Articles | Volume 16, issue 13
https://doi.org/10.5194/gmd-16-3907-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-3907-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A dynamical core based on a discontinuous Galerkin method for higher-order finite-element sea ice modeling
Institute of Analysis and Numerics, Otto von Guericke University Magdeburg, Magdeburg, Germany
Véronique Dansereau
Institut des Sciences de la Terre, Université Grenoble Alpes, CNRS (UMR5275), Gières, France
Christian Lessig
Institute of Simulation and Graphics, Otto von Guericke University Magdeburg, Magdeburg, Germany
Piotr Minakowski
Institute of Analysis and Numerics, Otto von Guericke University Magdeburg, Magdeburg, Germany
Related authors
Robert Jendersie, Christian Lessig, and Thomas Richter
Geosci. Model Dev., 18, 3017–3040, https://doi.org/10.5194/gmd-18-3017-2025, https://doi.org/10.5194/gmd-18-3017-2025, 2025
Short summary
Short summary
Accurate computer simulations are critical to understanding how climate change will affect local communities. An important part of such simulations is sea ice, which affects even distant areas in the long term. In our work, we explore how GPUs (graphics processing units), computer chips originally designed for gaming allow for faster simulation of sea ice with a new software, the neXtSIM-DG dynamical core. We discuss multiple options and demonstrate that using GPUs makes more accurate simulations feasible.
Sebastien Kuchly, Baptiste Auvity, Nicolas Mokus, Matilde Bureau, Paul Nicot, Amaury Fourgeaud, Véronique Dansereau, Antonin Eddi, Stéphane Perrard, Dany Dumont, and Ludovic Moreau
EGUsphere, https://doi.org/10.5194/egusphere-2025-3304, https://doi.org/10.5194/egusphere-2025-3304, 2025
Short summary
Short summary
During February and March 2024, we realized a multi-instrument field campaign in the St. Lawrence Estuary, to capture swell-driven sea ice fragmentation. The dataset combines geophones, wave buoys, smartphones, and video recordings with drones, to study wave-ice interactions under natural conditions. It enables analysis of ice thickness, wave properties, and ice motion. Preliminary results show strong consistency across instruments, offering a valuable resource to improve sea ice models.
Nicolas Guillaume Alexandre Mokus, Véronique Dansereau, Guillaume Boutin, Jean-Pierre Auclair, and Alexandre Tlili
EGUsphere, https://doi.org/10.5194/egusphere-2025-1831, https://doi.org/10.5194/egusphere-2025-1831, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Arctic sea ice recedes and it is more exposed to waves. Waves can then fracture continuous pack ice into floes, which are more mobile and easier to melt. The fracture process itself is not well understood, because of harsh field conditions. We propose a novel sea ice fracture criterion incorporated into a numerical model that simulates wave propagation. This criterion can be compared to existing ones. We relate our results to laboratory experiments, and find qualitative agreement.
Robert Jendersie, Christian Lessig, and Thomas Richter
Geosci. Model Dev., 18, 3017–3040, https://doi.org/10.5194/gmd-18-3017-2025, https://doi.org/10.5194/gmd-18-3017-2025, 2025
Short summary
Short summary
Accurate computer simulations are critical to understanding how climate change will affect local communities. An important part of such simulations is sea ice, which affects even distant areas in the long term. In our work, we explore how GPUs (graphics processing units), computer chips originally designed for gaming allow for faster simulation of sea ice with a new software, the neXtSIM-DG dynamical core. We discuss multiple options and demonstrate that using GPUs makes more accurate simulations feasible.
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024, https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
Short summary
A new brittle sea ice rheology, BBM, has been implemented into the sea ice component of NEMO. We describe how a new spatial discretization framework was introduced to achieve this. A set of idealized and realistic ocean and sea ice simulations of the Arctic have been performed using BBM and the standard viscous–plastic rheology of NEMO. When compared to satellite data, our simulations show that our implementation of BBM leads to a fairly good representation of sea ice deformations.
Yumeng Chen, Polly Smith, Alberto Carrassi, Ivo Pasmans, Laurent Bertino, Marc Bocquet, Tobias Sebastian Finn, Pierre Rampal, and Véronique Dansereau
The Cryosphere, 18, 2381–2406, https://doi.org/10.5194/tc-18-2381-2024, https://doi.org/10.5194/tc-18-2381-2024, 2024
Short summary
Short summary
We explore multivariate state and parameter estimation using a data assimilation approach through idealised simulations in a dynamics-only sea-ice model based on novel rheology. We identify various potential issues that can arise in complex operational sea-ice models when model parameters are estimated. Even though further investigation will be needed for such complex sea-ice models, we show possibilities of improving the observed and the unobserved model state forecast and parameter accuracy.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Tobias Sebastian Finn, Charlotte Durand, Alban Farchi, Marc Bocquet, Yumeng Chen, Alberto Carrassi, and Véronique Dansereau
The Cryosphere, 17, 2965–2991, https://doi.org/10.5194/tc-17-2965-2023, https://doi.org/10.5194/tc-17-2965-2023, 2023
Short summary
Short summary
We combine deep learning with a regional sea-ice model to correct model errors in the sea-ice dynamics of low-resolution forecasts towards high-resolution simulations. The combined model improves the forecast by up to 75 % and thereby surpasses the performance of persistence. As the error connection can additionally be used to analyse the shortcomings of the forecasts, this study highlights the potential of combined modelling for short-term sea-ice forecasting.
Einar Ólason, Pierre Rampal, and Véronique Dansereau
The Cryosphere, 15, 1053–1064, https://doi.org/10.5194/tc-15-1053-2021, https://doi.org/10.5194/tc-15-1053-2021, 2021
Short summary
Short summary
We analyse the fractal properties observed in the pattern of the long, narrow openings that form in Arctic sea ice known as leads. We use statistical tools to explore the fractal properties of the lead fraction observed in satellite data and show that our sea-ice model neXtSIM displays the same behaviour. Building on this result we then show that the pattern of heat loss from ocean to atmosphere in the model displays similar fractal properties, stemming from the fractal properties of the leads.
Cited articles
Bouchat, A. and Tremblay, B. L.: Using sea-ice deformation fields to constrain
the mechanical strength parameters of geophysical sea ice, J. Geophys. Res.-Oceans, 122, 5802–5825, 2017. a
Bouchat, A., Hutter, N., Chanut, J., Dupont, F., Dukhovskoy, D., Garric, G.,
Lee, Y. J., Lemieux, J.-F., Lique, C., Losch, M., Maslowski, W., Myers,
P. G., Ólason, E., Rampal, P., Rasmussen, T., Talandier, C., Tremblay,
B., and Wang, Q.: Sea Ice Rheology Experiment (SIREx): 1. Scaling and
Statistical Properties of Sea-Ice Deformation Fields, J. Geophysical
Res.-Oceans, 127, e2021JC017667,
https://doi.org/10.1029/2021JC017667, 2022. a
Bouillon, S., Fichefet, T., Legat, V., and Madec, G.: The
elastic–viscous–plastic method revisited, Ocean Model., 71, 2–12, https://doi.org/10.1016/j.ocemod.2013.05.013, 2013. a, b
Braack, M., Becker, R., Meidner, D., Richter, T., and Vexler, B.: The Finite
Element Toolkit Gascoigne, Zenodo [code], https://doi.org/10.5281/ZENODO.5574969,
2021. a
Burov, E. B.: Rheology and strength of the lithosphere, Marine Petrol.
Geol., 28, 1402–1443,
https://doi.org/10.1016/j.marpetgeo.2011.05.008, 2011. a
Chalmers, N. and Krivodonova, L.: A robust CFL condition for the discontinuous
Galerkin method on triangular meshes, J. Comput. Phys., 403,
109095, https://doi.org/10.1016/j.jcp.2019.109095, 2020. a
Coon, M.: A review of AIDJEX modeling, in: Sea Ice Processes and Models:
Symposium Proceedings, 12–27, Univ. of Wash. Press, Seattle, 1980. a
Coon, M. D., Maykut, G. A., Pritchard, R. S., Rothrock, D. A., and Thorndike,
A. S.: Modeling the pack ice as an elastic plastic material, AIDJEX Bull.,
24, 1–105, 1974. a
Danilov, S., Wang, Q., Timmermann, R., Iakovlev, N., Sidorenko, D., Kimmritz, M., Jung, T., and Schröter, J.: Finite-Element Sea Ice Model (FESIM), version 2, Geosci. Model Dev., 8, 1747–1761, https://doi.org/10.5194/gmd-8-1747-2015, 2015. a
Dansereau, V., Weiss, J., Saramito, P., and Lattes, P.: A Maxwell elasto-brittle rheology for sea ice modelling, The Cryosphere, 10, 1339–1359, https://doi.org/10.5194/tc-10-1339-2016, 2016. a, b, c, d
Dansereau, V., Weiss, J., Saramito, P., Lattes, P., and Coche, E.: Ice bridges and ridges in the Maxwell-EB sea ice rheology, The Cryosphere, 11, 2033–2058, https://doi.org/10.5194/tc-11-2033-2017, 2017. a
Dansereau, V., Weiss, J., and Saramito, P.: A Continuum
Viscous-Elastic-Brittle, Finite Element DG Model for the Fracture and Drift
of Sea Ice, in: Challenges and Innovations in Geomechanics, edited by: Barla,
M., Di Donna, A., and Sterpi, D., 125–139, Springer International
Publishing, https://doi.org/10.1007/978-3-030-64514-4_8, 2021. a
Di Pietro, D. and Ern, A.: Mathematical Aspects of Discontinuous Galerkin
Methods, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-22980-0, 2012. a, b, c
Ern, A. and Guermond, J.-L.: Finite Elements II, Springer International
Publishing, https://doi.org/10.1007/978-3-030-56923-5, 2021. a, b
Flato, G.: A particle-in-cell sea-ice model, Atmosphere-Ocean, 31,
339–358, https://doi.org/10.1080/07055900.1993.9649475, 1993. a
Goosse, H., Kay, J. E., Armour, K. C., Bodas-Salcedo, A., Chepfer, H.,
Docquier, D., Jonko, A., Kushner, P. J., Lecomte, O., Massonnet, F., Park,
H.-S., Pithan, F., Svensson, G., and Vancoppenolle, M.: Quantifying climate
feedbacks in polar regions, Nat. Commun., 9, 1–13, 2018. a
Hibler, W. D.: A Dynamic Thermodynamic Sea Ice Model, J. Phys.
Oceanogr., 9, 815–846,
https://doi.org/10.1175/1520-0485(1979)009<0815:adtsim>2.0.co;2, 1979. a, b, c
Horvat, C. and Tziperman, E.: Understanding Melting due to Ocean Eddy Heat
Fluxes at the Edge of Sea-Ice Floes, Geophys. Res. Lett., 45,
9721–9730, https://doi.org/10.1029/2018GL079363, 2018. a
Huang, Z. J. and Savage, S. B.: Particle-in-cell and finite difference
approaches for the study of marginal ice zone problems, Cold Reg. Sci. Technol., 28, 1–28,
https://doi.org/10.1016/S0165-232X(98)00008-1, 1998. a
Hunke, E.: Viscous–Plastic Sea Ice Dynamics with the EVP Model:
Linearization Issues, J. Comput. Phys., 170, 18–38,
https://doi.org/10.1006/jcph.2001.6710, 2001. a
Hutchings, J. K., Roberts, A., Geiger, C. A., and Richter-Menge, J.: Spatial
and temporal characterization of sea-ice deformation, Ann. Glaciol., 52,
360–368, 2011. a
Hutter, N., Losch, M., and Menemenlis, D.: Scaling Properties of Arctic Sea
Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in
Satellite Observations, J. Geophys. Res.-Oceans, 117,
672–687, https://doi.org/10.1002/2017JC013119, 2018. a, b
Hutter, N., Zampieri, L., and Losch, M.: Leads and ridges in Arctic sea ice from RGPS data and a new tracking algorithm, The Cryosphere, 13, 627–645, https://doi.org/10.5194/tc-13-627-2019, 2019. a, b
Ip, C., Hibler, W., and Flato, G.: On the effect of rheology on seasonal
sea-ice simulations, Ann. Glaciol., 15, 17–25,
https://doi.org/10.3189/1991aog15-1-17-25, 1991. a
Kimmritz, M., Danilov, S., and Losch, M.: The adaptive EVP method for solving
the sea ice momentum equation, Ocean Model., 101, 59–67,
https://doi.org/10.1016/j.ocemod.2016.03.004, 2016. a, b
Kwok, R.: Deformation of the Arctic Ocean sea ice cover between November 1996
and April 1997: a qualitative survey, Solid Mech. Appl.,
94, 315–322, 2001. a
Lemieux, J.-F., Knoll, D., Tremblay, B., Holland, D., and Losch, M.: A
comparison of the Jacobian-free Newton–Krylov method and the
EVP model for solving the sea ice momentum equation with a viscous-plastic
formulation: A serial algorithm study, J. Comput. Phys., 231,
5926–5944, https://doi.org/10.1016/j.jcp.2012.05.024, 2012. a
Lindsay, R. W. and Stern, H. L.: The RADARSAT geophysical processor system:
Quality of sea ice trajectory and deformation estimates, J. Atmos.
Ocean. Tech., 20, 1333–1347, 2003. a
Lipscomb, W. and Hunke, E.: Modeling Sea Ice Transport Using Incremental
Remapping, Mon. Weather Rev., 132, 1341–1354,
https://doi.org/10.1175/1520-0493(2004)132<1341:MSITUI>2.0.CO;2, 2005. a
Losch, M., Fuchs, A., Lemieux, J.-F., and Vanselow, A.: A parallel
Jacobian-free Newton–Krylov solver for a coupled sea ice-ocean
model, J. Comput. Phys., 257, 901–911,
https://doi.org/10.1016/j.jcp.2013.09.026, 2014. a
Marcq, S. and Weiss, J.: Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere, The Cryosphere, 6, 143–156, https://doi.org/10.5194/tc-6-143-2012, 2012. a
Marsan, D., Stern, H. L., Lindsay, R. W., and Weiss, J.: Scale Dependence and
Localization of the Deformation of Arctic Sea Ice, Phys. Rev. Lett.,
93, 178501, https://doi.org/10.1103/PhysRevLett.93.178501, 2004. a
Mehlmann, C. and Korn, P.: Sea-ice dynamics on triangular grids, J. Comput. Phys., 428, 110086, https://doi.org/10.1016/j.jcp.2020.110086, 2021. a
Mehlmann, C., Danilov, S., Losch, M., Lemieux, J.-F., Hutter, N., Richter, T.,
Blain, P., Hunke, E., and Korn, P.: Sea Ice Numerical VP-Comparison
Benchmark, Mendeley Repository, https://doi.org/10.17632/KJ58Y3SDTK.1,
2021a. a, b
Mehlmann, C., Danilov, S., Losch, M., Lemieux, J. F., Hutter, N., Richter, T.,
Blain, P., Hunke, E. C., and Korn, P.: Simulating Linear Kinematic Features
in Viscous-Plastic Sea Ice Models on Quadrilateral and Triangular Grids With
Different Variable Staggering, J. Adv. Model. Earth Sy.,
13, e2021MS002523, https://doi.org/10.1029/2021ms002523, 2021b. a, b, c, d, e, f, g, h, i, j, k, l
Oikkonen, A., Haapala, J., Lensu, M., Karvonen, J., and Itkin, P.: Small-scale
sea ice deformation during N-ICE2015: From compact pack ice to marginal ice
zone, J. Geophys. Res.-Oceans, 122, 5105–5120,
https://doi.org/10.1002/2016JC012387, 2017. a
Ólason, E., Boutin, G., Korosov, A., Rampal, P., Williams, T., Kimmritz,
M., Dansereau, V., and Samaké, A.: A New Brittle Rheology and Numerical
Framework for Large-Scale Sea-Ice Models, J. Adv. Model.
Earth Sy., 14, e2021MS002685,
https://doi.org/10.1029/2021MS002685, 2022. a, b
Peng, Z. and Gomberg, J.: An integrated perspective of the continuum between
earthquakes and slow-slip phenomena, Nat. Geosci., 3, 599–607,
https://doi.org/10.1038/ngeo940, 2010. a
Rampal, P., Weiss, J., Marsan, D., Lindsay, R., and Stern, H.: Scaling
properties of sea ice deformation from buoy dispersion analysis, J. Geophys. Res.-Oceans, 113, c03002, https://doi.org/10.1029/2007JC004143, 2008. a
Rampal, P., Weiss, J., and Marsan, D.: Positive trend in the mean speed and
deformation rate of Arctic sea ice, 1979-2007, J. Geophys. Res.-Oceans, 114, c05013, https://doi.org/10.1029/2008JC005066, 2009. a
Rampal, P., Weiss, J., Dubois, C., and Campin, J.-M.: IPCC climate models do
not capture Arctic sea ice drift acceleration: Consequences in terms of
projected sea ice thinning and decline, J. Geophys. Res.-Oceans, 116, c00D07, https://doi.org/10.1029/2011JC007110, 2011. a
Rampal, P., Bouillon, S., Ólason, E., and Morlighem, M.: neXtSIM: a new Lagrangian sea ice model, The Cryosphere, 10, 1055–1073, https://doi.org/10.5194/tc-10-1055-2016, 2016. a, b, c
Rampal, P., Dansereau, V., Olason, E., Bouillon, S., Williams, T., Korosov, A., and Samaké, A.: On the multi-fractal scaling properties of sea ice deformation, The Cryosphere, 13, 2457–2474, https://doi.org/10.5194/tc-13-2457-2019, 2019. a
Richter, T., Dansereau, V., Lessig, C., and Minakowski, P.: A snippet from
neXtSIM_DG : next generation sea-ice model with DG, Zenodo [code],
https://doi.org/10.5281/zenodo.7688635, 2023. a
Schreyer, H. L., Sulsky, D. L., Munday, L. B., Coon, M. D., and Kwok, R.:
Elastic-decohesive constitutive model for sea ice, J. Geophys. Res.-Oceans, 111, C11S26, https://doi.org/10.1029/2005JC003334, 2006. a
Shih, Y., Mehlmann, C., Losch, M., and Stadler, G.: Robust and efficient primal-dual Newton-Krylov solvers for viscous-plastic sea-ice models, J. Comput. Phys., 474,
111802, https://doi.org/10.1016/j.jcp.2022.111802, 2023.
a
Stern, H. L. and Lindsay, R. W.: Spatial scaling of Arctic sea ice
deformation, J. Geophys. Res.-Oceans, 114, c10017,
https://doi.org/10.1029/2009JC005380, 2009. a
Sulsky, D. and Peterson, K.: Toward a new elastic–decohesive model of Arctic
sea ice, Physica D, 240, 1674–1683,
https://doi.org/10.1016/j.physd.2011.07.005, 2011. a, b
Taylor, P., Hegyi, B., Boeke, R., and Boisvert, L.: On the Increasing
Importance of Air-Sea Exchanges in a Thawing Arctic: A Review, Atmosphere,
9, 41–39, 2018. a
Vihma, T.: Effects of Arctic Sea Ice Decline on Weather and Climate: A
Review, Surv. Geophys., 35, 1175–1214, 2014. a
Zhong, S., Yuen, D., Moresi, L., and Knepley, M.: Numerical Methods for Mantle
Convection, in: Treatise on Geophysics (Second Edition), edited by: Schubert,
G., Elsevier, Oxford, 2nd edn., 197–222,
https://doi.org/10.1016/B978-0-444-53802-4.00130-5, 2015. a
Short summary
Sea ice covers not only the pole regions but affects the weather and climate globally. For example, its white surface reflects more sunlight than land. The oceans around the poles are therefore kept cool, which affects the circulation in the oceans worldwide. Simulating the behavior and changes in sea ice on a computer is, however, very difficult. We propose a new computer simulation that better models how cracks in the ice change over time and show this by comparing to other simulations.
Sea ice covers not only the pole regions but affects the weather and climate globally. For...