Articles | Volume 16, issue 13
https://doi.org/10.5194/gmd-16-3907-2023
https://doi.org/10.5194/gmd-16-3907-2023
Model description paper
 | 
13 Jul 2023
Model description paper |  | 13 Jul 2023

A dynamical core based on a discontinuous Galerkin method for higher-order finite-element sea ice modeling

Thomas Richter, Véronique Dansereau, Christian Lessig, and Piotr Minakowski

Related authors

A GPU-parallelization of the neXtSIM-DG dynamical core (v0.3.1)
Robert Jendersie, Christian Lessig, and Thomas Richter
EGUsphere, https://doi.org/10.5194/egusphere-2024-2539,https://doi.org/10.5194/egusphere-2024-2539, 2024
Short summary

Related subject area

Numerical methods
The Measurement Error Proxy System Model: MEPSM v0.2
Matt J. Fischer
Geosci. Model Dev., 17, 6745–6760, https://doi.org/10.5194/gmd-17-6745-2024,https://doi.org/10.5194/gmd-17-6745-2024, 2024
Short summary
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A computationally efficient parameterization of aerosol, cloud and precipitation pH for application at global and regional scale (EQSAM4Clim-v12)
Swen Metzger, Samuel Rémy, Jason E. Williams, Vincent Huijnen, and Johannes Flemming
Geosci. Model Dev., 17, 5009–5021, https://doi.org/10.5194/gmd-17-5009-2024,https://doi.org/10.5194/gmd-17-5009-2024, 2024
Short summary

Cited articles

Bouchat, A. and Tremblay, B. L.: Using sea-ice deformation fields to constrain the mechanical strength parameters of geophysical sea ice, J. Geophys. Res.-Oceans, 122, 5802–5825, 2017. a
Bouchat, A., Hutter, N., Chanut, J., Dupont, F., Dukhovskoy, D., Garric, G., Lee, Y. J., Lemieux, J.-F., Lique, C., Losch, M., Maslowski, W., Myers, P. G., Ólason, E., Rampal, P., Rasmussen, T., Talandier, C., Tremblay, B., and Wang, Q.: Sea Ice Rheology Experiment (SIREx): 1. Scaling and Statistical Properties of Sea-Ice Deformation Fields, J. Geophysical Res.-Oceans, 127, e2021JC017667, https://doi.org/10.1029/2021JC017667, 2022. a
Bouillon, S., Fichefet, T., Legat, V., and Madec, G.: The elastic–viscous–plastic method revisited, Ocean Model., 71, 2–12, https://doi.org/10.1016/j.ocemod.2013.05.013, 2013. a, b
Braack, M., Becker, R., Meidner, D., Richter, T., and Vexler, B.: The Finite Element Toolkit Gascoigne, Zenodo [code], https://doi.org/10.5281/ZENODO.5574969, 2021. a
Burov, E. B.: Rheology and strength of the lithosphere, Marine Petrol. Geol., 28, 1402–1443, https://doi.org/10.1016/j.marpetgeo.2011.05.008, 2011. a
Download
Short summary
Sea ice covers not only the pole regions but affects the weather and climate globally. For example, its white surface reflects more sunlight than land. The oceans around the poles are therefore kept cool, which affects the circulation in the oceans worldwide. Simulating the behavior and changes in sea ice on a computer is, however, very difficult. We propose a new computer simulation that better models how cracks in the ice change over time and show this by comparing to other simulations.