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Abstract. This study analyzes the quality of simulated his-
torical precipitation across the contiguous United States
(CONUS) in a 12 km Weather Research and Forecasting
model version 4.2.1 (WRF v 4.2.1)-based dynamical down-
scaling of the fifth-generation ECMWF atmospheric reanal-
ysis (ERA5). This work addresses the following questions.
First, how well are the 3 and 24 h precipitation characteris-
tics (diurnal and annual cycles, precipitation frequency, an-
nual and seasonal mean and maximum precipitation, and
distribution of seasonal maximum precipitation) represented
in the downscaled simulation, compared to ERA5? And
second, how does the performance of the simulated WRF
precipitation vary across seasons, regions, and timescales?
Performance is measured against the National Centers for
Environmental Prediction/Environmental Modeling Center
(NCEP/EMC) 4 km Stage IV and Oregon State Univer-
sity Parameter-Elevation Regressions on Independent Slopes
Model (PRISM) data on 3 and 24 h timescales, respectively.
Our analysis suggests that the 12 km WRF exhibits biases
typically found in other WRF simulations, including those at
convection-permitting scales. In particular, WRF simulates
both the timing and magnitude of the summer diurnal pre-
cipitation peak as well as ERA5 over most of the CONUS,
except for a delayed diurnal peak over the Great Plains. As
compared to ERA5, both the month and the magnitude of
the precipitation peak annual cycle are remarkably improved
in the downscaled WRF simulation. WRF slightly overesti-
mates 3 and 24 h precipitation maximum over the CONUS,
in contrast to ERA5, which generally underestimates these
quantities mainly over the eastern half of the CONUS. No-

tably, WRF better captures the probability density distribu-
tion (PDF) of 3 and 24 h annual and seasonal maximum pre-
cipitation. WRF exhibits seasonally dependent precipitation
biases across the CONUS, while ERA5’s biases are relatively
consistent year round over most of the CONUS. These re-
sults suggest that dynamical downscaling to a higher reso-
lution improves upon some precipitation metrics but is sus-
ceptible to common regional climate model biases. Conse-
quently, if used as input data for domain-specific models, we
suggest moderate bias correction be applied to the dynami-
cally downscaled product.
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2 July 2023)

1 Introduction

Dynamical downscaling refers to the use of regional climate
models forced with initial and lateral boundary conditions
derived from either a global climate model or reanalysis to
generate high-resolution climate output (Giorgi and Mearns,
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1991). These high-resolution simulations add value through
better representation of regional weather and climate phe-
nomena, especially over regions of complex and heteroge-
neous topography (Doblas-Reyes et al., 2021). For exam-
ple, better representation of local topography, water bodies
and land–sea contrast improves local-scale processes such as
fine-scale convection, land–sea breeze, and nonlinear inter-
actions between local, mesoscale, and large-scale processes
(Caldwell et al., 2009; Di Luca et al., 2015; Ashfaq et al.,
2016; Prein et al., 2016; Bozkurt et al., 2019; Rastogi et al.,
2022). Both the higher resolution and improved represen-
tation of physical processes facilitate the study of future
changes in the mean and variability of the weather and cli-
mate systems (Barsugli et al., 2013) and distill user-oriented
regional climate information on local and regional scales
(Rhoades et al., 2020; Doblas-Reyes et al., 2021; Ranasinghe
et al., 2021).

Though increased resolution in downscaled climate mod-
els is fundamentally important for their utility at regional
scales, it is not sufficient for ensuring reliable and accu-
rate information. The biases in regional climate model out-
put are well documented. These biases can originate from
various sources, including the lateral boundary conditions
(Christensen et al., 2008; Schoetter et al., 2012; Giorgi,
2019) and parameterization schemes (Iguchi et al., 2017;
Kong et al., 2022). The biases may also vary with vari-
able, region, and season of interest (Castro et al., 2005;
Prein et al., 2015; Diaconescu et al., 2016; Srivastava et al.,
2020, 2021, 2022). High-resolution and high-quality climate
data have many uses for both advancing process understand-
ing and for informing operations, particularly at local to re-
gional scales. The ECMWF atmospheric reanalysis (ERA5;
Hersbach et al., 2020) represents a great stride forward in the
development of a complete historical meteorological dataset
with sufficiently high temporal and spatial resolution to rep-
resent many forms of extreme weather and their impacts.
However, for investigating water resource availability, moun-
tain snowpack, and land–atmosphere fluxes, particularly in
the context of multi-sectoral dynamics, even finer grid spac-
ing is required. Given the broad interest among scientists and
stakeholders in developing regional climate data products at
1/8◦ grid spacing based on high-quality reanalysis, it is im-
portant to investigate to what degree (if any) the dynamically
downscaled data improve upon the original ERA5 product.
Such a study is further valuable for informing other dynam-
ical downscaling efforts, such as the international Coordi-
nated Regional Downscaling Experiment (CORDEX) pro-
gram (Gutowski et al., 2016).

In this study, we evaluate historical precipitation over the
contiguous United States (CONUS) in a 12 km Weather Re-
search and Forecasting model version 4.2.1 (WRF v 4.2.1)-
based dynamical downscaling of ERA5 over the period
1980–2020. This WRF-based historical simulation is part of
an ensemble data product (Jones et al., 2022) that includes
thermodynamic global warming (TGW) simulations under

projected climate forcings (Jones et al., 2023). In this paper,
we specifically ask the following two questions: (1) how well
are the 3 and 24 h precipitation characteristics (diurnal and
annual cycles, precipitation frequency, annual and seasonal
mean and maximum precipitation, and distribution of sea-
sonal maximum precipitation) represented in the downscaled
WRF simulation, in comparison to ERA5? (2) How does
the performance of the simulated WRF precipitation vary
across seasons, regions, and timescales? The performance of
3 h ERA5 and WRF precipitation simulations are measured
against the NCEP/EMC 4 km gridded Stage IV data (Stage
IV). The performance of 24 h ERA5 and WRF precipitation
simulations are measured against the Oregon State Univer-
sity Parameter-Elevation Regressions on Independent Slopes
Model (PRISM) dataset.

The specific questions above are motivated by several im-
portant considerations. Most previous studies have focused
on the accuracy of the simulated precipitation on daily or
longer timescales (e.g., Bukovsky and Karoly, 2009; Cald-
well et al., 2009; Rhoades et al., 2020; Srivastava et al.,
2021, 2022; Gensini et al., 2023), likely because of avail-
ability of data on daily timescales. However, many of the
high-impact precipitation-related physical processes (such as
short-duration convective storms leading to extreme precip-
itation events or precipitation intermittency) occur at hourly
timescales (Westra et al., 2013; Trenberth et al., 2017), and
conclusions drawn from analyzing longer-timescale precip-
itation do not automatically translate to shorter timescales
(Barbero et al., 2019). Further, regional climate models are
known to be sensitive to both the resolved (e.g., horizontal
resolution and simulation domain) and unresolved parame-
ters (e.g., convection parameterization schemes), and so par-
ticular regional climate model configurations must be exam-
ined before they can be used for regional application (Giorgi
and Mearns, 1999; Liang et al., 2004). The 12 km WRF sim-
ulation examined in this study uses a convective parameter-
ization, which is considered to be a major source of model
biases on both subdaily and daily timescales (Dirmeyer et al.,
2012; Hanel and Buishand, 2010; Knist et al., 2020). More-
over, a seasonal analysis of precipitation is important as,
generally, both the observation-based datasets (e.g., reanal-
yses) and models (e.g., WRF) better simulate precipitation
in winter than in summer, mainly because winter precipi-
tation is mostly dominated by predictable large-scale strat-
iform systems (Ebert et al., 2007) and summer precipitation
is mainly influenced by unpredictable small-scale convective
cells (Prein et al., 2015; Beck et al., 2019).

The rest of the paper is organized as follows: Sect. 2 de-
scribes the data and methodology used. Results are presented
and discussed in Sect. 3, and also tabulated in Tables 2 and
3, then summarized in Sect. 4. Figures for percent biases are
included in the Supplement.
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Table 1. Precipitation metrics analyzed in this study. Please refer to the Sect. 2.2 for more details.

Metrics Symbol Description Unit

3 h precipitation

Peak time of the JJA precipitation
diurnal cycle

TDPP Timing of the diurnal precipitation peak in JJA none

Magnitude of the JJA precipitation
diurnal cycle

MDPP Magnitude of the diurnal precipitation peak in JJA mm 3 h−1

Frequency of 3 h precipitation PF3h Counts of 3 h precipitation events with magnitude greater
than 0.25 mm expressed as a percentage of the total number
of 3 h time steps

%

3 h precipitation mean Pmean3h Climatological mean of 3 h precipitation including zeros mm 3 h−1

Wet-3 h precipitation mean S3hII Climatological mean of 3 h precipitation greater than
0.25 mm

mm 3 h−1

Annual maximum of 3 h precipitation Rx3h Climatological mean of annual maximum of 3 h precipita-
tion

mm 3 h−1

PDF of the annual maximum of 3 h pre-
cipitation

PDF3h Probability distribution of the 3 h annual maximum precip-
itation

none

24 h precipitation

Peak time of the annual cycle TMPP Calendar month of the maximum monthly averaged 24 h
precipitation

none

Magnitude of the peak of the annual
cycle

MMPP Magnitude of the monthly average precipitation peak mm d−1

Frequency of 24 h precipitation PF24h % of total days when 24 h precipitation is more than 1 mm %

24 h precipitation mean Pmean24h Climatological mean of 24 h precipitation including zeros mm d−1

Wet-24 h precipitation mean SDII Climatological mean of 24 h precipitation greater than
1 mm

mm d−1

Annual maximum of 24 h precipitation Rx1day Climatological mean of annual maximum of 24 h precipita-
tion

mm d−1

PDF of the annual maximum of 24 h
precipitation

PDF24h Probability distribution of the 24 h annual maximum pre-
cipitation

none

2 Data and method

2.1 Data

2.1.1 WRF downscaling of ERA5

The Weather Research and Forecasting model version 4.2.1
is a state of the art, fully compressible, non-hydrostatic,
mesoscale numerical weather prediction system designed for
both atmospheric research and operational forecasting appli-
cations (Skamarock et al., 2008). For this study, the WRF
simulation is carried out at 12 km horizontal grid spacing
and covers the 1980–2020 period (Fig. 1). The physical pa-
rameterizations chosen are Thomson microphysics (Thomp-
son and Eidhammer, 2014), the Tiedke cumulus parame-
terization (Tiedtke, 1989; Zhang et al., 2011), the Mellor–

Yamada–Janjic boundary layer scheme (Janjić, 1994), and
the Eta similarity surface layer (Janjić, 1994). Noah is em-
ployed for modeling the land surface (Tewari et al., 2004).
WRF is further coupled with an urban canopy model (UCM),
which resolves urban surfaces, and its land use/land cover is
based on National Land Cover Data (NLCD; Dewitz, 2021).
Studies suggest that urbanization can enhance or suppress
precipitation over different regions, situations, and urban-
ization phases. Some examples are as follows. Wang et al.
(2015) show that urban warming during the early urbaniza-
tion phase promotes increased sensible heat flux, enhanced
convergence, and vertical motion, leading to urban modi-
fication of rainfall. Li et al. (2022) find that urbanization
suppresses summer precipitation from mesoscale convective
systems, isolated deep convection, and non-convective sys-
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Figure 1. The WRF domain employed in this study. Colors denote
topography in meters. Bounded regions show the seven National
Climate Assessment (NCA) regions: northwest (NW), southwest
(SW), northern Great Plains (NGP), southern Great Plains (SGP),
midwest (MW), southeast (SE), and northeast (NE).

tems in the mid-Atlantic region east of the Rocky Moun-
tains. Georgescu et al. (2021) report that physical growth of
the built environment can either enhance or suppress extreme
precipitation across CONUS metropolitan regions.

The initial and boundary conditions are obtained from
the ERA5 dataset (Hersbach et al., 2020). ERA5 is a fifth-
generation ECMWF reanalysis product that assimilates a
suite of observations (e.g., aircraft, in situ, and satellite)
into the Integrated Forecasting System (IFS) to produce
hourly meteorological variables on a regular 0.25◦ latitude–
longitude grid with 137 vertical levels.

2.1.2 Reference datasets

To evaluate the performance of 3 h WRF precipitation,
NCEP/EMC 4 km Stage IV gridded data is used as reference
(Lin and Mitchell, 2005). Stage IV is available at hourly tem-
poral resolution and at 4 km horizontal grid spacing. Stage IV
is generated at NCEP from the regional hourly and 6 h multi-
sensor (radar and gauges) precipitation analyses produced by
the 12 River Forecast Centers (RFCs) over the continental
United States. Beck et al. (2019) report that, to minimize
systematic biases in Stage IV data, the dataset is rescaled to
match its long-term mean with that of the PRISM dataset (de-
tails given below) over the evaluation period (2008–2017).

The performance of 24 h WRF precipitation is evaluated
against the Oregon State University Parameter-Elevation Re-
gressions on Independent Slopes Model (PRISM) dataset at
4 km grid spacing (Daly et al., 2008). The daily PRISM data
use in situ data with a digital elevation model to account for
the complex meteorological response from orography, rain
shadows, temperature inversions, slope aspect, coastal prox-
imity, and other local features.

For comparison, ERA5, Stage IV, and PRISM precipita-
tion datasets are interpolated to the 12 km WRF grid using
first-order conservative remapping (Jones, 1999).

2.2 Method

In this study, we estimate precipitation metrics that charac-
terize the frequency, total amount, intensity, and timing of
the mean and extreme precipitation. The metrics are summa-
rized in Table 1. We calculate the mean precipitation amount
for 3 and 24 h durations using all precipitation values, includ-
ing zeros. We use 0.25 and 1 mm thresholds for estimating
the frequency and mean precipitation during wet 3 and 24 h
periods, respectively. We use these thresholds to minimize
the effect of excessive drizzle being present in regional cli-
mate models and reanalyses (e.g., Frei et al., 2006; Rajczak
et al., 2013) and also to account for observational constraints
(Schär et al., 2016). The differences between the mean pre-
cipitation amount and the mean wet-3 h and wet-24 h precip-
itation highlight the biases that result from excessive drizzle
in the dataset. The precipitation thresholds in the study are
consistent with those in previous studies (e.g., Rajczak et al.,
2013; Rajczak and Schär, 2017; Xiao et al., 2018; Kooper-
man et al., 2022).

2.2.1 Diurnal and annual cycle of precipitation

The diurnal cycle of precipitation is estimated by fitting the
first two harmonics to the monthly mean 3 h precipitation.
Similarly, the annual cycle of precipitation is estimated by
fitting the first two harmonics to the monthly mean 24 h pre-
cipitation. The timing of the diurnal peak of the 3 h precipi-
tation is expressed in terms of local solar time (LST). Noon
(12:00 LST) is the time when the Sun is highest in the sky at a
location. LST hours are obtained from UTC hours as follows
(Watters et al., 2021):

tLST = tUTC+
λ◦

15◦ h−1 , (1)

where tUTC and tLST are the coordinated universal time and
local solar time, respectively. λ is the longitude, in degrees.

In this work, the subdaily precipitation is examined for
the 2003–2019 period, and the daily precipitation is ana-
lyzed for the 2001–2020 period. These periods are chosen for
two considerations. First, the hourly Stage IV data are avail-
able only after 2002. Second, any variability arising from
the trend may be assumed to be insignificant in the 20-year
record. The results are summarized for the seven National
Climate Assessment (NCA) regions over the CONUS (https:
//www.globalchange.gov/content/nca5-regions, last access:
1 July 2023). The seven NCA regions are NW (northwest),
SW (southwest), NGP (northern Great Plains), SGP (south-
ern Great Plains), MW (midwest), SE (southeast), and NE
(northeast).
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Figure 2. Timing of the diurnal precipitation peak (TDPP) in JJA (in units of hours at local solar time) estimated over 2003–2019. Panels (a),
(c), and (e) show the timing in each dataset and use the color scale along the bottom edge of the figure. Panels (b) and (d) show differences
in timings of the precipitation peak and use the color scale along the right edge of the figure.

3 Results

3.1 Diurnal cycle of precipitation

Figure 2 shows the peak time of the JJA diurnal precipita-
tion peak (TDPP) in ERA5, WRF, and Stage IV datasets (in
hours at LST). We chose to analyze the JJA diurnal cycle be-
cause the diurnal variations are stronger in summer than in
winter (Dai et al., 1999). Presumably, this is because win-
ter variations of precipitation are dominated by frontal cy-
clones, and a frontal passage can occur at any time of day,
thereby masking any diurnal cycle present. During summer,
the frontal cyclone passages are much less frequent, allow-
ing the diurnal cycle to be more visible (e.g., Kunkel et al.,
2012). The observed (Stage IV) spatial pattern of TDPP
shows that, mostly, precipitation peaks in the afternoon over
most of the CONUS, except for regions to the east of the
Rocky Mountains (the Great Plains and MW regions). The
eastward propagating shift in nighttime diurnal peak east
of the Rockies is consistent with mesoscale convective sys-
tems (MCSs) originating over the Rockies and moving east-
ward (Dai et al., 1999; Tan et al., 2019; Scaff et al., 2020;
Watters et al., 2021). ERA5 generally reproduces the spa-

tial pattern of the observed diurnal cycle, but the peak occurs
earlier along the northern boundaries of the northern Great
Plains (NGP) and west of the Great Lakes in the midwest
(MW). The largest biases in ERA5 are found between 100–
85◦W, also noted in Watters et al. (2021) who compared bi-
ases in ERA5 against the multi-radar multi-sensor (MRMS)
gauge-adjusted ground-based radar network product. Similar
to ERA5, WRF simulates the observed timing of the diurnal
precipitation peak everywhere except over the regions east
of the Rockies. Over the regions falling east of 100◦W, the
observed late night to early morning peak in the diurnal cy-
cle is delayed in the WRF simulation. Similar behavior was
also noted in the convection-permitting WRF simulation of
Scaff et al. (2020). The slow propagation eastward of con-
vective systems is driven by cloud-scale phenomena that are
not necessarily well captured by the models used to generate
datasets.

The observed magnitude of the JJA precipitation diurnal
cycle (using MDPP; precipitation magnitude during the peak
of the diurnal cycle) is larger in the eastern CONUS com-
pared to the western CONUS (Fig. 3). The largest MDPP
magnitudes are observed along the Gulf coast and in Florida.
ERA5 simulates the observed spatial pattern of the diur-
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Figure 3. Magnitude of the diurnal precipitation peak (MDPP) in JJA estimated over 2003–2019. Panels (a), (c), and (e) show the magnitude
in each dataset and use the color scale along the bottom edge of the figure. Panels (b) and (d) show biases in the magnitude of the precipitation
peak and use the color scale along the right edge of the figure. Units: mm 3 h−1

nal precipitation magnitude very well. Watters et al. (2021)
found that ERA5 generally overestimates the magnitude over
much of the CONUS in comparison to the Integrated Multi-
satellitE Retrievals for GPM (IMERG) dataset, possibly due
to reliance on the convection parameterization. The differ-
ing performance of ERA5 against the two different obser-
vational datasets (as noted in Watters et al., 2021 and our
study) also points to uncertainties arising due to differences
in reference datasets. WRF does capture the spatial pattern of
the observed diurnal precipitation peak magnitude over most
of the CONUS, except over the southeast where it overesti-
mates the magnitude of the precipitation peak and over the
central Great Plains region where it underestimates the mag-
nitude more than ERA5. The dry biases over the midwest and
parts of the central CONUS in WRF diurnal precipitation
magnitude are consistent with those of Scaff et al. (2020),
suggesting that current climate models, including WRF, un-
derestimate MCS frequencies in summertime weak synoptic-
scale forced conditions (Prein et al., 2020). The wet MDPP
bias in WRF over the SE is also observed in previous WRF-
based studies (e.g., Wang and Kotamarthi, 2014; Scaff et al.,
2020). Sun and Bi (2019) showed that the WRF simulation
with the Tiedke cumulus parameterization scheme exhibits
an earlier and stronger diurnal cycle than that observed over
land regions between 25◦ S and 25◦ N in boreal summer.
As the convective scheme is the most crucial model com-
ponent in capturing the diurnal cycle of precipitation (Shin

et al., 2007), and precipitation from cumulus parameteriza-
tion schemes dominates over the SE CONUS (Iguchi et al.,
2017), we suspect that cumulus parameterization in the cur-
rent WRF simulation may be responsible for the wet bias
over the SE region.

3.2 Annual cycle of precipitation

Figure 4 shows the peak time (calendar month) of the
monthly averaged precipitation (TMPP; the annual cycle of
the monthly averaged precipitation). Using PRISM as a ref-
erence, maximum monthly precipitation occurs during win-
ter season over the western CONUS and parts of Arkansas,
Mississippi, Louisiana, and the NE CONUS. The majority
of the Great Plains is dominated by the late spring and early
summer precipitation, whereas the southeast region gets most
of the rainfall in the summer season. This high-resolution
spatial map of the annual cycle of monthly precipitation is
consistent with previous studies (e.g., Bukovsky and Karoly,
2007). Stage IV also exhibits a similar annual precipitation
cycle as PRISM; however, differences from PRISM emerge
over multiple regions across the US such as SW (Utah), NE
(Maine), and MW (northern and eastern boundaries of Lake
Michigan). A few sources of biases in Stage IV may affect
its results shown in Fig. 4 and subsequent figures. For ex-
ample, a discontinuity in the mosaic-making process exists
over a few regions such as over oceans and areas that cover
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Figure 4. Calendar month of the monthly average precipitation peak (TMPP) estimated over 2001–2020 (2003–2019 for Stage IV).

Figure 5. Magnitude of the monthly average precipitation peak (MMPP) estimated over 2001–2020 (2003–2019 for Stage IV). The left
column shows the magnitude of the peak in each dataset and uses the color scale along the bottom edge of the figure. The right column shows
biases in the magnitude and uses the color scale along the right edge of the figure. Units: millimeters per day (mm d−1).
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Figure 6. Precipitation frequency of 3 h (PF3h) estimated over 2003-2019. The left column shows the frequency in Stage IV data and uses
the color scale along the bottom of the figure. The right two columns show differences in the precipitation frequency and use the color scale
along the right edge of the figure. Units: %.

the Great Lakes region. A few western RFCs, including Col-
orado Basin RFC (CBRFC), do not use radar estimates due to
poor coverage over mountainous regions. Moreover, the in-
herent biases in radar rainfall estimation due to factors such
as lack of radar coverage, brightband contamination, and bi-
ases existing in the algorithms are not completely avoidable
(Nelson et al., 2016; Prat and Nelson, 2015). Both ERA5 and
WRF are able to simulate the spatial pattern of peak time of
the annual cycle. However, WRF outperforms ERA5 in sim-
ulating the spatial structure of the annual cycle, as it greatly
improves ERA5 biases over the NE and parts of the SE and
Great Plains regions.

The spatial pattern of the magnitude of the monthly av-
eraged precipitation peak (MMPP) is shown in Fig. 5. The
maximum monthly average precipitation occurs along the
western coast, Sierra Nevada mountains, and in the south-
eastern region. Stage IV does capture the spatial pattern of
the referenced precipitation magnitude; it exhibits underes-
timated precipitation (dry bias) of 20 % or more almost ev-
erywhere across the CONUS. The largest percent biases ex-
ist over the SE and SW regions (Figs. 5 and S2 in the Sup-
plement). ERA5 underestimates the precipitation magnitude
over the NE and SE regions and overestimates it over the
southern Great Plains. On the other hand, WRF captures the
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Figure 7. Precipitation mean of 3 h (Pmean3h) estimated over 2003–2019. The left column shows the mean in Stage IV data and uses the
color scale along the bottom of the figure. The right two columns show differences in the mean and use the color scale along the right edge
of the figure. Hatching denotes grid points where the differences are found to be significant at the 5 % significance level based upon t test.
Units: mm 3 h−1.

spatial pattern of the magnitude very well across CONUS
and exhibits much lower biases across the CONUS than
ERA5.

In summary, both the timing and magnitude of the monthly
averaged precipitation peak are improved in the downscaled
WRF simulations compared to ERA5.

3.3 Evaluation of 3 h precipitation

Figure 6 shows the precipitation frequency of 3 h precipi-
tation (PF3h). The precipitation frequency is computed as
the counts of 3 h precipitation events with magnitude greater
than 0.25 mm expressed as a percentage of the total number

of 3 h time steps. Compared with Stage IV, ERA5 overes-
timates the precipitation frequency by 3 %–10 % in all sea-
sons over most of the CONUS except over the NW and SW.
It does underestimate the frequency over the hilly areas of
the NW regions in JJA. WRF also exhibits more frequent
precipitation mostly over NGP and MW regions in DJF and
MAM. In contrast, WRF consistently underestimates precip-
itation frequency along the west coast. Also, notably, WRF
overestimates the frequency over the SE in MAM and JJA
and underestimates it in DJF. The spatial pattern of biases
in the annual 3 h precipitation frequency in WRF is consis-
tent with Kong et al. (2022), who found that precipitation
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Figure 8. Mean of 3 h for precipitation greater than 0.25 mm (S3hII) estimated over 2003–2019. The left column shows the mean in Stage
IV data and uses the color scale along the bottom of the figure. The right two columns show differences in the mean and use the color scale
along the right edge of the figure. Hatching denotes grid points where the differences are found to be significant at the 5 % significance level
based upon t test. Units: mm 3 h−1.

frequency in WRF is more sensitive to the convective and
radiation schemes than the precipitation amount.

Pmean3h (the mean of all 3 h precipitation values includ-
ing zeros) is shown in Fig. 7. In Stage IV data, the 3 h mean
precipitation is maximum over the coastal and mountainous
regions of the western US (Washington, Oregon, and Sierra
Mountains of California). The eastern half of the CONUS
experiences more 3 h average precipitation than the west-
ern half (except in the coastal and mountainous regions).
The maximum values of Stage IV 3 h precipitation observed
along the northwestern US states are missing in the satellite-
derived and bias-corrected gridded Climate Prediction Cen-

ter Morphing technique (CMORPH) dataset, probably due to
the insufficient representation of orography at 0.25◦× 0.25◦

grid spacing (Kong et al., 2022). ERA5 generally overesti-
mates the 3 h mean precipitation over much of the CONUS
throughout the year. On the other hand, while its performance
is an improvement in many regions, WRF overestimates the
precipitation over most of the CONUS (except SGP) annu-
ally or in winter and spring seasons. When compared across
seasons, WRF underestimates the summer precipitation but
overestimates the winter precipitation over the SGP region.
Moreover, WRF simulates a much larger wet bias over the
SE in summer than in any other season. The spatial pattern of

Geosci. Model Dev., 16, 3699–3722, 2023 https://doi.org/10.5194/gmd-16-3699-2023



A. K. Srivastava et al.: Assessment of WRF (v 4.2.1) dynamically downscaled precipitation 3709

Figure 9. Precipitation maximum of 3 h (Rx3h) estimated over 2003–2019. The left column shows the mean in Stage IV data and uses the
color scale along the bottom of the figure. The right two columns show differences in the mean and use the color scale along the right edge
of the figure. Hatching denotes grid points where the differences are found to be significant at the 5 % significance level based upon t test.
Units: mm 3 h−1.

the WRF simulated precipitation frequency is similar to the
mean precipitation amount, suggesting that the subdaily pre-
cipitation frequency affects the corresponding subdaily mean
precipitation in WRF. The spatial pattern of annual dry bias
in the SGP and wet bias in the SE region is also found in
the other WRF simulation employing the Tiedke cumulus pa-
rameterization scheme along with the rapid radiative transfer
model for global models (RRTMG) radiation scheme (Kong
et al., 2022).

Figure 8 shows the 3 h mean for precipitation greater
than 0.25 mm 3 h−1 (S3hII). As shown for Stage IV, mean
S3hII values are generally higher than Pmean3h across the

CONUS. The highest S3hII values are observed over the SE
and SGP regions, suggesting that 3 h precipitation in these
regions is dominated by drizzling precipitation (< 0.25 mm).
Notably, except for parts of NGP, NW, and SW regions in
DJF, ERA5 underestimates the mean S3hII over most of the
CONUS in all seasons. This ERA5 bias, together with those
shown in Figs. 6 and 7, suggest that ERA5 suffers from driz-
zling effect, causing it to precipitate more frequently but in
lesser amounts when it rains. In contrast to ERA5, WRF sim-
ulates more S3hII values across the CONUS in DJF and less
in JJA. Notably, the absolute S3hII biases in WRF are gen-
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Figure 10. Probability density function of 3 h precipitation annual maximum ((PDF3h) estimated over 2003–2019. The y axis is plotted on
log scale.

erally lower than those in ERA5 in most of the seasons and
regions.

The spatial pattern of the 3 h annual maximum precip-
itation (Rx3h) is shown in Fig. 9. Rx3h in Stage IV ex-
hibits higher values in the eastern half of the CONUS than
in the western half. The spatial pattern and the magnitude in
Stage IV is similar to that obtained from the Next-Generation
Radar (NEXRAD) dataset in Wehner et al. (2021). ERA5
generally underestimates (mostly within ±5 mm) the max-
imum precipitation in all seasons and everywhere. On the

other hand, WRF overestimates the 3 h annual maximum pre-
cipitation over the eastern half of the CONUS but shows clear
seasonal variation in its biases over the western CONUS re-
gions. For example, WRF slightly overestimates the precipi-
tation maxima over parts of the NW, SW, and the GP regions
in DJF but underestimates the maxima over those regions in
JJA. A detailed investigation of biases in WRF is out of the
scope of this paper, but we suspect that WRF biases in the
Great Plains may be attributed to underestimated MCS fre-
quencies (Prein et al., 2020), imperfect cumulus parameteri-
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Figure 11. As in Fig. 6 but for 24 h precipitation frequency (PF24h) estimated over 2001–2020 (2003–2019 for Stage IV). Units: %.

zation scheme, and biases in the representation of intensity,
location, and diurnal cycle of the low-level jet in 12 km WRF
simulation (Lee et al., 2017).

The above analysis of average 3 h annual maximum pre-
cipitation provides little information on whether the datasets
reasonably simulate the distribution of the 3 h annual maxi-
mum precipitation. Figure 10 shows the probability density
function (PDF) of the 3 h annual maximum precipitation. In
each panel, the y axis uses a log scale to clearly show higher,
less frequent precipitation values. It is apparent from the fig-
ures that ERA5 consistently underestimates extreme precip-
itation values over all NCA regions and across all seasons.
WRF generally improves on the biases in ERA5 by produc-
ing higher extreme precipitation values and thereby bringing
the PDF of extreme precipitation values close to the observed
PDF.

3.4 Evaluation of 24 h precipitation

For 24 h precipitation analysis, we use PRISM as reference
data. We also evaluate 24 h precipitation in Stage IV against
PRISM to quantify observational uncertainty.

Figure 11 shows the 24 h precipitation frequency (PF24h).
The precipitation frequency is computed from the days when
24 h precipitation is more than 1 mm d−1. Stage IV consis-

tently underestimates (in comparison to PRISM) the precipi-
tation frequency over most of the CONUS. The largest biases
in Stage IV precipitation frequency are observed over the
NGP in winter and SW throughout the year (Fig. S7 in the
Supplement). The underrepresented precipitation frequency
in Stage IV may be related to its difficulty in detecting light
and frozen precipitation across the CONUS and, most no-
tably, in the western US because the precipitation process-
ing system in Stage IV does not distinguish between liquid
and frozen hydrometeor types (Smalley et al., 2014). ERA5
consistently overestimates PF24h by more than 5 % in all
seasons over most of the CONUS except NW and SW re-
gions. It also underestimates the precipitation frequency over
the SW region in summer and fall. In contrast, WRF un-
derestimates the frequency in the NW and SW regions and
shows frequency biases in other regions that are seasonally
dependent. For example, over the SE, WRF underestimates
the frequency in DJF but overestimates it in JJA. Similarly,
WRF overestimates the frequency over NGP and MW in
DJF, but it underestimates the frequency over those regions
in JJA. It is also notable that WRF underestimates the fre-
quency over most of the CONUS in JJA (except SE) and
SON. When compared with the biases in 3 h precipitation
frequency (Fig. 6), the spatial pattern of the biases in ERA5
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Figure 12. As in Fig. 7 but for 24 h precipitation mean (Pmean24h) estimated over 2001–2020 (2003–2019 for Stage IV). Units: mm d−1.

is similar for both 3 and 24 h precipitation. However, the 24 h
precipitation frequency biases in WRF are larger than those
for 3 h precipitation. This suggests that while ERA5 tends to
exhibit more drizzle (i.e., low intensity precipitation), WRF
generally concentrates precipitation into fewer days of the
year than we see in observations.

Biases in 24 h precipitation mean (Pmean24h) are shown
in Fig. 12. Stage IV shows dry bias as compared to PRISM
over most of the CONUS in all seasons, except that it shows
wet biases over sporadic locations in NW and SW regions.
The corresponding percent bias in Pmean24h (Fig. S8) in-
dicates large Stage IV relative dry biases in the western
CONUS (NGP, NW, and SW) in DJF, possibly related to its
inability to detect freezing and light precipitation events, as
discussed in the previous subsection. ERA5 consistently ex-
hibits a dry bias in 24 h mean precipitation over the southeast
throughout the year. When compared with the frequency bi-
ases in Fig. 11, it appears that although ERA5 precipitates
more frequently than PRISM, it precipitates less during wet
days than PRISM. ERA5 generally exhibits wet biases over
other regions. Over the NE, ERA5 shows dry biases over re-
gions close to the coasts and wet biases over the inland areas
– a pattern that may be associated with the insufficient ability
of ERA5 parameterizations to produce sea breeze-induced
precipitation (Crossett et al., 2020). WRF generally shows

dry biases over the Great Plains, exhibiting typical model bi-
ases existing in the state-of-the-art climate models (Srivas-
tava et al., 2020). The spatial patterns of 24 h frequency bi-
ases in WRF (Fig. 11) are similar to the 24 h mean precipita-
tion. When compared with ERA5, WRF shows stronger dry
biases over the Great Plains regions, particularly in JJA. It
is interesting to note that the spatial pattern of the seasonal
24 h mean precipitation biases in WRF is quite similar to
those simulated by another recent bias-corrected convection-
permitting WRF simulation over the CONUS (Gensini et al.,
2023) – for example, JJA dry biases in both the studies are
spread over most the CONUS. Similarly dry biases over the
SE region are quite similar. What is more striking is that the
magnitude of the 24 h mean biases in our study are largely
comparable to those in Gensini et al. (2023). The summer
dry biases in the Great Plains have been reported in pre-
vious analyses of WRF simulations employing convection-
permitting or convection-parameterizing configurations (Sun
et al., 2016) and in other regional climate models, including
WRF (Mearns et al., 2012; Gao et al., 2017). The summer dry
biases in the Great Plains may be associated with the unreal-
istically strong coupling of convection with the surface heat-
ing over the Rocky Mountains and insufficiently resolved and
slow propagating mesoscale systems (Mearns et al., 2012;
Tripathi and Dominguez, 2013; Hu et al., 2018).
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Figure 13. As in Fig. 7 but for 24 h mean for precipitation greater than 1 mm (SDII) estimated over 2001–2020 (2003–2019 for Stage IV).
Units: mm d−1.

The 24 h mean wet-day precipitation (SDII) is shown in
Fig. 13. As for the biases in Pmean24h (Fig. 12), Stage IV un-
derestimates SDII almost everywhere but more prominently
over the eastern half of the CONUS in all seasons. ERA5 un-
derestimates SDII over the eastern half of the CONUS (parts
of NGP, MW, SGP, and NE) across the year. The dry SDII
biases, together with the overestimated frequency and mean
precipitation in winter and spring over NGP, MW, and SGP,
suggest that ERA5 has too little and too frequent precipita-
tion bias. WRF exhibits wet SDII biases over most of the
CONUS in DJF, except in a few places over the SGP and SE.
On the other hand, it shows strong dry biases over the SGP
and SE during spring and over the SGP, MW, and SE during
summer.

Figure 14 shows biases in 24 h annual maximum precipi-
tation (Rx1day). As for the other metrics, Stage IV underes-
timates Rx1day over the eastern half of the CONUS. The dry
bias is most pronounced (∼ 20%) over the Great Plains and
MW during summer and over the NGP and northeastern parts
of SW (> 50%) during winter (Fig. S10 in the Supplement).
On the other hand, Rx1day values in Stage IV are very well
represented over NW and SW in all seasons except winter.
ERA5 shows strong and significant dry biases over the east-
ern CONUS throughout the year. The ERA5 wet biases over

the western CONUS are smaller than over the eastern half.
These patterns are roughly similar to the 3 h precipitation bi-
ases (Fig. 9). WRF generally shows seasonally dependent bi-
ases across CONUS. For example, it shows wet biases during
winter and spring but a mix of wet and dry biases (SGP and
MW) during summer and fall. When compared with ERA5,
it is evident that though WRF reverses the sign of dry bias
over most of the eastern CONUS (except parts of the Great
Plains), WRF exhibits smaller magnitude of biases across the
CONUS than ERA5.

Finally, the PDF of 24 h annual maximum precipitation
(PDF24h) is shown in Fig. 15. Stage IV represents well the
PDF24h over NW and SW. However, it does show problems
in capturing the PDF24h over the NGP throughout the year.
It is apparent that ERA5 severely underestimates the annual
maximum precipitation across the CONUS and throughout
the year. WRF does a much better job of simulating the
observed distribution as it reduces the biases in ERA5 fre-
quency distribution of 24 h annual maximum precipitation
for most of the regions and seasons.

For the sake of convenience, the results discussed in this
section are also tabulated in Tables 2 and 3.
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Figure 14. As in Fig. 9 but for 24 h precipitation maximum (Rx1day) estimated over 2001–2020 (2003–2019 for Stage IV). Units: mm d−1.

4 Summary and discussion

This paper evaluates the performance of the 12 km Weather
Research and Forecasting (WRF)-based dynamical down-
scaling of the fifth-generation ECMWF atmospheric reanal-
ysis (ERA5) in simulating the subdaily and daily precipita-
tion characteristics. In particular, we evaluate diurnal and an-
nual cycles, frequency and mean precipitation, and annual
maximum precipitation and its distribution. We addressed
two questions specifically: (1) how well are the 3 and 24 h
precipitation characteristics represented in the downscaled
WRF simulation in comparison to those in ERA5; and (2)
how does the performance of the simulated WRF precipita-
tion vary across seasons, regions, and timescales? We mea-
sure the ERA5 and WRF precipitation simulation against the
NCEP/EMC 4 km Stage IV and PRSIM data on 3 and 24 h
timescales, respectively.

Our analysis suggests that WRF performs similarly to
ERA5 in capturing the timing and magnitude of the JJA 3 h
diurnal precipitation peak over most of the CONUS, except
the Great Plains regions. Over the Great Plains, WRF ex-
hibits a diurnal cycle delayed by a few hours, suggesting that
the mesoscale convective systems, that originate in the Rock-
ies and travel eastward, are slower in the WRF simulation – a
typical model problem found in many previous studies. WRF

simulates the timing (month) and magnitude of the monthly
mean 24 h precipitation annual cycle much better than ERA5.
Notably, WRF improves the timing of the annual cycle over
the NE, SE, and areas surrounding the Gulf of Mexico.

One noticeable difference between ERA5 and WRF is that
ERA5 generally displays similar signs of biases (positive or
negative) in most of the precipitation characteristics exam-
ined throughout the year and across most of the CONUS.
However, WRF exhibits seasonally dependent biases in the
precipitation characteristics across the CONUS. For instance,
ERA5 overestimates both the frequency and mean of the 3 h
precipitation over most of the CONUS, except over parts of
the western CONUS. On the other hand, WRF underesti-
mates the frequency and mean of the 3 h precipitation over
the SE in winter but overestimates these quantities in summer
over that region. Similarly, WRF underestimates the mean
3 h precipitation over the central Great Plains region in sum-
mer but not in winter. Also, ERA5 generally underpredicts
the 3 h annual and seasonal maximum precipitation through-
out the year over the CONUS, but WRF overestimates it over
the eastern CONUS in all seasons. What is interesting is that
ERA5 performs poorly in simulating the observed proba-
bility distribution of the 3 h precipitation and thus severely
underestimates the observed 3 h extreme precipitation, but
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Figure 15. As in Fig. 10 but for the PDF of 24 h precipitation maximum (PDF24h) estimated over 2001–2020 (2003–2019 for Stage IV).

WRF performs quite well in capturing the observed PDF,
thereby reducing the biases in ERA5.

Similar to what was found for the 3 h precipitation, ERA5
does show similar biases in the 24 h precipitation, but WRF
displays regionally and seasonally dependent biases. WRF
overestimates the 24 h precipitation frequency over most of
the CONUS (except NW and SW). The 12 km WRF gen-
erally exhibits seasonally dependent biases also found in
the convection-permitting WRF simulation (Gensini et al.,
2023). In this analysis, WRF underestimates the frequency
throughout the CONUS in SON but overestimates the fre-

quency over the eastern half of the CONUS in MAM. The
underestimated frequency in WRF is more severe in JJA.
Similarly, ERA5 underestimates the 24 h annual maximum
precipitation over the eastern half of the CONUS, most no-
tably in the Great Plains and SE regions; while these biases
are generally reduced in magnitude in the WRF simulation,
they also occur with a change in the sign. Notably, ERA5 un-
derestimates the 24 h annual maximum precipitation over the
SE, while WRF overestimates it (though by a smaller overall
magnitude). As observed for 3 h precipitation, WRF shows
remarkable improvements in the simulated probability distri-
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Table 2. Regions where ERA5 or WRF precipitation (P ) fidelity is subjectively better for 3 h precipitation. Reference data: Stage IV.

Precipitation parameter (rele-
vant figure)

ERA5 WRF Comments

Peak time of the JJA precip-
itation diurnal cycle (TDPP)
(Fig. 2)

The peak occurs earlier over
much of the CONUS, es-
pecially along the northern
boundaries of the northern
Great Plains (NGP) and west of
the Great Lakes in the midwest
(MW).

Earlier peak over much of
CONUS, better in NE. OEPC
(overnight eastward progres-
sion of convection) too early in
northern NGP, too late in SGP.

Generally larger biases are with
OEPC in NGP and parts of
SGP and MW. Both datasets are
too late for northern OEPC and
too early for southern OEPC.
(Note: 12 h late is 12 h early).
Both are too early along NW
coast.

Magnitude of the JJA precip-
itation diurnal cycle (MDPP)
(Fig. 3)

Better over SE and SGP. Too
wet over south FL and Rockies.

Too large over most of SE and
less so over NE and eastern
MW. Too dry over northern
SGP. Better over Rockies.

ERA5 and WRF fine over NW
and SW, though the magnitude
is smaller than elsewhere.

Annual frequency of 3 h P

(PF3h) (Fig. 6)
Generally too frequent (> 5 %)
everywhere, less error over
southern SW.

Better over NGP, MW, SGP,
and western SE. SW and NW
generally better, except not fre-
quent enough along coastal and
west slopes of NW and SW.

Both datasets too frequent (>
5 %) over most of SE, MW, and
NGP.

Seasonal frequency of 3 h P

(PF3h) (Fig. 6)
Seasons have similar excess as
annual except JJA has reduced
excess over most of SW and
NW. Better at coast and western
slopes in DJF, MAM, and SON.

Patterns differ from annual:
western SW better during JJA.
SGP worse during MAM. SE
better in MAM and SON, and
too frequent during JJA.

ERA5 has frequent P through-
out the year, WRF displays sea-
sonal variation.

Annual 3 h precipitation mean
(Pmean3h) (Fig. 7)

Generally too wet, except good
in SE and southwestern SW.

Best over SGP. Worse over
most of SE and NE. Too dry
at NW coast. Generally, slightly
smaller bias elsewhere.

Seasonal biases in WRF over
SGP are better except in JJA.

Seasonal 3 h precipitation mean
(Pmean3h) (Fig. 7)

MAM: slightly better in NE,
SE, SW, and NW coast. JJA,
better over SE, SGP, and NE.
SON: better in SE, and better
along NW coast.

MAM: SGP better. During JJA:
SGP and western SE too dry,
while eastern SE and all of NE
are too wet. SON: better over
NGP, MW, and interior SW

DJF similar in both, except NW
coast better in ERA5. MAM
similar over NGP and MW for
both. Though opposite, SON
good in both over SGP.

Annual wet-3 h precipitation
mean (S3hII) (Fig. 8)

Dry bias, most prominent over
SGP and SE

Wet bias over NW, NE, and N
California. Dry bias over SGP.

Overall smaller biases over
NGP, MW, and SE. ERA5
shows drizzling bias.

Seasonal wet-3 h precipitation
mean (S3hII) (Fig. 8)

DJF: small wet biases over NW,
NGP, MW, and SW. Mar–Nov:
strong dry biases over SGP
and SE. The dry bias is more
widespread and stronger in JJA.

DJF: generally, wet biases ev-
erywhere. MAM: wet biases
over the northern half of the
CONUS. Dry over SGP. JJA:
stronger dry bias over SW, SGP,
MW, and SE.

ERA5 shows drizzling bias.

Annual maximum of 3 h precip-
itation (Rx3h) (Fig. 9)

Generally too small over whole
CONUS, especially eastern SE.

Better over most of NW, NGP,
and SW. Much too wet over
SGP, MW, SE, and NE.

Most larger values cover SE
and eastern SGP.

Seasonal maximum of 3 h pre-
cipitation (Rx3h) (Fig. 9)

Generally too small over
CONUS, though bias is least
during SON. Only notable area
too wet is NGP during DJF.
Worst bias during JJA over
most of SE and border between
SGP and SW.

Generally too wet over MW,
NE, and SE, though bias is least
during DJF. Worst biases during
JJA, too wet over most of MW,
NE, and SE, while too dry over
interior SW. MAM and SON
too wet over SE and southern
SGP.

WRF shows wet bias in the
eastern CONUS, ERA shows
dry bias roughly everywhere.

Probability density function
(PDF) of 3 h max P (PDF3h)
(Fig. 10)

3 h max P values are severely
underrepresented.

Much better representation.
Large underestimation in NGP
and overestimation in SGP

NGP and SGP are problematic
regions for WRF
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Table 3. Regions where ERA5 or WRF precipitation (P ) fidelity is subjectively better for 24 h precipitation. Reference data: PRISM.

Precipitation parameter
(relevant figure)

ERA5 WRF Comments

Peak time of the annual cycle
(TMPP) (Fig. 4)

Simulates the spatial pattern ex-
cept over NE and Gulf regions.

Slightly better over SGP, NE,
northern SE, and Great Basin.

NW, SW, NGP, MW, and
southeastern SE good in both
datasets.

Magnitude of the peak of the
annual cycle (MMPP) (Fig. 5)

Too dry over most of SE and
NE, and eastern NW. Too wet
over SGP, much of NGP, and
coastal NW.

Generally better over whole
CONUS.

Both the magnitude and tim-
ing of the annual cycle are im-
proved in WRF.

Annual 24 h P frequency
(PF24h) (Fig. 11)

Generally better over SW and
coastal NW. Generally too fre-
quent over NGP, SGP, MW, NE,
and SE.

Generally better over NGP,
MW, and NE. Too frequent over
eastern SE. Much too infre-
quent over most of NW, SW,
SGP.

Highest observed over NE,
south FL, coast, and mountains
of NW and NGP.

Seasonal 24 h P frequency
(PF24h) (Fig. 11)

DJF better along coastal NW
and most of SW. DJF, MAM,
and SON: too frequent over
NGP, MW, NE, SE, SGP, and
most of SW and NW.

DJF is better over most of
MW, NE, and SGP. Coastal and
mountainous: NW and SW are
generally too infrequent during
DJF, MAM, and SON. SE too
infrequent during DJF but other
seasons too frequent. JJA: much
too infrequent over all but op-
posite bias over parts of SE and
NE. SON: too infrequent over
most of CONUS

Both datasets too infrequent
along NW coast during DJF
and SON, though ERA5 better
there. Both too infrequent dur-
ing JJA over most of SW.

Annual 24 h precipitation mean
(Pmean24h) (Fig. 12)

Worse biases (dry) over south-
ern SE.

Worse biases (dry) over western
SE and most of SGP.

Observed peak values over
western SE and coastal NW.
Datasets generally similar ex-
cept SE, SGP, and coastal NW
where WRF has greater dry
bias.

Seasonal 24 h precipitation
mean (Pmean24h) (Fig. 12)

MAM and SON biases gener-
ally similar to DJF. JJA has
largest biases (dry) covering all
of SGP and SE and much of
MW and NE. JJA and SON bet-
ter over NGP, MW, SGP, and
western SE.

MAM bias similar to DJF.
Largest bias (dry) is during
JJA and covers SGP, most of
MW and NGP, and western SE.
SON: coastal SE is better.

DJF: similar in both datasets
with greater bias along coast of
NW and Gulf of Mexico coast
of SE. Largest seasonal values
are at coastal NW during DJF;
ERA5 captures this better. Sec-
ondary maximum during JJA
covers FL and SE Gulf of Mex-
ico coast; both datasets under-
estimate these larger values.

Annual wet 24 h precipitation
mean (SDII) (Fig. 13)

Strong dry biases over eastern
CONUS.

Worse biases (dry) over western
SE, SGP, and southern MW and
NGP regions; wet biases over
NW and SW.

Smaller biases over NGP, MW,
NE, and SE.

Seasonal wet 24 h precipitation
mean (SDII) (Fig. 13)

DJF and MAM: strong dry bi-
ases over SE and eastern SGP.
Small wet bias over NW. JJA
and SON: strong dry bias over
eastern half of the CONUS

DJF: generally, small wet bi-
ases except over SGP and SE.
JJA: strong dry bias over the
Great Plains and SE. SON: dry
bias over the SGP, small wet
bias over NW.

Biases are typically smaller in
magnitude in WRF in DJF and
SON.
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Table 3. Continued.

Precipitation parameter
(relevant figure)

ERA5 WRF Comments

Annual 24 h max P (Rx1day)
(Fig. 14)

General dry bias over SGP,
MW, SE, and NE. Slightly bet-
ter over NW and SW.

Wet bias over most of SE, NE,
eastern MW, and parts of SW,
NGP, and NW.

Datasets do well over NW,
NGP, and SW. They have oppo-
site biases over most of SE, NE,
MW, and southern SGP.

Seasonal 24 h max P (Rx1day)
(Fig. 14)

DJF: dry bias mainly in SE.
MAM, JJA, and SON: dry bias
across SGP, SE, MW, and NE.

DJF: better over SE. MAM and
SON: better over most of SGP,
SE, MW, and NE. JJA: wet bias
over NE and eastern and south-
ern SE.

Performance similar over SW,
NW, and NGP. Both have large
dry bias over SGP during JJA.
Bias generally smaller over SW,
NW, and NGP but so are the ob-
served means.

Probability density function
(PDF) of 24 h max P (PDF24h)
(Fig. 15)

24 h max P values are severely
underrepresented.

Much better representation. 24 h PDF representation is bet-
ter than the 3 h PDF in WRF.

bution of the 24 h annual maximum precipitation; throughout
the CONUS, ERA5 does have problems in capturing the ex-
treme precipitation magnitudes, suggesting that its represen-
tation of the strongest precipitation extremes is overly con-
servative. These results are also summarized in Tables 2 and
3.

This work adds to the literature addressing the value of dy-
namical downscaling to higher resolution. Our results echo
similar past studies, which generally show a mixture of
improvement and deterioration in the quality of simulated
fields. Although we find that dynamical downscaling with
WRF simulates observed precipitation characteristics rea-
sonably well on both the daily and subdaily timescales, im-
provements do not emerge everywhere. Particularly, WRF
exhibits several common biases found in many other models,
which are likely suppressed in ERA5 through data assimila-
tion. As hypothesized in this study, WRF does show season-
ally and regionally dependent biases in precipitation, while
ERA5’s biases are less seasonal. Nonetheless, WRF greatly
improves upon the PDFs of annual maximum precipitation
at both 3 and 24 h timescales and improves on the month and
magnitude of the seasonal precipitation cycle. This suggests
the WRF product is generally more useful when it comes to
its representation of precipitation extremes – which seems to
be a consequence of the fact WRF tends to produce gener-
ally flashier precipitation. These results suggest care should
be taken in using the WRF simulations for further applica-
tions such as future regional climate projections or regional
hydrologic modeling.

A related question is how much bias is acceptable in a cli-
mate model. The acceptable level of biases really depends on
the application of the climate data. Although the data could
be used directly in analysis, we expect a large portion of users
will use the data to force other models. In that case, toler-
ance for biases depends on the type, scope, and scale of the

downstream modeling frameworks. Nonetheless, the ques-
tion is hard to answer quantitatively given that a large un-
certainty exists even among observational datasets (e.g., Sri-
vastava et al., 2020, 2022). Still, one can qualitatively assess
the model’s performance by comparing it with other mod-
els or observational datasets. We assessed the observational
uncertainty in 24 h precipitation representation by compar-
ing precipitation characteristics between PRISM and Stage
IV in 24 h precipitation analysis. We found that biases in
WRF are generally smaller in magnitude than in Stage IV.
For example, annual 24 h precipitation frequency (PF24h) is
better simulated in WRF than in Stage IV, and biases in the
magnitude of monthly average precipitation peak (MMPP)
are much smaller in WRF than in Stage IV. Similarly, WRF
shows comparable (e.g., DJF PDF24h in NW and SW) or
even better (e.g., NGP in all seasons) simulation of Rx1day
PDF (PDF24h) than Stage IV. These analyses suggest that
WRF reasonably simulates the observed precipitation char-
acteristics across the CONUS.

While the 12 km grid spacing of these simulations is a
clear refinement on the native resolution of ERA5, ulti-
mately, it would be far more desirable to run the down-
scaled simulation in the convection-resolving regime (i.e.,
3 km or finer). We expect the match between the precipita-
tion frequency distribution in the tail will improve monoton-
ically with resolution. Until convection-resolving scales are
reached, important processes such as horizontal propagation
of mesoscale convective systems will not be properly rep-
resented. Consequently, when it becomes possible to reach
these spatial scales at climatological timescales with avail-
able computing power, we would advocate for the metrics
explored in this study to be revisited.

Geosci. Model Dev., 16, 3699–3722, 2023 https://doi.org/10.5194/gmd-16-3699-2023
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Code and data availability. The WRF source code is available on
https://www2.mmm.ucar.edu/wrf/users/download/get_source.html
(last access: 5 July 2023) and https://doi.org/10.5065/D68S4MVH
(Skamarock et al., 2008). ERA5 is publicly accessible from
https://doi.org/10.5065/BH6N-5N20 (European Centre for
Medium-Range Weather Forecasts, 2019). PRISM precipitation
data can be downloaded from https://prism.oregonstate.edu/
(Daly et al., 2008), and Stage IV data are available on
https://doi.org/10.5065/D6PG1QDD (Du, 2011). The 40-
year historical WRF dataset can be downloaded from
https://doi.org/10.57931/1885756 (Jones et al., 2022).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-3699-2023-supplement.
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