Articles | Volume 16, issue 13
https://doi.org/10.5194/gmd-16-3699-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-3699-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of WRF (v 4.2.1) dynamically downscaled precipitation on subdaily and daily timescales over CONUS
Abhishekh Kumar Srivastava
CORRESPONDING AUTHOR
Department of Land, Air and Water Resources, University of California, Davis, CA, USA
Paul Aaron Ullrich
Department of Land, Air and Water Resources, University of California, Davis, CA, USA
Deeksha Rastogi
Computational Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Pouya Vahmani
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Andrew Jones
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Richard Grotjahn
Department of Land, Air and Water Resources, University of California, Davis, CA, USA
Related authors
No articles found.
Jishi Zhang, Jean–Christophe Golaz, Matthew Vincent Signorotti, Hsiang–He Lee, Peter Bogenschutz, Minda Monteagudo, Paul Aaron Ullrich, Robert S. Arthur, Stephen Po–Chedley, Philip Cameron–smith, and Jean–Paul Watson
EGUsphere, https://doi.org/10.5194/egusphere-2025-3947, https://doi.org/10.5194/egusphere-2025-3947, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We ran a convection-permitting model with regional mesh refinement (3.25 km and 800 m) to simulate present-day wind and solar capacity factors over California, coupling it to an energy generation model. The high-resolution models captured realistic seasonal and diurnal cycles, with wind markedly better than a 25 km model and solar outperforming a 3 km operational forecast. We highlight the critical role of resolution, modeling assumptions, and data reliability in renewable energy assessment.
Forrest M. Hoffman, Birgit Hassler, Ranjini Swaminathan, Jared Lewis, Bouwe Andela, Nathaniel Collier, Dóra Hegedűs, Jiwoo Lee, Charlotte Pascoe, Mika Pflüger, Martina Stockhause, Paul Ullrich, Min Xu, Lisa Bock, Felicity Chun, Bettina K. Gier, Douglas I. Kelley, Axel Lauer, Julien Lenhardt, Manuel Schlund, Mohanan G. Sreeush, Katja Weigel, Ed Blockley, Rebecca Beadling, Romain Beucher, Demiso D. Dugassa, Valerio Lembo, Jianhua Lu, Swen Brands, Jerry Tjiputra, Elizaveta Malinina, Brian Mederios, Enrico Scoccimarro, Jeremy Walton, Philip Kershaw, André L. Marquez, Malcolm J. Roberts, Eleanor O’Rourke, Elisabeth Dingley, Briony Turner, Helene Hewitt, and John P. Dunne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2685, https://doi.org/10.5194/egusphere-2025-2685, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
As Earth system models become more complex, rapid and comprehensive evaluation through comparison with observational data is necessary. The upcoming Assessment Fast Track for the Seventh Phase of the Coupled Model Intercomparison Project (CMIP7) will require fast analysis. This paper describes a new Rapid Evaluation Framework (REF) that was developed for the Assessment Fast Track that will be run at the Earth System Grid Federation (ESGF) to inform the community about the performance of models.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025, https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Short summary
A metrics package designed for easy analysis of atmospheric river (AR) characteristics and statistics is presented. The tool is efficient for diagnosing systematic AR bias in climate models and useful for evaluating new AR characteristics in model simulations. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the North and South Atlantic (South Pacific and Indian Ocean).
Detlef van Vuuren, Brian O'Neill, Claudia Tebaldi, Louise Chini, Pierre Friedlingstein, Tomoko Hasegawa, Keywan Riahi, Benjamin Sanderson, Bala Govindasamy, Nico Bauer, Veronika Eyring, Cheikh Fall, Katja Frieler, Matthew Gidden, Laila Gohar, Andrew Jones, Andrew King, Reto Knutti, Elmar Kriegler, Peter Lawrence, Chris Lennard, Jason Lowe, Camila Mathison, Shahbaz Mehmood, Luciana Prado, Qiang Zhang, Steven Rose, Alexander Ruane, Carl-Friederich Schleussner, Roland Seferian, Jana Sillmann, Chris Smith, Anna Sörensson, Swapna Panickal, Kaoru Tachiiri, Naomi Vaughan, Saritha Vishwanathan, Tokuta Yokohata, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3765, https://doi.org/10.5194/egusphere-2024-3765, 2025
Short summary
Short summary
We propose a set of six plausible 21st century emission scenarios, and their multi-century extensions, that will be used by the international community of climate modeling centers to produce the next generation of climate projections. These projections will support climate, impact and mitigation researchers, provide information to practitioners to address future risks from climate change, and contribute to policymakers’ considerations of the trade-offs among various levels of mitigation.
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024, https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant co-variances during precipitation events. Common statistical downscaling techniques preserve expected co-variances during convective precipitation (a stationary phenomenon). However, they dampen future intensification of frontal precipitation (a non-stationary phenomenon) captured in global climate models and dynamical downscaling. Our study quantifies a ramification of the stationarity assumption underlying statistical downscaling.
Jiwoo Lee, Peter J. Gleckler, Min-Seop Ahn, Ana Ordonez, Paul A. Ullrich, Kenneth R. Sperber, Karl E. Taylor, Yann Y. Planton, Eric Guilyardi, Paul Durack, Celine Bonfils, Mark D. Zelinka, Li-Wei Chao, Bo Dong, Charles Doutriaux, Chengzhu Zhang, Tom Vo, Jason Boutte, Michael F. Wehner, Angeline G. Pendergrass, Daehyun Kim, Zeyu Xue, Andrew T. Wittenberg, and John Krasting
Geosci. Model Dev., 17, 3919–3948, https://doi.org/10.5194/gmd-17-3919-2024, https://doi.org/10.5194/gmd-17-3919-2024, 2024
Short summary
Short summary
We introduce an open-source software, the PCMDI Metrics Package (PMP), developed for a comprehensive comparison of Earth system models (ESMs) with real-world observations. Using diverse metrics evaluating climatology, variability, and extremes simulated in thousands of simulations from the Coupled Model Intercomparison Project (CMIP), PMP aids in benchmarking model improvements across generations. PMP also enables efficient tracking of performance evolutions during ESM developments.
Justin L. Willson, Kevin A. Reed, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Mark A. Taylor, Paul A. Ullrich, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Hiroaki Miura, Tomoki Ohno, and Ryuji Yoshida
Geosci. Model Dev., 17, 2493–2507, https://doi.org/10.5194/gmd-17-2493-2024, https://doi.org/10.5194/gmd-17-2493-2024, 2024
Short summary
Short summary
Accurate simulation of tropical cyclones (TCs) is essential to understanding their behavior in a changing climate. One way this is accomplished is through model intercomparison projects, where results from multiple climate models are analyzed to provide benchmark solutions for the wider climate modeling community. This study describes and analyzes the previously developed TC test case for nine climate models in an intercomparison project, providing solutions that aid in model development.
Lele Shu, Paul Ullrich, Xianhong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li
Geosci. Model Dev., 17, 497–527, https://doi.org/10.5194/gmd-17-497-2024, https://doi.org/10.5194/gmd-17-497-2024, 2024
Short summary
Short summary
Our team developed rSHUD v2.0, a toolkit that simplifies the use of the SHUD, a model simulating water movement in the environment. We demonstrated its effectiveness in two watersheds, one in the USA and one in China. The toolkit also facilitated the creation of the Global Hydrological Data Cloud, a platform for automatic data processing and model deployment, marking a significant advancement in hydrological research.
Min-Seop Ahn, Paul A. Ullrich, Peter J. Gleckler, Jiwoo Lee, Ana C. Ordonez, and Angeline G. Pendergrass
Geosci. Model Dev., 16, 3927–3951, https://doi.org/10.5194/gmd-16-3927-2023, https://doi.org/10.5194/gmd-16-3927-2023, 2023
Short summary
Short summary
We introduce a framework for regional-scale evaluation of simulated precipitation distributions with 62 climate reference regions and 10 metrics and apply it to evaluate CMIP5 and CMIP6 models against multiple satellite-based precipitation products. The common model biases identified in this study are mainly associated with the overestimated light precipitation and underestimated heavy precipitation. These biases persist from earlier-generation models and have been slightly improved in CMIP6.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Zeyu Xue, Paul Ullrich, and Lai-Yung Ruby Leung
Hydrol. Earth Syst. Sci., 27, 1909–1927, https://doi.org/10.5194/hess-27-1909-2023, https://doi.org/10.5194/hess-27-1909-2023, 2023
Short summary
Short summary
We examine the sensitivity and robustness of conclusions drawn from the PGW method over the NEUS by conducting multiple PGW experiments and varying the perturbation spatial scales and choice of perturbed meteorological variables to provide a guideline for this increasingly popular regional modeling method. Overall, we recommend PGW experiments be performed with perturbations to temperature or the combination of temperature and wind at the gridpoint scale, depending on the research question.
David H. Marsico and Paul A. Ullrich
Geosci. Model Dev., 16, 1537–1551, https://doi.org/10.5194/gmd-16-1537-2023, https://doi.org/10.5194/gmd-16-1537-2023, 2023
Short summary
Short summary
Climate models involve several different components, such as the atmosphere, ocean, and land models. Information needs to be exchanged, or remapped, between these models, and devising algorithms for performing this exchange is important for ensuring the accuracy of climate simulations. In this paper, we examine the efficacy of several traditional and novel approaches to remapping on the sphere and demonstrate where our approaches offer improvement.
Chengzhu Zhang, Jean-Christophe Golaz, Ryan Forsyth, Tom Vo, Shaocheng Xie, Zeshawn Shaheen, Gerald L. Potter, Xylar S. Asay-Davis, Charles S. Zender, Wuyin Lin, Chih-Chieh Chen, Chris R. Terai, Salil Mahajan, Tian Zhou, Karthik Balaguru, Qi Tang, Cheng Tao, Yuying Zhang, Todd Emmenegger, Susannah Burrows, and Paul A. Ullrich
Geosci. Model Dev., 15, 9031–9056, https://doi.org/10.5194/gmd-15-9031-2022, https://doi.org/10.5194/gmd-15-9031-2022, 2022
Short summary
Short summary
Earth system model (ESM) developers run automated analysis tools on data from candidate models to inform model development. This paper introduces a new Python package, E3SM Diags, that has been developed to support ESM development and use routinely in the development of DOE's Energy Exascale Earth System Model. This tool covers a set of essential diagnostics to evaluate the mean physical climate from simulations, as well as several process-oriented and phenomenon-based evaluation diagnostics.
Vijay S. Mahadevan, Jorge E. Guerra, Xiangmin Jiao, Paul Kuberry, Yipeng Li, Paul Ullrich, David Marsico, Robert Jacob, Pavel Bochev, and Philip Jones
Geosci. Model Dev., 15, 6601–6635, https://doi.org/10.5194/gmd-15-6601-2022, https://doi.org/10.5194/gmd-15-6601-2022, 2022
Short summary
Short summary
Coupled Earth system models require transfer of field data between multiple components with varying spatial resolutions to determine the correct climate behavior. We present the Metrics for Intercomparison of Remapping Algorithms (MIRA) protocol to evaluate the accuracy, conservation properties, monotonicity, and local feature preservation of four different remapper algorithms for various unstructured mesh problems of interest. Future extensions to more practical use cases are also discussed.
Paul A. Ullrich, Colin M. Zarzycki, Elizabeth E. McClenny, Marielle C. Pinheiro, Alyssa M. Stansfield, and Kevin A. Reed
Geosci. Model Dev., 14, 5023–5048, https://doi.org/10.5194/gmd-14-5023-2021, https://doi.org/10.5194/gmd-14-5023-2021, 2021
Short summary
Short summary
TempestExtremes (TE) is a multifaceted framework for feature detection, tracking, and scientific analysis of regional or global Earth system datasets. Version 2.1 of TE now provides extensive support for nodal and areal features. This paper describes the algorithms that have been added to the TE framework since version 1.0 and gives several examples of how these can be combined to produce composite algorithms for evaluating and understanding atmospheric features.
Cited articles
Ashfaq, M., Rastogi, D., Mei, R., Kao, S.-C., Gangrade, S., Naz, B. S., and
Touma, D.: High-resolution ensemble projections of near-term regional climate
over the continental United States, J. Geophys. Res.-Atmos., 121, 9943–9963,
https://doi.org/10.1002/2016JD025285, 2016. a
Barbero, R., Fowler, H. J., Blenkinsop, S., Westra, S., Moron, V., Lewis, E.,
Chan, S., Lenderink, G., Kendon, E., Guerreiro, S., Li, X.-F., Villalobos,
R., Ali, H., and Mishra, V.: A synthesis of hourly and daily precipitation
extremes in different climatic regions, Weather and Climate Extremes, 26,
100219, https://doi.org/10.1016/j.wace.2019.100219, 2019. a
Barsugli, J. J., Guentchev, G., Horton, R. M., Wood, A., Mearns, L. O., Liang,
X.-Z., Winkler, J. A., Dixon, K., Hayhoe, K., Rood, R. B., Goddard, L., Ray,
A., Buja, L., and Ammann, C.: The Practitioner's Dilemma: How to Assess the
Credibility of Downscaled Climate Projections, Eos Trans. AGU, 94, 424–425,
https://doi.org/10.1002/2013EO460005, 2013. a
Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., van Dijk, A. I. J. M., Huffman, G. J., Adler, R. F., and Wood, E. F.: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS, Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, 2019. a, b
Bozkurt, D., Rojas, M., Boisier, J. P., Rondanelli, R., Garreaud, R., and
Gallardo, L.: Dynamical downscaling over the complex terrain of southwest
South America: present climate conditions and added value analysis, Clim.
Dynam., 53, 6745–6767, https://doi.org/10.1007/s00382-019-04959-y,
2019. a
Bukovsky, M. S. and Karoly, D. J.: A Brief Evaluation of Precipitation from the
North American Regional Reanalysis, J. Hydrometeorol., 8, 837–846,
https://doi.org/10.1175/JHM595.1, 2007. a
Bukovsky, M. S. and Karoly, D. J.: Precipitation Simulations Using WRF as a
Nested Regional Climate Model, J. Appl. Meteor. Climatol., 48, 2152–2159,
https://doi.org/10.1175/2009JAMC2186.1, 2009. a
Caldwell, P., Chin, H.-N. S., Bader, D. C., and Bala, G.: Evaluation of a WRF
dynamical downscaling simulation over California, Climatic Change, 95,
499–521, https://doi.org/10.1007/s10584-009-9583-5, 2009. a, b
Castro, C. L., Pielke Sr., R. A., and Leoncini, G.: Dynamical downscaling:
Assessment of value retained and added using the Regional Atmospheric
Modeling System (RAMS), J. Geophys. Res.-Atmos., 110, D5,
https://doi.org/10.1029/2004JD004721, 2005. a
Christensen, J. H., Boberg, F., Christensen, O. B., and Lucas-Picher, P.: On
the need for bias correction of regional climate change projections of
temperature and precipitation, Geophys. Res. Lett., 35, 20,
https://doi.org/10.1029/2008GL035694, 2008. a
Crossett, C. C., Betts, A. K., Dupigny-Giroux, L.-A. L., and Bomblies, A.:
Evaluation of Daily Precipitation from the ERA5 Global Reanalysis against
GHCN Observations in the Northeastern United States, Climate, 8, 148,
https://doi.org/10.3390/cli8120148, 2020. a
Dai, A., Giorgi, F., and Trenberth, K. E.: Observed and model-simulated diurnal
cycles of precipitation over the contiguous United States, J. Geophys.
Res.-Atmos., 104, 6377–6402, https://doi.org/10.1029/98JD02720, 1999. a, b
Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor,
G. H., Curtis, J., and Pasteris, P. P.: Physiographically sensitive mapping
of climatological temperature and precipitation across the conterminous
United States, Int. J. Climatol., 28, 2031–2064, https://doi.org/10.1002/joc.1688,
2008 (data available at: https://prism.oregonstate.edu/, last access: 15 November 2022). a, b
Dewitz, J.: National Land Cover Database (NLCD) 2019 Products, US
Geological Survey [data set], Sioux Falls, SD, USA, https://doi.org/10.5066/P9KZCM54 (last access: 1 July 2023), 2021. a
Di Luca, A., de Elía, R., and Laprise, R.: Challenges in the quest for
added value of regional climate dynamical downscaling, Curr. Clim. Change
Rep., 1, 10–21, https://doi.org/10.1007/s40641-015-0003-9, 2015. a
Diaconescu, E. P., Gachon, P., Laprise, R., and Scinocca, J. F.: Evaluation of
Precipitation Indices over North America from Various
Configurations of Regional Climate Models, Atmos. Ocean, 54,
418–439, https://doi.org/10.1080/07055900.2016.1185005, 2016. a
Dirmeyer, P. A., Cash, B. A., Kinter, J. L., Jung, T., Marx, L., Satoh, M., Stan, C., Tomita, H., Towers, P., Wedi, N., Achuthavarier, D., Adams, J. M., Altshuler, E. L., Huang, B., Jin, E. K., and Manganello, J.: Simulating the diurnal
cycle of rainfall in global climate models: Resolution versus
parameterization, Clim. Dynam., 39, 399–418,
https://doi.org/10.1007/s00382-011-1127-9, 2012. a
Doblas-Reyes, F. J., Sörensson, A. A., Almazroui, M., Dosio, A., Gutowski,
W. J., Haarsma, R., Hamdi, R., Hewitson, B., Kwon, W.-T., Lamptey, B. L.,
Maraun, D., Stephenson, T. S., Takayabu, I., Terray, L., Turner, A., and Zuo,
Z.: Linking Global to Regional Climate Change, book section 10,
1363–1512, Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, https://doi.org/10.1017/9781009157896.012, 2021. a, b
Du, J.: NCEP/EMC 4KM Gridded Data (GRIB) Stage IV Data. Version 1.0 (Version 1.0), UCAR/NCAR – Earth Observing Laboratory [data set], https://doi.org/10.5065/D6PG1QDD (last access: 1 July2023), 2011. a
Ebert, E. E., Janowiak, J. E., and Kidd, C.: Comparison of Near-Real-Time
Precipitation Estimates from Satellite Observations and Numerical Models,
B. Am. Meteorol. Soc, 88, 47–64, https://doi.org/10.1175/BAMS-88-1-47, 2007. a
European Centre for Medium-Range Weather Forecasts: ERA5 Reanalysis (0.25 Degree Latitude-Longitude Grid), Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/BH6N-5N20 (last access: 1 July 2023), 2019, updated monthly. a
Frei, C., Schöll, R., Fukutome, S., Schmidli, J., and Vidale, P. L.: Future
change of precipitation extremes in Europe: Intercomparison of scenarios from
regional climate models, J. Geophys. Res.-Atmos., 111, D6,
https://doi.org/10.1029/2005JD005965, 2006. a
Gao, Y., Leung, L. R., Zhao, C., and Hagos, S.: Sensitivity of U.S. summer
precipitation to model resolution and convective parameterizations across
gray zone resolutions, J. Geophys. Res.-Atmos., 122, 2714–2733,
https://doi.org/10.1002/2016JD025896, 2017. a
Gensini, V. A., Haberlie, A. M., and Ashley, W. S.: Convection-permitting simulations of historical and possible future climate over the contiguous United States, Clim. Dynam., 60, 109–126, https://doi.org/10.1007/s00382-022-06306-0, 2023. a, b, c, d
Georgescu, M., Broadbent, A. M., Wang, M., Krayenhoff, E. S., and Moustaoui,
M.: Precipitation response to climate change and urban development over the
continental United States, Environ. Res. Lett., 16, 044001,
https://doi.org/10.1088/1748-9326/abd8ac, 2021. a
Giorgi, F.: Thirty Years of Regional Climate Modeling: Where Are We and Where
Are We Going next?, J. Geophys. Res.-Atmos., 124, 5696–5723,
https://doi.org/10.1029/2018JD030094, 2019. a
Giorgi, F. and Mearns, L. O.: Approaches to the simulation of regional climate
change: A review, Rev. Geophys., 29, 191–216, https://doi.org/10.1029/90RG02636, 1991. a
Giorgi, F. and Mearns, L. O.: Introduction to special section: Regional Climate
Modeling Revisited, J. Geophys. Res.-Atmos., 104, 6335–6352,
https://doi.org/10.1029/98JD02072, 1999. a
Gutowski Jr., W. J., Giorgi, F., Timbal, B., Frigon, A., Jacob, D., Kang, H.-S., Raghavan, K., Lee, B., Lennard, C., Nikulin, G., O'Rourke, E., Rixen, M., Solman, S., Stephenson, T., and Tangang, F.: WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6, Geosci. Model Dev., 9, 4087–4095, https://doi.org/10.5194/gmd-9-4087-2016, 2016. a
Hanel, M. and Buishand, T. A.: On the value of hourly precipitation extremes in
regional climate model simulations, J. Hydrol., 393, 265–273,
https://doi.org/10.1016/j.jhydrol.2010.08.024, 2010. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803,
2020. a, b
Hu, X.-M., Xue, M., McPherson, R. A., Martin, E., Rosendahl, D. H., and Qiao,
L.: Precipitation Dynamical Downscaling Over the Great Plains, J. Adv. Model.
Earth. Sy., 10, 421–447, https://doi.org/10.1002/2017MS001154, 2018. a
Iguchi, T., Tao, W.-K., Wu, D., Peters-Lidard, C., Santanello, J. A., Kemp, E.,
Tian, Y., Case, J., Wang, W., Ferraro, R., Waliser, D., Kim, J., Lee, H.,
Guan, B., Tian, B., and Loikith, P.: Sensitivity of CONUS Summer Rainfall to
the Selection of Cumulus Parameterization Schemes in NU-WRF Seasonal
Simulations, J. Hydrometeorol., 18, 1689–1706,
https://doi.org/10.1175/JHM-D-16-0120.1, 2017. a, b
Janjić, Z. I.: The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes, Mon. Weather Rev., 122, 927–945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2, 1994 a, b
Jones, A. D., Rastogi, D., Vahmani, P., Stansfield, A., Reed, K., Thurber, T., Ullrich, P., and Rice, J. S.: IM3/HyperFACETS Thermodynamic Global Warming (TGW) Simulation Datasets (v1.0.0), MSD-LIVE Data Repository [data set], https://doi.org/10.57931/1885756 (last access: 1 July 2023), 2022. a, b
Jones, A. D., Rastogi, D., Vahmani, P., Stansfield, A., Reed, K., Thurber, T.,
Ullrich, P., and Rice, J. S.: Continental United States climate projections
based on thermodynamic modification of historical weather, Sci. Data,
in review, 2023. a
Jones, P. W.: First- and Second-Order Conservative Remapping Schemes
for Grids in Spherical Coordinates, Mon. Weather Rev., 127, 2204–2210,
https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2, 1999. a
Knist, S., Goergen, K., and Simmer, C.: Evaluation and projected changes of
precipitation statistics in convection-permitting WRF climate simulations
over Central Europe, Clim. Dynam., 55, 325–341,
https://doi.org/10.1007/s00382-018-4147-x, 2020. a
Kong, X., Wang, A., Bi, X., Sun, B., and Wei, J.: The Hourly Precipitation
Frequencies in the Tropical-Belt Version of WRF: Sensitivity to Cumulus
Parameterization and Radiation Schemes, J. Climate, 35, 285–304,
https://doi.org/10.1175/JCLI-D-20-0854.1, 2022. a, b, c, d
Kooperman, G. J., Akinsanola, A. A., Hannah, W. M., Pendergrass, A. G., and
Reed, K. A.: Assessing Two Approaches for Enhancing the Range of Simulated
Scales in the E3SMv1 and the Impact on the Character of Hourly US
Precipitation, Geophys. Res. Lett., 49, e2021GL096717,
https://doi.org/10.1029/2021GL096717, 2022. a
Kunkel, K. E., Easterling, D. R., Kristovich, D. A. R., Gleason, B., Stoecker,
L., and Smith, R.: Meteorological Causes of the Secular Variations in
Observed Extreme Precipitation Events for the Conterminous United States, J.
Hydrometeorol., 13, 1131–1141, https://doi.org/10.1175/JHM-D-11-0108.1, 2012. a
Lee, H., Waliser, D. E., Ferraro, R., Iguchi, T., Peters-Lidard, C. D., Tian,
B., Loikith, P. C., and Wright, D. B.: Evaluating hourly rainfall
characteristics over the U.S. Great Plains in dynamically downscaled climate
model simulations using NASA-Unified WRF, J. Geophys. Res.-Atmos., 122,
7371–7384, https://doi.org/10.1002/2017JD026564, 2017. a
Li, J., Qian, Y., Leung, L. R., Feng, Z., Sarangi, C., Liu, Y., and Yang, Z.:
Impacts of Large-Scale Urbanization and Irrigation on Summer Precipitation in
the Mid-Atlantic Region of the United States, Geophys. Res. Lett., 49,
e2022GL097845, https://doi.org/10.1029/2022GL097845, e2022GL097845
2022GL097845, 2022. a
Liang, X.-Z., Li, L., Kunkel, K. E., Ting, M., and Wang, J. X. L.: Regional
Climate Model Simulation of U.S. Precipitation during 1982–2002. Part I:
Annual Cycle, J. Climate, 17, 3510–3529,
https://doi.org/10.1175/1520-0442(2004)017<3510:RCMSOU>2.0.CO;2, 2004. a
Lin, Y. and Mitchell, K. E.: 1.2 the NCEP stage II/IV hourly precipitation
analyses: Development and applications, in: Proceedings of the 19th
Conference Hydrology, American Meteorological Society, San Diego, CA, USA,
vol. 10, Citeseer, https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm (last access: 2 July 2023), 2005. a
Mearns, L. O., Arritt, R., Biner, S., Bukovsky, M. S., McGinnis, S., Sain, S.,
Caya, D., Correia, J., Flory, D., Gutowski, W., Takle, E. S., Jones, R.,
Leung, R., Moufouma-Okia, W., McDaniel, L., Nunes, A. M. B., Qian, Y., Roads,
J., Sloan, L., and Snyder, M.: The North American Regional Climate Change
Assessment Program: Overview of Phase I Results, B. Am. Meteorol. Soc, 93,
1337–1362, https://doi.org/10.1175/BAMS-D-11-00223.1, 2012. a, b
Nelson, B. R., Prat, O. P., Seo, D.-J., and Habib, E.: Assessment and
Implications of NCEP Stage IV Quantitative Precipitation Estimates for
Product Intercomparisons, Weather Forecast., 31, 371–394,
https://doi.org/10.1175/WAF-D-14-00112.1, 2016. a
Prat, O. P. and Nelson, B. R.: Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002–2012), Hydrol. Earth Syst. Sci., 19, 2037–2056, https://doi.org/10.5194/hess-19-2037-2015, 2015. a
Prein, A. F., Gobiet, A., Truhetz, H., Keuler, K., Goergen, K., Teichmann, C., Fox Maule, C., van Meijgaard, E., Déqué, M., Nikulin, G., Vautard, R., Colette, A., Kjellström, E., and Jacob, D.:
Precipitation in the EURO-CORDEX 0.11∘ and 0.44∘ simulations:
high resolution, high benefits?, Clim. Dynam., 46, 383–412,
https://doi.org/10.1007/s00382-015-2589-y, 2016. a
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K.,
Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S.,
Schmidli, J., van Lipzig, N. P. M., and Leung, R.: A review on regional
convection-permitting climate modeling: Demonstrations, prospects, and
challenges, Rev. Geophys., 53, 323–361,
https://doi.org/10.1002/2014RG000475, 2015. a, b
Prein, A. F., Liu, C., Ikeda, K., Bullock, R., Rasmussen, R. M., Holland,
G. J., and Clark, M.: Simulating North American mesoscale convective systems
with a convection-permitting climate model, Clim. Dynam., 55, 95–110,
https://doi.org/10.1007/s00382-017-3993-2, 2020. a, b
Rajczak, J. and Schär, C.: Projections of Future Precipitation Extremes Over
Europe: A Multimodel Assessment of Climate Simulations, J. Geophys.
Res.-Atmos., 122, 10773–10800, https://doi.org/10.1002/2017JD027176, 2017. a
Rajczak, J., Pall, P., and Schär, C.: Projections of extreme precipitation
events in regional climate simulations for Europe and the Alpine Region, J.
Geophys. Res.-Atmos., 118, 3610–3626,
https://doi.org/10.1002/jgrd.50297, 2013. a, b
Ranasinghe, R., Ruane, A., Vautard, R., Arnell, N., Coppola, E., Cruz, F.,
Dessai, S., Islam, A., Rahimi, M., Ruiz Carrascal, D., Sillmann, J., Sylla,
M., Tebaldi, C., Wang, W., and Zaaboul, R.: Climate Change Information for
Regional Impact and for Risk Assessment, book section 12, 1767–1926,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/9781009157896.014, 2021. a
Rastogi, D., Kao, S.-C., and Ashfaq, M.: How May the Choice of Downscaling
Techniques and Meteorological Reference Observations Affect Future
Hydroclimate Projections?, Earth's Future, 10, e2022EF002734,
https://doi.org/10.1029/2022EF002734, e2022EF002734 2022EF002734, 2022. a
Rhoades, A. M., Jones, A. D., Srivastava, A., Huang, H., O'Brien, T. A.,
Patricola, C. M., Ullrich, P. A., Wehner, M., and Zhou, Y.: The Shifting
Scales of Western U.S. Landfalling Atmospheric Rivers Under Climate Change,
Geophys. Res. Lett., 47, e2020GL089096,
https://doi.org/10.1029/2020GL089096, 2020. a, b
Scaff, L., Prein, A. F., Li, Y., Liu, C., Rasmussen, R., and Ikeda, K.:
Simulating the convective precipitation diurnal cycle in North America’s
current and future climate, Clim. Dynam., 55, 369–382,
https://doi.org/10.1007/s00382-019-04754-9, 2020. a, b, c, d
Schär, C., Ban, N., Fischer, E. M., Rajczak, J., Schmidli, J., Frei, C., Giorgi, F., Karl, T. R., Kendon, E. J., Tank, A. M., Klein, G., O'Gorman, P. A., Sillmann, J., Zhang, X., and Zwiers, F. W.: Percentile
indices for assessing changes in heavy precipitation events, Climatic Change,
137, 201–216, https://doi.org/10.1007/s10584-016-1669-2, 2016. a
Schoetter, R., Hoffmann, P., Rechid, D., and Schlünzen, K. H.: Evaluation and
Bias Correction of Regional Climate Model Results Using Model Evaluation
Measures, J. Appl. Meteor. Climatol., 51, 1670–1684,
https://doi.org/10.1175/JAMC-D-11-0161.1, 2012. a
Shin, D. W., Cocke, S., and LaRow, T. E.: Diurnal cycle of precipitation in a
climate model, J. Geophys. Res.-Atmos., 112, D13,
https://doi.org/10.1029/2006JD008333, 2007. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda,
M. G., Huang, X., Wang, W., and Powers, J. G.: A Description of the Advanced
Research WRF Version 3 (No. NCAR/TN-475+STR), University Corporation for Atmospheric Research [code],
https://doi.org/10.5065/D68S4MVH, 2008. a, b
Smalley, M., L'Ecuyer, T., Lebsock, M., and Haynes, J.: A Comparison of
Precipitation Occurrence from the NCEP Stage IV QPE Product and the CloudSat
Cloud Profiling Radar, J. Hydrometeorol., 15, 444–458,
https://doi.org/10.1175/JHM-D-13-048.1, 2014. a
Srivastava, A., Grotjahn, R., and Ullrich, P. A.: Evaluation of historical
CMIP6 model simulations of extreme precipitation over contiguous US regions,
Weather and Climate Extremes, 29, 100268,
https://doi.org/10.1016/j.wace.2020.100268, 2020. a, b, c
Srivastava, A. K., Grotjahn, R., Ullrich, P. A., and Sadegh, M.: Pooling Data
Improves Multimodel IDF Estimates over Median-Based IDF Estimates: Analysis
over the Susquehanna and Florida, J. Hydrometeorol., 22, 971–995,
https://doi.org/10.1175/JHM-D-20-0180.1, 2021. a, b
Srivastava, A. K., Grotjahn, R., Ullrich, P. A., and Zarzycki, C.: Evaluation
of precipitation indices in suites of dynamically and statistically
downscaled regional climate models over Florida, Clim. Dynam., 58,
1587–1611, https://doi.org/10.1007/s00382-021-05980-w, 2022. a, b, c
Sun, B.-Y. and Bi, X.-Q.: Validation for a tropical belt version of WRF:
sensitivity tests on radiation and cumulus convection parameterizations,
Atmospheric and Oceanic Science Letters, 12, 192–200,
https://doi.org/10.1080/16742834.2019.1590118, 2019. a
Sun, X., Xue, M., Brotzge, J., McPherson, R. A., Hu, X.-M., and Yang, X.-Q.: An
evaluation of dynamical downscaling of Central Plains summer precipitation
using a WRF-based regional climate model at a convection-permitting 4 km
resolution, J. Geophys. Res.-Atmos., 121, 13801–13825,
https://doi.org/10.1002/2016JD024796, 2016. a
Tan, J., Huffman, G. J., Bolvin, D. T., and Nelkin, E. J.: Diurnal Cycle of
IMERG V06 Precipitation, Geophys. Res. Lett., 46, 13584–13592,
https://doi.org/10.1029/2019GL085395, 2019. a
Tewari, M., Chen, F., Wang, W., Dudhia, J., Lemone, M. A., Mitchell, K. E., Ek, M., Gayno, G., Wegiel, J. W., and Cuenca, R.: Implementation and verification of the unified Noah land-surface model in the WRF model [presentation], in: 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, American Meteorological Society,
14 January 2004, Seattle, WA, US, 2004. a
Thompson, G. and Eidhammer, T.: A Study of Aerosol Impacts on Clouds and
Precipitation Development in a Large Winter Cyclone, J. Atmos. Sci., 71, 3636–3658, https://doi.org/10.1175/JAS-D-13-0305.1, 2014. a
Tiedtke, M.: A Comprehensive Mass Flux Scheme for Cumulus Parameterization in
Large-Scale Models, Mon. Weather Rev., 117, 1779–1800,
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989. a
Trenberth, K. E., Zhang, Y., and Gehne, M.: Intermittency in Precipitation:
Duration, Frequency, Intensity, and Amounts Using Hourly Data, J.
Hydrometeorol., 18, 1393–1412, https://doi.org/10.1175/JHM-D-16-0263.1, 2017. a
Tripathi, O. P. and Dominguez, F.: Effects of spatial resolution in the
simulation of daily and subdaily precipitation in the southwestern US, J.
Geophys. Res.-Atmos., 118, 7591–7605,
https://doi.org/10.1002/jgrd.50590, 2013. a
Wang, J. and Kotamarthi, V. R.: Downscaling with a nested regional climate
model in near-surface fields over the contiguous United States, J. Geophys.
Res.-Atmos., 119, 8778–8797, https://doi.org/10.1002/2014JD021696,
2014. a
Wang, J., Feng, J., and Yan, Z.: Potential sensitivity of warm season
precipitation to urbanization extents: Modeling study in
Beijing-Tianjin-Hebei urban agglomeration in China, J. Geophys. Res.-Atmos.,
120, 9408–9425, https://doi.org/10.1002/2015JD023572, 2015. a
Wehner, M., Lee, J., Risser, M., Ullrich, P., Gleckler, P., and Collins, W. D.:
Evaluation of extreme sub-daily precipitation in high-resolution global
climate model simulations, Philos. T. Roy. Soc. A., 379, 20190545,
https://doi.org/10.1098/rsta.2019.0545, 2021. a
Westra, S., Alexander, L. V., and Zwiers, F. W.: Global Increasing Trends
in Annual Maximum Daily Precipitation, J. Climate, 26, 3904–3918,
https://doi.org/10.1175/JCLI-D-12-00502.1, 2013. a
Xiao, C., Yuan, W., and Yu, R.: Diurnal cycle of rainfall in amount, frequency,
intensity, duration, and the seasonality over the UK, Int. J. Climatol., 38,
4967–4978, https://doi.org/10.1002/joc.5790, 2018. a
Zhang, C., Wang, Y., and Hamilton, K.: Improved Representation of Boundary
Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke
Cumulus Parameterization Scheme, Mon. Weather Rev., 139, 3489–3513,
https://doi.org/10.1175/MWR-D-10-05091.1, 2011. a
Short summary
Stakeholders need high-resolution regional climate data for applications such as assessing water availability and mountain snowpack. This study examines 3 h and 24 h historical precipitation over the contiguous United States in the 12 km WRF version 4.2.1-based dynamical downscaling of the ERA5 reanalysis. WRF improves precipitation characteristics such as the annual cycle and distribution of the precipitation maxima, but it also displays regionally and seasonally varying precipitation biases.
Stakeholders need high-resolution regional climate data for applications such as assessing water...