. Earth Sy., 12, e2019MS001916, https:/doi.org/10.1029/2019MS001916, 2020.
Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G., Krasting, J. P., Malyshev, S., Naik, V., Paulot, F., Shevliakova, E., Stock, C. A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K. A., Dupuis, C., Durachta, J., Dussin, R., Gauthier, P. P. G., Griffies, S. M., Guo, H., Hallberg, R. W., Harrison, M., He, J., Hurlin, W., McHugh, C., Menzel, R., Milly, P. C. D., Nikonov, S., J. Paynter, D., Ploshay, J., Radhakrishnan, A., Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf, D. M., Sentman, L. T., Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg, A. T., Wyman, B., Zeng, Y., and Zhao, M.: The GFDL Earth system model version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics, J. Adv. Model. Earth Sy., 12, e2019MS002015, https:/doi.org/10.1029/2019MS002015, 2020.
Engwirda, D.: JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere, Geosci. Model Dev., 10, 2117–2140, https://doi.org/10.5194/gmd-10-2117-2017, 2017.
Feng, X. R., Yin, B. S., and Yang, D. Z.: Development of an unstructured-grid wave-current coupled model and its application, Ocean Model., 104, 213–225, https:/doi.org/10.1016/j.ocemod.2016.06.007, 2016.
Garg, N., Ng, E. Y. K., and Narasimalu, S.: The effects of sea spray and atmosphere–wave coupling on air–sea exchange during a tropical cyclone, Atmos. Chem. Phys., 18, 6001–6021, https://doi.org/10.5194/acp-18-6001-2018, 2018.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horanyi, A., Munoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thepaut, J. N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Cimate Change Servics (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.
Higgins, C., Vanneste, J., and van den Bremer, T. S.: Unsteady Ekman-Stokes dynamics: implications for surface wave-induced drift of floating marine litter, Geophys. Res. Lett., 47, e2020GL089189, https:/doi.org/10.1029/2020GL089189, 2020.
Hou, F., Gao, Z. Y., Li, J. G., and Yu, F. J.: An efficient algorithm for generating a spherical multiple-cell grid, Acta Oceanol. Sin., 41, 41–50, https:/doi.org/10.1007/s13131-021-1947-3, 2022.
Hsiao, S. C., Wu, H. L., Chen, W. B., Chang, C. H., and Lin, L. Y.: On the sensitivity of typhoon wave simulations to tidal elevation and current, J. Mar. Sci. Eng., 8, 731, https:/doi.org/10.3390/jmse8090731, 2020.
Hughes, C. J., Liu, G. Q., Perrie, W., and Sheng, J. Y.: Impact of Langmuir turbulence, wave breaking, and Stokes drift on upper ocean dynamics under hurricane conditions, J. Geophys. Res.-Oceans, 126, e2021JC017388, https:/doi.org/10.1029/2021JC017388, 2021.
Jiang, Y., Rong, Z. R., Li, P. X., Qin, T., Yu, X. L., Chi, Y. T., and Gao, Z. Y.: Modeling waves over the Changjiang River Estuary using a high-resolution unstructured SWAN model, Ocean Model., 173, 102007, https:/doi.org/10.1016/j.ocemod.2022.102007, 2022.
Jungclaus, J. H., Lorenz, S. J., Schmidt, H., Brovkin, V., Bruggemann, N., Chegini, F., Cruger, T., De-Vrese, P., Gayler, V., Giorgetta, M. A., Gutjahr, O., Haak, H., Hagemann, S., Hanke, M., Ilyina, T., Korn, P., Kroger, J., Linardakis, L., Mehlmann, C., Mikolajewicz, U., Muller, W. A., Nabel, J. E. M. S., Notz, D., Pohlmann, H., Putrasahan, D. A., Raddatz, T., Ramme, L., Redler, R., Reick, C. H., Riddick, T., Sam, T., Schneck, R., Schnur, R., Schupfner, M., von Storch, J. S., Wachsmann, F., Wieners, K. H., Ziemen, F., Stevens, B., Marotzke, J., and Claussen, M.: The ICON Earth system model version 1.0, J. Adv. Model. Earth Sy., 14, e2021MS002813, https:/doi.org/10.1029/2021MS002813, 2022.
Kaiser, J., Nogueira, I. C. M., Campos, R. M., Parente, C. E., Martins, R. P., and Belo, W. C.: Evaluation of wave model performance in the South Atlantic Ocean: a study about physical parameterization and wind forcing calibration, Ocean Dynam., 72, 137–150, https:/doi.org/10.1007/s10236-021-01495-4, 2022.
Li, J. and Zhang, S.: Mitigation of model bias influences on wave data assimilation with multiple assimilation systems using WaveWatch III v5.16 and SWAN v41.20, Geosci. Model Dev., 13, 1035–1054, https://doi.org/10.5194/gmd-13-1035-2020, 2020.
Li, J., Zhang, S., Liu, Q., Yu, X., and Zhang, Z.: dateset for “Design and Evaluation of an Efficient High-Precision Ocean Surface Wave Model with a Multiscale Grid System (MSG_Wav1.0)”, Zenodo [data set], https://doi.org/10.5281/zenodo.7827541, 2023.
Li, J. G.: Global Transport on a Spherical Multiple-Cell Grid, Mon. Weather Rev., 139, 1536–1555, https:/doi.org/10.1175/2010MWR3196.1, 2011.
Li, J. G.: Propagation of ocean surface waves on a spherical multiple-cell grid, J. Comput. Phys., 231, 8262–8277, https:/doi.org/10.1016/j.jcp.2012.08.007, 2012.
Li, J. G. and Saulter, A.: Unified global and regional wave model on a multi-resolution grid, Ocean Dynam., 64, 1657–1670, https:/doi.org/10.1007/s10236-014-0774-x, 2014.
Li, M. K., Zhang, S. Q., Wu, L. X., Lin, X. P., Chang, P., Danabasoglu, G., Wei, Z. Q., Yu, X. L., Hu, H. Q., Ma, X. H., Ma, W. W., Jia, D. N., Liu, X., Zhao, H. R., Mao, K., Ma, Y. W., Jiang, Y. J., Wang, X., Liu, G. L., and Chen, Y. X.: A high-resolution Asia-Pacific regional coupled prediction system with dynamically downscaling coupled data assimilation, Sci. Bull., 65, 1849–1858, https:/doi.org/10.1016/j.scib.2020.07.022, 2020.
Lin, Y. L., Huang, X. M., Liang, Y. S., Qin, Y., Xu, S. M., Huang, W. Y., Xu, F. H., Liu, L., Wang, Y., Peng, Y. R., Wang, L. N., Xue, W., Fu, H. H., Zhang, G. J., Wang, B., Li, R. Z., Zhang, C., Lu, H., Yang, K., Luo, Y., Bai, Y. Q., Song, Z. Y., Wang, M. Q., Zhao, W. J., Zhang, F., Xu, J. H., Zhao, X., Lu, C. S., Chen, Y. Z., Luo, Y. Q., Hu, Y., Tang, Q., Chen, D. X., Yang, G. W., and Gong, P.: Community integrated Earth system model (CIESM): description and evaluation, J. Adv. Model. Earth Sy., 12, 1–29, https:/doi.org/10.1029/2019MS002036, 2020.
Liu, Q. X., Rogers, W. E., Babanin, A. V., Young, I. R., Romero, L., Zieger, S., Qiao, F. L., and Guan, C. L.: Observation-based source terms in the third-generation wave model WAVEWATCH III: Updates and verification, J. Phys. Oceanogr., 49, 489–517, https:/doi.org/10.1175/JPO-D-18-0137.1, 2019.
Mao, M. H., van der Westhuysen, A. J., Xia, M., Schwab, D. J., and Chawla, A.: Modeling wind waves from deep to shallow waters in Lake Michigan using unstructured SWAN, J. Geophys. Res.-Oceans, 121, 3836–3865, https:/doi.org/10.1002/2015JC011340, 2015.
Mentaschi, L., Perez, J., Besio, G., Mendez, F. J., and Menendez, M.: Parameterization of unresolved obstacles in wave modelling: A source term approach, Ocean Model. 96, 93–102, https:/doi.org/10.1016/j.ocemod.2015.05.004, 2015.
National Science & Technology Infrastructure–Data sets: Observation data in Chinese oceanic stations, https://mds.nmdis.org.cn/pages/dataViewDetail.html?dataSetId=4, last access: 5 November 2023.
NOAA–Source code: NOAA-EMC/WW3, https://github.com/NOAA-EMC/WW3 (last access: 5 November 2023), 2019.
Pallares, E., Lopez, J., Espino, M., and Sanchez-Arcilla, A.: Comparison between nested grids and unstructured grids for a high-resolution wave forecasting system in the western Mediterranean sea, J. Oper. Oceanogr., 10, 45–58, https:/doi.org/10.1080/1755876X.2016.1260389, 2017.
Qiao, F. L., Yuan, Y. L., Ezer, T., Xia, C. S., Yang, Y. Z., Lu, X. G., and Song, Z. Y.: A three-dimensional surface wave-ocean circulation coupled model and its initial testing, Ocean Dynam., 60, 1339–1355, https:/doi.org/10.1007/s10236-010-0326-y, 2010.
Roberts, K. J., Pringle, W. J., and Westerink, J. J.: OceanMesh2D 1.0: MATLAB-based software for two-dimensional unstructured mesh generation in coastal ocean modeling, Geosci. Model Dev., 12, 1847–1868, https://doi.org/10.5194/gmd-12-1847-2019, 2019.
Rogers, W. E. and Campbell, T. J.: Implementation of curvilinear coordinate system in the WAVEWATCH III model, NRL Memorandum Report NRL/MR/7320–09-9193, Naval Research Laboratory, Stennis Space Center, MS 39529–55004, 42 pp., https://anyflip.com/nlbp/fjbr/basic (last access: 7 November 2023), 2009.
Rogers, W. E. and Holland, K. T.: A study of dissipation of wind-waves by mud at Cassino Beach, Brazil: Prediction and inversion, Cont. Shelf Res., 29, 676–690, https:/doi.org/10.1016/j.csr.2008.09.013, 2009.
Roland, A.: Development of WWM II: Spectral Wave Modelling on Unstructured Meshes, PhD thesis, Institut für Wasserbau und Wasserwirtschaft, Technische University Darmstadt, Germany, 35 pp., https://www.researchgate.net/publication/256198066_Development_of_WWM_II_Spectral_wave_modeling_on_unstructured_meshes (last access: 7 November 2023), 2009.
Roland, A. and Ardhuin, F.: On the developments of spectral wave models: numerics and parameterizations for the coastal ocean, Ocean Dynam., 64, 833–846, https:/doi.org/10.1007/s10236-014-0711-z, 2014.
Roland, A., Cucco, A., Ferrarin, C., Hsu, T. W., Liau, J. M., Ou, S. H., Umgiesser, G., and Zanke, U.: On the development and verification of a 2-D coupled wave-current model on unstructured meshes, J. Mar. Syst., 78, S244–S254, https:/doi.org/10.1016/j.jmarsys.2009.01.026, 2009.
Sikiric, M., D., Ivankovic, D., Roland, A., Ivatek-Sahdan, S., and Tudor, M.: Operational wave modelling in the Adriatic Sea with the wind wave model, Pure Appl. Geophys., 175, 3801–3815, https://doi.org/10.1007/s00024-018-1954-2, 2018.
Stopa, J. E., Ardhuin, F., Babanin, A., and Zieger, S.: Comparison and validation of physical wave parameterizations in spectral wave models, Ocean Model., 103, 2–17, https:/doi.org/10.1016/j.ocemod.2015.09.003, 2016.
Sullivan, P. P. and McWilliams, J. C.: Dynamics of winds and currents coupled to surface waves, Annu. Rev. Fluid Mech., 42, 19–42, https://doi.org/10.1146/annurev-fluid-121108-145541, 2010.
Tao, A. F., Shen, Z. C., Li, S., Xu, X., and Zhang, Y.: Research progress for disastrous waves in China, Sci. Technol. Rev., 36, 26–34, https:/doi.org/10.3981/j.issn.1000-7857.2018.14.005, 2018.
Tolman, H. L.: A Third-Generation Model for Wind Waves on Slowly Varying, Unsteady, and Inhomogeneous Depths and Currents, J. Phys. Oceanogr., 21, 782–797, https://doi.org/10.1175/1520-0485(1991)021<0782:ATGMFW>2.0.CO;2, 1991.
Tolman, H. L.: Treatment of unresolved islands and ice in wind wave models, Ocean Model., 5, 219–231, https:/doi.org/10.1016/S1463-5003(02)00040-9, 2003.
WAMDI Group: The WAM model-a third generation ocean wave prediction model, J. Phys. Oceanogr., 18, 1775–1810, https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2, 1988.
Wessel, P. and Smith, W. H. F.: A global, self-consistent, hierarchical, high-resolution shoreline database, J. Geophys. Res., 101, 8741–8743, https://doi.org/10.1029/96JB00104, 1996.
Wu, W. F., Li, P. L., Zhai, F. G., Gu, Y. Z., and Liu, Z. Z.: Evaluation of different wind resources in simulating wave height for the Bohai, Yellow, and East China Seas (BYES) with SWAN model, Cont. Shelf Res., 207, 104217, https:/doi.org/10.1016/j.csr.2020.104217, 2020.
Wu, Z. Y., Chen, J., Jiang, C. B., and Deng, B.: Simulation of extreme waves using coupled atmosphere-wave modeling system over the South China Sea, Ocean Eng., 221, 108531, https:/doi.org/10.1016/j.oceaneng.2020.108531, 2021.
WW3DG: User manual and system documentation of WAVEWATCH III version 6.07, the WAVEWATCH III Development Group. Tech. Note 316. NOAA/NWS/NCEP/MMAB, https://www.researchgate.net/publication/336069899_User_manual_and_system_documentation_of_WAVEWATCH_III_R_version_607 (last access; 7 November 2023), 2019.
Xu, Y., He, H. L., Song, J. B., Hou, Y. J., and Li, F. N.: Observations and modeling of typhoon waves in the South China Sea, J. Phys. Oceanogr., 47, 1307–1324, https:/doi.org/10.1175/JPO-D-16-0174.1, 2017.
Yang, Y. Z., Qiao, F. L., Zhao, W., Teng, Y., and Yuan, Y. L.: MASNUM ocean wave numerical model in spherical coordinates and its application, Acta Oceanol. Sin., 27, 1–7, https:/doi.org/10.3321/j.issn:0253-4193.2005.02.001, 2005.
Zhang, L. X., Zhang, X. F., Perrie, W., Guan, C. L., Dan, B., Sun, C. J., Wu, X. R., Liu, K. X., and Li, D.: Impact of sea spray and sea surface roughness on the upper ocean response to super typhoon Haitang (2015), J. Phys. Oceanogr., 51, 1929–1945, https:/doi.org/10.1175/JPO-D-20-0208.1, 2021.
Zhang, X. F., Han, G. J., Wang, D. X., Deng, Z. G., and Li, W.: Summer surface layer thermal response to surface gravity waves in the Yellow Sea, Ocean Dynam., 62, 983–1000, https:/doi.org/10.1007/s10236-012-0547-3, 2012.
Zieger, S., Babanin, A. V., Rogers, W. E., and Yong, I. R.: Observation-based source terms in the third-generation wave model WAVEWATCH, Ocean Model. 96, 2–25, https:/doi.org/10.1016/j.ocemod.2015.07.014, 2015.
Ziehn T., Chamberlain M. A., Law R. M., Lenton, A., Bodman, R. W., Dix, M., Stevens, L., Wang, Y. P., and Srbinovsky, J.: The Australian Earth system model: ACCESS-ESM1.5, Journal of Southern Hemisphere Earth System Science, 70, 193–214, https://doi.org/10.1071/ES19035, 2020.
Zijlema, M.: Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids, Coast. Eng., 57, 267–277, https:/doi.org/10.1016/j.coastaleng.2009.10.011, 2010.
Short summary
Ocean surface waves play an important role in the air–sea interface but are rarely activated in high-resolution Earth system simulations due to their expensive computational costs. To alleviate this situation, this paper designs a new wave modeling framework with a multiscale grid system. Evaluations of a series of numerical experiments show that it has good feasibility and applicability in the WAVEWATCH III model, WW3, and can achieve the goals of efficient and high-precision wave simulation.
Ocean surface waves play an important role in the air–sea interface but are rarely activated in...