Articles | Volume 15, issue 22
https://doi.org/10.5194/gmd-15-8613-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-8613-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Baltic Sea Model Intercomparison Project (BMIP) – a platform for model development, evaluation, and uncertainty assessment
Matthias Gröger
CORRESPONDING AUTHOR
Department of Physical Oceanography and Instrumentation, Leibniz
Institute for Baltic Sea Research Warnemünde, Rostock 18119, Germany
Manja Placke
IT Department, Leibniz Institute for Baltic Sea Research
Warnemünde, Rostock 18119, Germany
H. E. Markus Meier
Department of Physical Oceanography and Instrumentation, Leibniz
Institute for Baltic Sea Research Warnemünde, Rostock 18119, Germany
Research and Development Department, Swedish Meteorological and
Hydrological Institute, Norrköping 60176, Sweden
Florian Börgel
Department of Physical Oceanography and Instrumentation, Leibniz
Institute for Baltic Sea Research Warnemünde, Rostock 18119, Germany
Sandra-Esther Brunnabend
Research and Development Department, Swedish Meteorological and
Hydrological Institute, Norrköping 60176, Sweden
Cyril Dutheil
Department of Physical Oceanography and Instrumentation, Leibniz
Institute for Baltic Sea Research Warnemünde, Rostock 18119, Germany
Ulf Gräwe
Department of Physical Oceanography and Instrumentation, Leibniz
Institute for Baltic Sea Research Warnemünde, Rostock 18119, Germany
Magnus Hieronymus
Research and Development Department, Swedish Meteorological and
Hydrological Institute, Norrköping 60176, Sweden
Thomas Neumann
Department of Physical Oceanography and Instrumentation, Leibniz
Institute for Baltic Sea Research Warnemünde, Rostock 18119, Germany
Hagen Radtke
Department of Physical Oceanography and Instrumentation, Leibniz
Institute for Baltic Sea Research Warnemünde, Rostock 18119, Germany
Semjon Schimanke
Research and Development Department, Swedish Meteorological and
Hydrological Institute, Norrköping 60176, Sweden
Danish Meteorological Institute, Lyngbyvej 100, 2100 Copenhagen,
Denmark
Germo Väli
Department of Marine Systems, Tallinn University of Technology,
Tallinn, Estonia
Related authors
Jenny Hieronymus, Magnus Hieronymus, Matthias Gröger, Jörg Schwinger, Raffaele Bernadello, Etienne Tourigny, Valentina Sicardi, Itzel Ruvalcaba Baroni, and Klaus Wyser
Biogeosciences, 21, 2189–2206, https://doi.org/10.5194/bg-21-2189-2024, https://doi.org/10.5194/bg-21-2189-2024, 2024
Short summary
Short summary
The timing of the net primary production annual maxima in the North Atlantic in the period 1750–2100 is investigated using two Earth system models and the high-emissions scenario SSP5-8.5. It is found that, for most of the region, the annual maxima occur progressively earlier, with the most change occurring after the year 2000. Shifts in the seasonality of the primary production may impact the entire ecosystem, which highlights the need for long-term monitoring campaigns in this area.
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024, https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
Short summary
The health of the Baltic and North seas is threatened due to high anthropogenic pressure; thus, different methods to assess the status of these regions are urgently needed. Here, we validated a novel model simulating the ocean dynamics and biogeochemistry of the Baltic and North seas that can be used to create future climate and nutrient scenarios, contribute to European initiatives on de-eutrophication, and provide water quality advice and support on nutrient load reductions for both seas.
Sven Karsten, Hagen Radtke, Matthias Gröger, Ha T. M. Ho-Hagemann, Hossein Mashayekh, Thomas Neumann, and H. E. Markus Meier
Geosci. Model Dev., 17, 1689–1708, https://doi.org/10.5194/gmd-17-1689-2024, https://doi.org/10.5194/gmd-17-1689-2024, 2024
Short summary
Short summary
This paper describes the development of a regional Earth System Model for the Baltic Sea region. In contrast to conventional coupling approaches, the presented model includes a flux calculator operating on a common exchange grid. This approach automatically ensures a locally consistent treatment of fluxes and simplifies the exchange of model components. The presented model can be used for various scientific questions, such as studies of natural variability and ocean–atmosphere interactions.
Dmitry V. Sein, Anton Y. Dvornikov, Stanislav D. Martyanov, William Cabos, Vladimir A. Ryabchenko, Matthias Gröger, Daniela Jacob, Alok Kumar Mishra, and Pankaj Kumar
Earth Syst. Dynam., 13, 809–831, https://doi.org/10.5194/esd-13-809-2022, https://doi.org/10.5194/esd-13-809-2022, 2022
Short summary
Short summary
The effect of the marine biogeochemical variability upon the South Asian regional climate has been investigated. In the experiment where its full impact is activated, the average sea surface temperature is lower over most of the ocean. When the biogeochemical coupling is included, the main impacts include the enhanced phytoplankton primary production, a shallower thermocline, decreased SST and water temperature in subsurface layers.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Matthias Gröger, Christian Dieterich, Cyril Dutheil, H. E. Markus Meier, and Dmitry V. Sein
Earth Syst. Dynam., 13, 613–631, https://doi.org/10.5194/esd-13-613-2022, https://doi.org/10.5194/esd-13-613-2022, 2022
Short summary
Short summary
Atmospheric rivers transport high amounts of water from subtropical regions to Europe. They are an important driver of heavy precipitation and flooding. Their response to a warmer future climate in Europe has so far been assessed only by global climate models. In this study, we apply for the first time a high-resolution regional climate model that allow to better resolve and understand the fate of atmospheric rivers over Europe.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
H. E. Markus Meier, Christian Dieterich, Matthias Gröger, Cyril Dutheil, Florian Börgel, Kseniia Safonova, Ole B. Christensen, and Erik Kjellström
Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, https://doi.org/10.5194/esd-13-159-2022, 2022
Short summary
Short summary
In addition to environmental pressures such as eutrophication, overfishing and contaminants, climate change is believed to have an important impact on the marine environment in the future, and marine management should consider the related risks. Hence, we have compared and assessed available scenario simulations for the Baltic Sea and found considerable uncertainties of the projections caused by the underlying assumptions and model biases, in particular for the water and biogeochemical cycles.
Ole Bøssing Christensen, Erik Kjellström, Christian Dieterich, Matthias Gröger, and Hans Eberhard Markus Meier
Earth Syst. Dynam., 13, 133–157, https://doi.org/10.5194/esd-13-133-2022, https://doi.org/10.5194/esd-13-133-2022, 2022
Short summary
Short summary
The Baltic Sea Region is very sensitive to climate change, whose impacts could easily exacerbate biodiversity stress from society and eutrophication of the Baltic Sea. Therefore, there has been a focus on estimations of future climate change and its impacts in recent research. Models show a strong warming, in particular in the north in winter. Precipitation is projected to increase in the whole region apart from the south during summer. New results improve estimates of future climate change.
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Short summary
Regional climate studies are typically pursued by single Earth system component models (e.g., ocean models and atmosphere models). These models are driven by prescribed data which hamper the simulation of feedbacks between Earth system components. To overcome this, models were developed that interactively couple model components and allow an adequate simulation of Earth system interactions important for climate. This article reviews recent developments of such models for the Baltic Sea region.
Stelios Myriokefalitakis, Matthias Gröger, Jenny Hieronymus, and Ralf Döscher
Ocean Sci., 16, 1183–1205, https://doi.org/10.5194/os-16-1183-2020, https://doi.org/10.5194/os-16-1183-2020, 2020
Short summary
Short summary
Global inorganic and organic nutrient deposition fields are coupled to PISCES to investigate their effect on ocean biogeochemistry. Pre-industrial deposition fluxes are lower compared to the present day, resulting in lower oceanic productivity. Future changes result in a modest decrease in the nutrients put into the global ocean. This work provides a first assessment of the atmospheric organic nutrients' contribution, highlighting the importance of their representation in biogeochemistry models.
Christian Dieterich, Matthias Gröger, Lars Arneborg, and Helén C. Andersson
Ocean Sci., 15, 1399–1418, https://doi.org/10.5194/os-15-1399-2019, https://doi.org/10.5194/os-15-1399-2019, 2019
Short summary
Short summary
We assess storm surges in the Baltic Sea and how they are represented in a regional climate model. We show how well different model formulations agree with each other and how this model uncertainty relates to observational uncertainty. With an ensemble of model solutions that represent today's climate, we show that this uncertainty is of the same size as the observational uncertainty. The second part of this study compares climate uncertainty with scenario uncertainty and natural variability.
Robinson Hordoir, Lars Axell, Anders Höglund, Christian Dieterich, Filippa Fransner, Matthias Gröger, Ye Liu, Per Pemberton, Semjon Schimanke, Helen Andersson, Patrik Ljungemyr, Petter Nygren, Saeed Falahat, Adam Nord, Anette Jönsson, Iréne Lake, Kristofer Döös, Magnus Hieronymus, Heiner Dietze, Ulrike Löptien, Ivan Kuznetsov, Antti Westerlund, Laura Tuomi, and Jari Haapala
Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019, https://doi.org/10.5194/gmd-12-363-2019, 2019
Short summary
Short summary
Nemo-Nordic is a regional ocean model based on a community code (NEMO). It covers the Baltic and the North Sea area and is used as a forecast model by the Swedish Meteorological and Hydrological Institute. It is also used as a research tool by scientists of several countries to study, for example, the effects of climate change on the Baltic and North seas. Using such a model permits us to understand key processes in this coastal ecosystem and how such processes will change in a future climate.
M. Gröger, E. Maier-Reimer, U. Mikolajewicz, A. Moll, and D. Sein
Biogeosciences, 10, 3767–3792, https://doi.org/10.5194/bg-10-3767-2013, https://doi.org/10.5194/bg-10-3767-2013, 2013
P. Bakker, E. J. Stone, S. Charbit, M. Gröger, U. Krebs-Kanzow, S. P. Ritz, V. Varma, V. Khon, D. J. Lunt, U. Mikolajewicz, M. Prange, H. Renssen, B. Schneider, and M. Schulz
Clim. Past, 9, 605–619, https://doi.org/10.5194/cp-9-605-2013, https://doi.org/10.5194/cp-9-605-2013, 2013
José A. Jiménez, Gundula Winter, Antonio Bonaduce, Michael Depuydt, Giulia Galluccio, Bart van den Hurk, H. E. Markus Meier, Nadia Pinardi, Lavinia G. Pomarico, and Natalia Vazquez Riveiros
State Planet, 3-slre1, 3, https://doi.org/10.5194/sp-3-slre1-3-2024, https://doi.org/10.5194/sp-3-slre1-3-2024, 2024
Short summary
Short summary
The Knowledge Hub on Sea Level Rise (SLR) has done a scoping study involving stakeholders from government and academia to identify gaps and needs in SLR information, impacts, and policies across Europe. Gaps in regional SLR projections and uncertainties were found, while concerns were raised about shoreline erosion and emerging problems like saltwater intrusion and ineffective adaptation plans. The need for improved communication to make better decisions on SLR adaptation was highlighted.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Marvin Lorenz, Katri Viigand, and Ulf Gräwe
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-198, https://doi.org/10.5194/nhess-2024-198, 2024
Preprint under review for NHESS
Short summary
Short summary
This study divides the sea level components that contribute to extreme sea levels in the Baltic Sea into three parts: the filling state of the Baltic Sea, seiches and storm surges. In the western part of the Baltic Sea, storm surges are the main factor, while in the central and northern parts, the filling state plays a larger role. Using a numerical model, we show that wind and air pressure are the main drivers of these events, with Atlantic sea level also playing a small role.
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2685, https://doi.org/10.5194/egusphere-2024-2685, 2024
Short summary
Short summary
Forecasting river runoff, crucial for managing water resources and understanding climate impacts, can be challenging. This study introduces a new method using Convolutional Long Short-Term Memory (ConvLSTM) networks, a machine learning model that processes spatial and temporal data. Focusing on the Baltic Sea region, our model uses weather data as input to predict daily river runoff for 97 rivers.
Taavi Liblik, Daniel Rak, Enriko Siht, Germo Väli, Johannes Karstensen, Laura Tuomi, Louise C. Biddle, Madis-Jaak Lilover, Māris Skudra, Michael Naumann, Urmas Lips, and Volker Mohrholz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2272, https://doi.org/10.5194/egusphere-2024-2272, 2024
Short summary
Short summary
Eight current meters were deployed to the seafloor across the Baltic to enhance knowledge about circulation and currents. The experiment was complemented by autonomous vehicles. Stable circulation patterns were observed at the sea when weather was steady. Strong and quite persistent currents were observed at the key passage for the deep-water renewal of the Northern Baltic Sea. Deep water renewal mostly occurs during spring and summer periods in the northern Baltic Sea.
Jenny Hieronymus, Magnus Hieronymus, Matthias Gröger, Jörg Schwinger, Raffaele Bernadello, Etienne Tourigny, Valentina Sicardi, Itzel Ruvalcaba Baroni, and Klaus Wyser
Biogeosciences, 21, 2189–2206, https://doi.org/10.5194/bg-21-2189-2024, https://doi.org/10.5194/bg-21-2189-2024, 2024
Short summary
Short summary
The timing of the net primary production annual maxima in the North Atlantic in the period 1750–2100 is investigated using two Earth system models and the high-emissions scenario SSP5-8.5. It is found that, for most of the region, the annual maxima occur progressively earlier, with the most change occurring after the year 2000. Shifts in the seasonality of the primary production may impact the entire ecosystem, which highlights the need for long-term monitoring campaigns in this area.
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024, https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
Short summary
The health of the Baltic and North seas is threatened due to high anthropogenic pressure; thus, different methods to assess the status of these regions are urgently needed. Here, we validated a novel model simulating the ocean dynamics and biogeochemistry of the Baltic and North seas that can be used to create future climate and nutrient scenarios, contribute to European initiatives on de-eutrophication, and provide water quality advice and support on nutrient load reductions for both seas.
Sven Karsten, Hagen Radtke, Matthias Gröger, Ha T. M. Ho-Hagemann, Hossein Mashayekh, Thomas Neumann, and H. E. Markus Meier
Geosci. Model Dev., 17, 1689–1708, https://doi.org/10.5194/gmd-17-1689-2024, https://doi.org/10.5194/gmd-17-1689-2024, 2024
Short summary
Short summary
This paper describes the development of a regional Earth System Model for the Baltic Sea region. In contrast to conventional coupling approaches, the presented model includes a flux calculator operating on a common exchange grid. This approach automatically ensures a locally consistent treatment of fluxes and simplifies the exchange of model components. The presented model can be used for various scientific questions, such as studies of natural variability and ocean–atmosphere interactions.
Henry C. Bittig, Erik Jacobs, Thomas Neumann, and Gregor Rehder
Earth Syst. Sci. Data, 16, 753–773, https://doi.org/10.5194/essd-16-753-2024, https://doi.org/10.5194/essd-16-753-2024, 2024
Short summary
Short summary
We present a pCO2 climatology of the Baltic Sea using a new approach to extrapolate from individual observations to the entire Baltic Sea. The extrapolation approach uses (a) a model to inform on how data at one location are connected to data at other locations, together with (b) very accurate pCO2 observations from 2003 to 2021 as the base data. The climatology can be used e.g. to assess uptake and release of CO2 or to identify extreme events.
Marvin Lorenz and Ulf Gräwe
Ocean Sci., 19, 1753–1771, https://doi.org/10.5194/os-19-1753-2023, https://doi.org/10.5194/os-19-1753-2023, 2023
Short summary
Short summary
We study the variability of extreme sea levels in a 13 member hindcast ensemble for the Baltic Sea. The ensemble mean shows good agreement with observations regarding return levels and trends. However, we find great variability and uncertainty within the ensemble. We argue that the variability of storms in the atmospheric data directly translates into the variability of the return levels. These results highlight the need for large regional ensembles to minimise uncertainties.
Jurjen Rooze, Heewon Jung, and Hagen Radtke
Geosci. Model Dev., 16, 7107–7121, https://doi.org/10.5194/gmd-16-7107-2023, https://doi.org/10.5194/gmd-16-7107-2023, 2023
Short summary
Short summary
Chemical particles in nature have properties such as age or reactivity. Distributions can describe the properties of chemical concentrations. In nature, they are affected by mixing processes, such as chemical diffusion, burrowing animals, and bottom trawling. We derive equations for simulating the effect of mixing on central moments that describe the distributions. We then demonstrate applications in which these equations are used to model continua in disturbed natural environments.
Thomas Spangehl, Michael Borsche, Deborah Niermann, Frank Kaspar, Semjon Schimanke, Susanne Brienen, Thomas Möller, and Maren Brast
Adv. Sci. Res., 20, 109–128, https://doi.org/10.5194/asr-20-109-2023, https://doi.org/10.5194/asr-20-109-2023, 2023
Short summary
Short summary
The quality of the global reanalysis ERA5, the regional reanalysis COSMO-REA6 and a successor version (R6G2), the new Copernicus European Regional Re-Analysis (CERRA) and a regional downscaling simulation with COSMO-CLM (HoKliSim-De) is assessed for offshore wind farm planning in the German Exclusive Economic Zone (EEZ) of the North Sea. The quality is assessed using in-situ wind measurements at the research platform FINO1 and satellite-based data of the near-surface wind speed as reference.
Sarah Piehl, René Friedland, Thomas Neumann, and Gerald Schernewski
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-152, https://doi.org/10.5194/bg-2023-152, 2023
Revised manuscript not accepted
Short summary
Short summary
We integrated observations essential for policy decisions with high-resolution 3D model results to improve the reliability of oxygen assessments. Based on our findings, we suggest merging only high temporal and/or vertical resolution station data with model data to increase confidence in oxygen assessments. While showing the strengths and limitations of our approach we show that model simulations are an useful tool for policy-relevant oxygen assessments.
Joshua Kiesel, Marvin Lorenz, Marcel König, Ulf Gräwe, and Athanasios T. Vafeidis
Nat. Hazards Earth Syst. Sci., 23, 2961–2985, https://doi.org/10.5194/nhess-23-2961-2023, https://doi.org/10.5194/nhess-23-2961-2023, 2023
Short summary
Short summary
Among the Baltic Sea littoral states, Germany is anticipated to experience considerable damage as a result of increased coastal flooding due to sea-level rise (SLR). Here we apply a new modelling framework to simulate how flooding along the German Baltic Sea coast may change until 2100 if dikes are not upgraded. We find that the study region is highly exposed to flooding, and we emphasise the importance of current plans to update coastal protection in the future.
Bronwyn E. Cahill, Piotr Kowalczuk, Lena Kritten, Ulf Gräwe, John Wilkin, and Jürgen Fischer
Biogeosciences, 20, 2743–2768, https://doi.org/10.5194/bg-20-2743-2023, https://doi.org/10.5194/bg-20-2743-2023, 2023
Short summary
Short summary
We quantify the impact of optically significant water constituents on surface heating rates and thermal energy fluxes in the western Baltic Sea. During productive months in 2018 (April to September) we found that the combined effect of coloured
dissolved organic matter and particulate absorption contributes to sea surface heating of between 0.4 and 0.9 K m−1 d−1 and a mean loss of heat (ca. 5 W m−2) from the sea to the atmosphere. This may be important for regional heat balance budgets.
Elin Andrée, Jian Su, Morten Andreas Dahl Larsen, Martin Drews, Martin Stendel, and Kristine Skovgaard Madsen
Nat. Hazards Earth Syst. Sci., 23, 1817–1834, https://doi.org/10.5194/nhess-23-1817-2023, https://doi.org/10.5194/nhess-23-1817-2023, 2023
Short summary
Short summary
When natural processes interact, they may compound each other. The combined effect can amplify extreme sea levels, such as when a storm occurs at a time when the water level is already higher than usual. We used numerical modelling of a record-breaking storm surge in 1872 to show that other prior sea-level conditions could have further worsened the outcome. Our research highlights the need to consider the physical context of extreme sea levels in measures to reduce coastal flood risk.
Magnus Hieronymus
Geosci. Model Dev., 16, 2343–2354, https://doi.org/10.5194/gmd-16-2343-2023, https://doi.org/10.5194/gmd-16-2343-2023, 2023
Short summary
Short summary
A statistical model called the sea level simulator is presented and made freely available. The sea level simulator integrates mean sea level rise and sea level extremes into a joint probabilistic framework that is useful for flood risk estimation. These flood risk estimates are contingent on probabilities given to different emission scenarios and the length of the planning period. The model is also useful for uncertainty quantification and in decision and adaptation problems.
H. E. Markus Meier, Marcus Reckermann, Joakim Langner, Ben Smith, and Ira Didenkulova
Earth Syst. Dynam., 14, 519–531, https://doi.org/10.5194/esd-14-519-2023, https://doi.org/10.5194/esd-14-519-2023, 2023
Short summary
Short summary
The Baltic Earth Assessment Reports summarise the current state of knowledge on Earth system science in the Baltic Sea region. The 10 review articles focus on the regional water, biogeochemical and carbon cycles; extremes and natural hazards; sea-level dynamics and coastal erosion; marine ecosystems; coupled Earth system models; scenario simulations for the regional atmosphere and the Baltic Sea; and climate change and impacts of human use. Some highlights of the results are presented here.
Pia Kolb, Anna Zorndt, Hans Burchard, Ulf Gräwe, and Frank Kösters
Ocean Sci., 18, 1725–1739, https://doi.org/10.5194/os-18-1725-2022, https://doi.org/10.5194/os-18-1725-2022, 2022
Short summary
Short summary
River engineering measures greatly changed tidal dynamics in the Weser estuary. We studied the effect on saltwater intrusion with numerical models. Our analysis shows that a deepening of the navigation channel causes saltwater to intrude further into the Weser estuary. This effect is mostly masked by the natural variability of river discharge. In our study, it proved essential to recalibrate individual hindcast models due to differences in sediments, bed forms, and underlying bathymetric data.
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022, https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary
Short summary
Marine ecosystem models are usually constrained by the elements nitrogen and phosphorus and consider carbon in organic matter in a fixed ratio. Recent observations show a substantial deviation from the simulated carbon cycle variables. In this study, we present a marine ecosystem model for the Baltic Sea which allows for a flexible uptake ratio for carbon, nitrogen, and phosphorus. With this extension, the model reflects much more reasonable variables of the marine carbon cycle.
Taavi Liblik, Germo Väli, Kai Salm, Jaan Laanemets, Madis-Jaak Lilover, and Urmas Lips
Ocean Sci., 18, 857–879, https://doi.org/10.5194/os-18-857-2022, https://doi.org/10.5194/os-18-857-2022, 2022
Short summary
Short summary
An extensive measurement campaign and numerical simulations were conducted in the central Baltic Sea. The persistent circulation patterns were detected in steady weather conditions. The patterns included various circulation features. A coastal boundary current was observed along the eastern coast. The deep layer current towards the north was detected as well. This current is an important deeper limb of the overturning circulation of the Baltic Sea. The circulation regime has an annual cycle.
Dmitry V. Sein, Anton Y. Dvornikov, Stanislav D. Martyanov, William Cabos, Vladimir A. Ryabchenko, Matthias Gröger, Daniela Jacob, Alok Kumar Mishra, and Pankaj Kumar
Earth Syst. Dynam., 13, 809–831, https://doi.org/10.5194/esd-13-809-2022, https://doi.org/10.5194/esd-13-809-2022, 2022
Short summary
Short summary
The effect of the marine biogeochemical variability upon the South Asian regional climate has been investigated. In the experiment where its full impact is activated, the average sea surface temperature is lower over most of the ocean. When the biogeochemical coupling is included, the main impacts include the enhanced phytoplankton primary production, a shallower thermocline, decreased SST and water temperature in subsurface layers.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Matthias Gröger, Christian Dieterich, Cyril Dutheil, H. E. Markus Meier, and Dmitry V. Sein
Earth Syst. Dynam., 13, 613–631, https://doi.org/10.5194/esd-13-613-2022, https://doi.org/10.5194/esd-13-613-2022, 2022
Short summary
Short summary
Atmospheric rivers transport high amounts of water from subtropical regions to Europe. They are an important driver of heavy precipitation and flooding. Their response to a warmer future climate in Europe has so far been assessed only by global climate models. In this study, we apply for the first time a high-resolution regional climate model that allow to better resolve and understand the fate of atmospheric rivers over Europe.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Andreas Lehmann, Kai Myrberg, Piia Post, Irina Chubarenko, Inga Dailidiene, Hans-Harald Hinrichsen, Karin Hüssy, Taavi Liblik, H. E. Markus Meier, Urmas Lips, and Tatiana Bukanova
Earth Syst. Dynam., 13, 373–392, https://doi.org/10.5194/esd-13-373-2022, https://doi.org/10.5194/esd-13-373-2022, 2022
Short summary
Short summary
The salinity in the Baltic Sea is not only an important topic for physical oceanography as such, but it also integrates the complete water and energy cycle. It is a primary external driver controlling ecosystem dynamics of the Baltic Sea. The long-term dynamics are controlled by river runoff, net precipitation, and the water mass exchange between the North Sea and Baltic Sea. On shorter timescales, the ephemeral atmospheric conditions drive a very complex and highly variable salinity regime.
H. E. Markus Meier, Christian Dieterich, Matthias Gröger, Cyril Dutheil, Florian Börgel, Kseniia Safonova, Ole B. Christensen, and Erik Kjellström
Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, https://doi.org/10.5194/esd-13-159-2022, 2022
Short summary
Short summary
In addition to environmental pressures such as eutrophication, overfishing and contaminants, climate change is believed to have an important impact on the marine environment in the future, and marine management should consider the related risks. Hence, we have compared and assessed available scenario simulations for the Baltic Sea and found considerable uncertainties of the projections caused by the underlying assumptions and model biases, in particular for the water and biogeochemical cycles.
Ole Bøssing Christensen, Erik Kjellström, Christian Dieterich, Matthias Gröger, and Hans Eberhard Markus Meier
Earth Syst. Dynam., 13, 133–157, https://doi.org/10.5194/esd-13-133-2022, https://doi.org/10.5194/esd-13-133-2022, 2022
Short summary
Short summary
The Baltic Sea Region is very sensitive to climate change, whose impacts could easily exacerbate biodiversity stress from society and eutrophication of the Baltic Sea. Therefore, there has been a focus on estimations of future climate change and its impacts in recent research. Models show a strong warming, in particular in the north in winter. Precipitation is projected to increase in the whole region apart from the south during summer. New results improve estimates of future climate change.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Jenny Hieronymus, Kari Eilola, Malin Olofsson, Inga Hense, H. E. Markus Meier, and Elin Almroth-Rosell
Biogeosciences, 18, 6213–6227, https://doi.org/10.5194/bg-18-6213-2021, https://doi.org/10.5194/bg-18-6213-2021, 2021
Short summary
Short summary
Dense blooms of cyanobacteria occur every summer in the Baltic Proper and can add to eutrophication by their ability to turn nitrogen gas into dissolved inorganic nitrogen. Being able to correctly estimate the size of this nitrogen fixation is important for management purposes. In this work, we find that the life cycle of cyanobacteria plays an important role in capturing the seasonality of the blooms as well as the size of nitrogen fixation in our ocean model.
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Short summary
Regional climate studies are typically pursued by single Earth system component models (e.g., ocean models and atmosphere models). These models are driven by prescribed data which hamper the simulation of feedbacks between Earth system components. To overcome this, models were developed that interactively couple model components and allow an adequate simulation of Earth system interactions important for climate. This article reviews recent developments of such models for the Baltic Sea region.
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
Thomas Neumann, Sampsa Koponen, Jenni Attila, Carsten Brockmann, Kari Kallio, Mikko Kervinen, Constant Mazeran, Dagmar Müller, Petra Philipson, Susanne Thulin, Sakari Väkevä, and Pasi Ylöstalo
Geosci. Model Dev., 14, 5049–5062, https://doi.org/10.5194/gmd-14-5049-2021, https://doi.org/10.5194/gmd-14-5049-2021, 2021
Short summary
Short summary
The Baltic Sea is heavily impacted by surrounding land. Therefore, the concentration of colored dissolved organic matter (CDOM) of terrestrial origin is relatively high and impacts the light penetration depth. Estimating a correct light climate is essential for ecosystem models. In this study, a method is developed to derive riverine CDOM from Earth observation methods. The data are used as boundary conditions for an ecosystem model, and the advantage over former approaches is shown.
Tobias Peter Bauer, Peter Holtermann, Bernd Heinold, Hagen Radtke, Oswald Knoth, and Knut Klingbeil
Geosci. Model Dev., 14, 4843–4863, https://doi.org/10.5194/gmd-14-4843-2021, https://doi.org/10.5194/gmd-14-4843-2021, 2021
Short summary
Short summary
We present the coupled atmosphere–ocean model system ICONGETM. The added value and potential of using the latest coupling technologies are discussed in detail. An exchange grid handles the different coastlines from the unstructured atmosphere and the structured ocean grids. Due to a high level of automated processing, ICONGETM requires only minimal user input. The application to a coastal upwelling scenario demonstrates significantly improved model results compared to uncoupled simulations.
Erik Jacobs, Henry C. Bittig, Ulf Gräwe, Carolyn A. Graves, Michael Glockzin, Jens D. Müller, Bernd Schneider, and Gregor Rehder
Biogeosciences, 18, 2679–2709, https://doi.org/10.5194/bg-18-2679-2021, https://doi.org/10.5194/bg-18-2679-2021, 2021
Short summary
Short summary
We use a unique data set of 8 years of continuous carbon dioxide (CO2) and methane (CH4) surface water measurements from a commercial ferry to study upwelling in the Baltic Sea. Its seasonality and regional and interannual variability are examined. Strong upwelling events drastically increase local surface CO2 and CH4 levels and are mostly detected in late summer after long periods of impaired mixing. We introduce an extrapolation method to estimate regional upwelling-induced trace gas fluxes.
Robert Daniel Osinski, Kristina Enders, Ulf Gräwe, Knut Klingbeil, and Hagen Radtke
Ocean Sci., 16, 1491–1507, https://doi.org/10.5194/os-16-1491-2020, https://doi.org/10.5194/os-16-1491-2020, 2020
Short summary
Short summary
This study investigates the impact of the uncertainty in atmospheric data of a storm event on the transport of microplastics and sediments. The model chain includes the WRF atmospheric model, the WAVEWATCH III® wave model, and the GETM regional ocean model as well as a sediment transport model based on the FABM framework. An ensemble approach based on stochastic perturbations of the WRF model is used. We found a strong impact of atmospheric uncertainty on the amount of transported material.
Taavi Liblik, Germo Väli, Inga Lips, Madis-Jaak Lilover, Villu Kikas, and Jaan Laanemets
Ocean Sci., 16, 1475–1490, https://doi.org/10.5194/os-16-1475-2020, https://doi.org/10.5194/os-16-1475-2020, 2020
Short summary
Short summary
The upper mixed layer, shallower than the depth of the euphotic zone, is one of the preconditions for enhanced primary production in the ocean. In the Baltic Sea, the general understanding is that the upper mixed layer is much deeper in winter. In this study, we demonstrate that wintertime shallow stratification and an elevated phytoplankton biomass proxy, chlorophyll, are common in the Gulf of Finland. Stratification is invoked by the westward flow of riverine water forced by an easterly wind.
Stelios Myriokefalitakis, Matthias Gröger, Jenny Hieronymus, and Ralf Döscher
Ocean Sci., 16, 1183–1205, https://doi.org/10.5194/os-16-1183-2020, https://doi.org/10.5194/os-16-1183-2020, 2020
Short summary
Short summary
Global inorganic and organic nutrient deposition fields are coupled to PISCES to investigate their effect on ocean biogeochemistry. Pre-industrial deposition fluxes are lower compared to the present day, resulting in lower oceanic productivity. Future changes result in a modest decrease in the nutrients put into the global ocean. This work provides a first assessment of the atmospheric organic nutrients' contribution, highlighting the importance of their representation in biogeochemistry models.
Hagen Radtke, Sandra-Esther Brunnabend, Ulf Gräwe, and H. E. Markus Meier
Clim. Past, 16, 1617–1642, https://doi.org/10.5194/cp-16-1617-2020, https://doi.org/10.5194/cp-16-1617-2020, 2020
Short summary
Short summary
During the last century, salinity in the Baltic Sea showed a multidecadal oscillation with a period of 30 years. Using a numerical circulation model and wavelet coherence analysis, we demonstrate that this variation has at least two possible causes. One driver is river runoff which shows a 30-year variation. The second one is a variation in the frequency of strong inflows of saline water across Darss Sill which also contains a pronounced 30-year period.
Thomas Neumann, Herbert Siegel, Matthias Moros, Monika Gerth, Madline Kniebusch, and Daniel Heydebreck
Ocean Sci., 16, 767–780, https://doi.org/10.5194/os-16-767-2020, https://doi.org/10.5194/os-16-767-2020, 2020
Short summary
Short summary
The bottom water of the northern Baltic Sea usually is well oxygenated. We used a combined approach of numerical model simulations and in situ observations to investigate processes responsible for a regular ventilation of the Bothnian Bay. Surface water masses from the Bothnian Sea and the Bothnian Bay mix at the link between both regions. In winter, when water temperature is low, the resulting density is large enough that the water descends and replaces old bottom water.
Robert Daniel Osinski and Hagen Radtke
Ocean Sci., 16, 355–371, https://doi.org/10.5194/os-16-355-2020, https://doi.org/10.5194/os-16-355-2020, 2020
Short summary
Short summary
The idea of this study is to quantify the uncertainty in hindcasts of severe storm events by applying a state-of-the-art ensemble generation technique. Other ensemble generation techniques are tested. The atmospheric WRF model is driven by the ERA5 reanalysis. A setup of the Wavewatch III® wave model for the Baltic Sea is used with the wind fields produced with the WRF ensemble. The effect of different spatio-temporal resolutions of the wind fields on the significant wave height is investigated.
Daniel Neumann, Matthias Karl, Hagen Radtke, Volker Matthias, René Friedland, and Thomas Neumann
Ocean Sci., 16, 115–134, https://doi.org/10.5194/os-16-115-2020, https://doi.org/10.5194/os-16-115-2020, 2020
Short summary
Short summary
The study evaluates how much bioavailable nitrogen is contributed to the nitrogen budget of the western Baltic Sea by deposition of shipping-emitted nitrogen oxides. Bioavailable nitrogen compounds are nutrients for phytoplankton (algae). Excessive input of nutrients into water bodies may lead to eutrophication: more algal blooms with subsequently more oxygen limitation at the seafloor. Hence, reducing shipping emissions might reduce the anthropogenic pressure on the marine ecosystem.
Victor Zhurbas, Germo Väli, and Natalia Kuzmina
Ocean Sci., 15, 1691–1705, https://doi.org/10.5194/os-15-1691-2019, https://doi.org/10.5194/os-15-1691-2019, 2019
Short summary
Short summary
Spiral streaks or spirals are a common feature on satellite images of the sea surface. Spirals are overwhelmingly cyclonic: they wind anticlockwise in the Northern Hemisphere. Based on a regional circulation model with very high resolution we concluded that submesoscale cyclonic eddies differ from anticyclonic eddies in three ways favoring the formation of spirals: they can be characterized by (a) higher angular velocity, (b) more pronounced differential rotation and (c) negative helicity.
Christian Dieterich, Matthias Gröger, Lars Arneborg, and Helén C. Andersson
Ocean Sci., 15, 1399–1418, https://doi.org/10.5194/os-15-1399-2019, https://doi.org/10.5194/os-15-1399-2019, 2019
Short summary
Short summary
We assess storm surges in the Baltic Sea and how they are represented in a regional climate model. We show how well different model formulations agree with each other and how this model uncertainty relates to observational uncertainty. With an ensemble of model solutions that represent today's climate, we show that this uncertainty is of the same size as the observational uncertainty. The second part of this study compares climate uncertainty with scenario uncertainty and natural variability.
Robinson Hordoir, Lars Axell, Anders Höglund, Christian Dieterich, Filippa Fransner, Matthias Gröger, Ye Liu, Per Pemberton, Semjon Schimanke, Helen Andersson, Patrik Ljungemyr, Petter Nygren, Saeed Falahat, Adam Nord, Anette Jönsson, Iréne Lake, Kristofer Döös, Magnus Hieronymus, Heiner Dietze, Ulrike Löptien, Ivan Kuznetsov, Antti Westerlund, Laura Tuomi, and Jari Haapala
Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019, https://doi.org/10.5194/gmd-12-363-2019, 2019
Short summary
Short summary
Nemo-Nordic is a regional ocean model based on a community code (NEMO). It covers the Baltic and the North Sea area and is used as a forecast model by the Swedish Meteorological and Hydrological Institute. It is also used as a research tool by scientists of several countries to study, for example, the effects of climate change on the Baltic and North seas. Using such a model permits us to understand key processes in this coastal ecosystem and how such processes will change in a future climate.
Hagen Radtke, Marko Lipka, Dennis Bunke, Claudia Morys, Jana Woelfel, Bronwyn Cahill, Michael E. Böttcher, Stefan Forster, Thomas Leipe, Gregor Rehder, and Thomas Neumann
Geosci. Model Dev., 12, 275–320, https://doi.org/10.5194/gmd-12-275-2019, https://doi.org/10.5194/gmd-12-275-2019, 2019
Short summary
Short summary
This paper describes a coupled benthic–pelagic biogeochemical model, ERGOM-SED. We demonstrate its use in a one-dimensional physical model, which is horizontally integrated and vertically resolved. We describe the application of the model to seven stations in the south-western Baltic Sea. The model was calibrated using pore water profiles from these stations. We compare the model results to these and to measured sediment compositions, benthopelagic fluxes and bioturbation intensities.
Beate Stawiarski, Stefan Otto, Volker Thiel, Ulf Gräwe, Natalie Loick-Wilde, Anna K. Wittenborn, Stefan Schloemer, Janine Wäge, Gregor Rehder, Matthias Labrenz, Norbert Wasmund, and Oliver Schmale
Biogeosciences, 16, 1–16, https://doi.org/10.5194/bg-16-1-2019, https://doi.org/10.5194/bg-16-1-2019, 2019
Short summary
Short summary
The understanding of surface water methane production in the world oceans is still poor. By combining field studies and incubation experiments, our investigations suggest that zooplankton contributes to subthermocline methane enrichments in the central Baltic Sea by methane production within the digestive tract of copepods and/or by methane production through release of methane precursor substances into the surrounding water, followed by microbial degradation to methane.
Daniel Neumann, Hagen Radtke, Matthias Karl, and Thomas Neumann
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-365, https://doi.org/10.5194/bg-2018-365, 2018
Publication in BG not foreseen
Short summary
Short summary
The contribution of atmospheric nitrogen deposition to the marine dissolved inorganic nitrogen (DIN) pool of the North and Baltic Sea was assessed for the year 2012. Atmospheric deposition accounted for approximately 10 % to 15 % of the DIN but its residence time differed between both water bodies. The nitrogen contributions of atmospheric shipping and agricultural imissions also were assessed. Particularly the latter source had a large impact in coastal regions.
Daniel Neumann, Matthias Karl, Hagen Radtke, and Thomas Neumann
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-364, https://doi.org/10.5194/bg-2018-364, 2018
Manuscript not accepted for further review
Short summary
Short summary
Atmospheric nitrogen deposition contributes 20 % to 40 % to bioavailable nitrogen inputs into the North Sea and Baltic Sea. Excessive bioavailable nitrogen may lead to intensified algal blooms in these water bodies resulting in several negative consequences for the marine ecosystem. We traced atmospheric nitrogen in the marine ecosystem via an ecosystem model and estimated the contribution of atmospheric nitrogen to plankton biomass in different regions of the North and Baltic Sea over five years.
Jenny Hieronymus, Kari Eilola, Magnus Hieronymus, H. E. Markus Meier, Sofia Saraiva, and Bengt Karlson
Biogeosciences, 15, 5113–5129, https://doi.org/10.5194/bg-15-5113-2018, https://doi.org/10.5194/bg-15-5113-2018, 2018
Short summary
Short summary
This paper investigates how phytoplankton concentrations in the Baltic Sea co-vary with nutrient concentrations and other key variables on inter-annual timescales in a model integration over the years 1850–2008. The study area is not only affected by climate change; it has also been subjected to greatly increased nutrient loads due to extensive use of agricultural fertilizers. The results indicate the largest inter-annual coherence of phytoplankton with the limiting nutrient.
Daniel Neumann, René Friedland, Matthias Karl, Hagen Radtke, Volker Matthias, and Thomas Neumann
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-71, https://doi.org/10.5194/os-2018-71, 2018
Revised manuscript not accepted
Short summary
Short summary
We found that refining the spatial resolution of nitrogen deposition data had low impact on marine nitrogen compounds compared to the impact by nitrogen deposition data sets of different origin (other model). The shipping sector had a contribution of up to 10 % to the marine dissolved inorganic nitrogen.
Sofia Saraiva, H. E. Markus Meier, Helén Andersson, Anders Höglund, Christian Dieterich, Robinson Hordoir, and Kari Eilola
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2018-16, https://doi.org/10.5194/esd-2018-16, 2018
Revised manuscript not accepted
Short summary
Short summary
Uncertainties are estimated in Baltic Sea climate projections by performing scenarios combining 4 Global Climate Models, 2 future gas emissions (RCP4.5, RCP8.5) and 3 nutrient load scenarios. Results on primary production, nitrogen fixation, and hypoxic areas show that uncertainties caused by the nutrients loads are greater than uncertainties due to GCMs and RCPs. In all scenarios, nutrient load abatement strategy, Baltic Sea Action Plan, will lead to an improvement in the environmental state.
Per Pemberton, Ulrike Löptien, Robinson Hordoir, Anders Höglund, Semjon Schimanke, Lars Axell, and Jari Haapala
Geosci. Model Dev., 10, 3105–3123, https://doi.org/10.5194/gmd-10-3105-2017, https://doi.org/10.5194/gmd-10-3105-2017, 2017
Short summary
Short summary
The Baltic Sea is seasonally ice covered with intense wintertime ship traffic and a sensitive ecosystem. Understanding the sea-ice pack is important for climate effect studies and forecasting. A NEMO-LIM3.6-based model setup for the North Sea/Baltic Sea is introduced, including a method for ice in the coastal zone. We evaluate different sea-ice parameters and overall find that the model agrees well with the observation though deformed ice is more challenging to capture.
Ye Liu, H. E. Markus Meier, and Kari Eilola
Biogeosciences, 14, 2113–2131, https://doi.org/10.5194/bg-14-2113-2017, https://doi.org/10.5194/bg-14-2113-2017, 2017
Short summary
Short summary
From the reanalysis, nutrient transports between sub-basins, between the coastal zone and the open sea, and across latitudinal and longitudinal cross sections, are calculated. Further, the spatial distributions of regions with nutrient import or export are examined. Our results emphasize the important role of the Baltic proper for the entire Baltic Sea. For the calculation of sub-basin budgets, the location of the lateral borders of the sub-basins is crucial.
S.-E. Brunnabend, H. A. Dijkstra, M. A. Kliphuis, H. E. Bal, F. Seinstra, B. van Werkhoven, J. Maassen, and M. van Meersbergen
Ocean Sci., 13, 47–60, https://doi.org/10.5194/os-13-47-2017, https://doi.org/10.5194/os-13-47-2017, 2017
Short summary
Short summary
An important contribution to future changes in regional sea level extremes is due to the changes in intrinsic ocean variability, in particular ocean eddies. Here, we study a scenario of future dynamic sea level (DSL) extremes using a strongly eddying version of the Parallel Ocean Program. Changes in 10-year return time DSL extremes are very inhomogeneous over the globe and are related to changes in ocean currents and corresponding regional shifts in ocean eddy pathways.
Elin Almroth-Rosell, Moa Edman, Kari Eilola, H. E. Markus Meier, and Jörgen Sahlberg
Biogeosciences, 13, 5753–5769, https://doi.org/10.5194/bg-13-5753-2016, https://doi.org/10.5194/bg-13-5753-2016, 2016
Short summary
Short summary
Nutrients from land have been discussed to increase eutrophication in the open sea. This model study shows that the coastal zone works as an efficient filter. Water depth and residence time regulate the retention that occurs mostly in the sediment due to processes such as burial and denitrification. On shorter timescales the retention capacity might seem less effective when the land load of nutrients decreases, but with time the coastal zone can import nutrients from the open sea.
Joeran Maerz, Richard Hofmeister, Eefke M. van der Lee, Ulf Gräwe, Rolf Riethmüller, and Kai W. Wirtz
Biogeosciences, 13, 4863–4876, https://doi.org/10.5194/bg-13-4863-2016, https://doi.org/10.5194/bg-13-4863-2016, 2016
Short summary
Short summary
We investigated sinking velocity (ws) of suspended particulate matter (SPM) in the German Bight. By inferring ws indirectly from an extensive turbidity data set and hydrodynamic model results, we found enhanced ws in a coastal transition zone. Combined with known residual circulation patterns, this led to a new conceptual understanding of the retention of fine minerals and nutrients in shallow coastal areas. The retention is likely modulated by algal excretions enhancing flocculation of SPM.
Rahel Vortmeyer-Kley, Ulf Gräwe, and Ulrike Feudel
Nonlin. Processes Geophys., 23, 159–173, https://doi.org/10.5194/npg-23-159-2016, https://doi.org/10.5194/npg-23-159-2016, 2016
Short summary
Short summary
Since eddies play a major role in the dynamics of oceanic flows, it is of great interest to gain information about their tracks, lifetimes and shapes. We develop an eddy tracking tool based on structures in the flow with collecting (attracting) or separating (repelling) properties. In test cases mimicking oceanic flows it yields eddy lifetimes close to the analytical ones. It even provides a detailed view of the dynamics that can be useful to gain more insight into eddy dynamics in oceanic flows.
M. Placke, P. Hoffmann, and M. Rapp
Ann. Geophys., 33, 1091–1096, https://doi.org/10.5194/angeo-33-1091-2015, https://doi.org/10.5194/angeo-33-1091-2015, 2015
Short summary
Short summary
Imposed momentum from mesospheric breaking gravity waves (GWs) is conserved by a balance between vertical divergence of GW momentum flux and Coriolis acceleration of the mean meridional wind. We present the first experimental verification of the momentum balance from the Saura MF radar at 69°N. For contributions from GWs only this balance is fulfilled between 70 and 100km during summer when GWs dominate the mesospheric dynamics, but it does not exist in winter due to planetary wave impacts.
S.-E. Brunnabend, H. A. Dijkstra, M. A. Kliphuis, B. van Werkhoven, H. E. Bal, F. Seinstra, J. Maassen, and M. van Meersbergen
Ocean Sci., 10, 881–891, https://doi.org/10.5194/os-10-881-2014, https://doi.org/10.5194/os-10-881-2014, 2014
Short summary
Short summary
Regional sea surface height (SSH) changes due to an abrupt weakening of the Atlantic meridional overturning circulation (AMOC) are simulated with a high- and low-resolution model. A rapid decrease of the AMOC in the high-resolution version induces shorter return times of several specific regional and coastal extremes in North Atlantic SSH than in the low-resolution version. This effect is caused by a change in main eddy pathways associated with a change in separation latitude of the Gulf Stream.
M. Duran-Matute, T. Gerkema, G. J. de Boer, J. J. Nauw, and U. Gräwe
Ocean Sci., 10, 611–632, https://doi.org/10.5194/os-10-611-2014, https://doi.org/10.5194/os-10-611-2014, 2014
B. van Werkhoven, J. Maassen, M. Kliphuis, H. A. Dijkstra, S. E. Brunnabend, M. van Meersbergen, F. J. Seinstra, and H. E. Bal
Geosci. Model Dev., 7, 267–281, https://doi.org/10.5194/gmd-7-267-2014, https://doi.org/10.5194/gmd-7-267-2014, 2014
M. Gröger, E. Maier-Reimer, U. Mikolajewicz, A. Moll, and D. Sein
Biogeosciences, 10, 3767–3792, https://doi.org/10.5194/bg-10-3767-2013, https://doi.org/10.5194/bg-10-3767-2013, 2013
P. Bakker, E. J. Stone, S. Charbit, M. Gröger, U. Krebs-Kanzow, S. P. Ritz, V. Varma, V. Khon, D. J. Lunt, U. Mikolajewicz, M. Prange, H. Renssen, B. Schneider, and M. Schulz
Clim. Past, 9, 605–619, https://doi.org/10.5194/cp-9-605-2013, https://doi.org/10.5194/cp-9-605-2013, 2013
Related subject area
Oceanography
A revised ocean mixed layer model for better simulating the diurnal variation in ocean skin temperature
Evaluating an accelerated forcing approach for improving computational efficiency in coupled ice sheet–ocean modelling
An optimal transformation method for inferring ocean tracer sources and sinks
PPCon 1.0: Biogeochemical-Argo profile prediction with 1D convolutional networks
Experimental design for the Marine Ice Sheet–Ocean Model Intercomparison Project – phase 2 (MISOMIP2)
Development of a total variation diminishing (TVD) sea ice transport scheme and its application in an ocean (SCHISM v5.11) and sea ice (Icepack v1.3.4) coupled model on unstructured grids
Spurious numerical mixing under strong tidal forcing: a case study in the south-east Asian seas using the Symphonie model (v3.1.2)
Modelling the water isotope distribution in the Mediterranean Sea using a high-resolution oceanic model (NEMO-MED12-watiso v1.0): evaluation of model results against in situ observations
LIGHT-bgcArgo-1.0: using synthetic float capabilities in E3SMv2 to assess spatiotemporal variability in ocean physics and biogeochemistry
HIDRA3: a robust deep-learning model for multi-point ensemble sea level forecasting
Towards a real-time modeling of global ocean waves by the fully GPU-accelerated spectral wave model WAM6-GPU v1.0
A simple approach to represent precipitation-derived freshwater fluxes into nearshore ocean models: an FVCOM4.1 case study of Quatsino Sound, British Columbia
An optimal transformation method applied to diagnose the ocean carbon budget
Implementation and assessment of a model including mixotrophs and the carbonate cycle (Eco3M_MIX-CarbOx v1.0) in a highly dynamic Mediterranean coastal environment (Bay of Marseille, France) – Part 2: Towards a better representation of total alkalinity when modeling the carbonate system and air–sea CO2 fluxes
DALROMS-NWA12 v1.0, a coupled circulation-ice-biogeochemistry modelling system for the northwest Atlantic Ocean: Development and validation
Development of a novel storm surge inundation model framework for efficient prediction
Skin sea surface temperature schemes in coupled ocean–atmosphere modelling: the impact of chlorophyll-interactive e-folding depth
A wave-resolving 2DV Lagrangian approach to model microplastic transport in the nearshore
DELWAVE 1.0: deep learning surrogate model of surface wave climate in the Adriatic Basin
StraitFlux – precise computations of water strait fluxes on various modeling grids
Comparison of the Coastal and Regional Ocean COmmunity model (CROCO) and NCAR-LES in non-hydrostatic simulations
HOTSSea v1: a NEMO-based physical Hindcast of the Salish Sea (1980–2018) supporting ecosystem model development
Intercomparisons of Tracker v1.1 and four other ocean particle-tracking software packages in the Regional Ocean Modeling System
CAR36, a regional high-resolution ocean forecasting system for improving drift and beaching of Sargassum in the Caribbean archipelago
Implementation of additional spectral wave field exchanges in a three-dimensional wave–current coupled WAVEWATCH-III (version 6.07) and CROCO (version 1.2) configuration: assessment of their implications for macro-tidal coastal hydrodynamics
Comparison of 4-dimensional variational and ensemble optimal interpolation data assimilation systems using a Regional Ocean Modeling System (v3.4) configuration of the eddy-dominated East Australian Current system
LOCATE v1.0: numerical modelling of floating marine debris dispersion in coastal regions using Parcels v2.4.2
New insights into the South China Sea throughflow and water budget seasonal cycle: evaluation and analysis of a high-resolution configuration of the ocean model SYMPHONIE version 2.4
MQGeometry-1.0: a multi-layer quasi-geostrophic solver on non-rectangular geometries
Parameter estimation for ocean background vertical diffusivity coefficients in the Community Earth System Model (v1.2.1) and its impact on El Niño–Southern Oscillation forecasts
Great Lakes wave forecast system on high-resolution unstructured meshes
Impact of increased resolution on Arctic Ocean simulations in Ocean Model Intercomparison Project phase 2 (OMIP-2)
A high-resolution physical–biogeochemical model for marine resource applications in the northwest Atlantic (MOM6-COBALT-NWA12 v1.0)
A flexible z-layers approach for the accurate representation of free surface flows in a coastal ocean model (SHYFEM v. 7_5_71)
Implementation and assessment of a model including mixotrophs and the carbonate cycle (Eco3M_MIX-CarbOx v1.0) in a highly dynamic Mediterranean coastal environment (Bay of Marseille, France) – Part 1: Evolution of ecosystem composition under limited light and nutrient conditions
Ocean wave tracing v.1: a numerical solver of the wave ray equations for ocean waves on variable currents at arbitrary depths
Design and evaluation of an efficient high-precision ocean surface wave model with a multiscale grid system (MSG_Wav1.0)
Evaluation of the CMCC global eddying ocean model for the Ocean Model Intercomparison Project (OMIP2)
Barents-2.5km v2.0: an operational data-assimilative coupled ocean and sea ice ensemble prediction model for the Barents Sea and Svalbard
Open-ocean tides simulated by ICON-O, version icon-2.6.6
Using Probability Density Functions to Evaluate Models (PDFEM, v1.0) to compare a biogeochemical model with satellite-derived chlorophyll
Data assimilation sensitivity experiments in the East Auckland Current system using 4D-Var
Using the COAsT Python package to develop a standardised validation workflow for ocean physics models
Improving Antarctic Bottom Water precursors in NEMO for climate applications
Formulation, optimization, and sensitivity of NitrOMZv1.0, a biogeochemical model of the nitrogen cycle in oceanic oxygen minimum zones
Waves in SKRIPS: WAVEWATCH III coupling implementation and a case study of Tropical Cyclone Mekunu
Adding sea ice effects to a global operational model (NEMO v3.6) for forecasting total water level: approach and impact
Enhanced ocean wave modeling by including effect of breaking under both deep- and shallow-water conditions
An internal solitary wave forecasting model in the northern South China Sea (ISWFM-NSCS)
The 3D biogeochemical marine mercury cycling model MERCY v2.0 – linking atmospheric Hg to methylmercury in fish
Eui-Jong Kang, Byung-Ju Sohn, Sang-Woo Kim, Wonho Kim, Young-Cheol Kwon, Seung-Bum Kim, Hyoung-Wook Chun, and Chao Liu
Geosci. Model Dev., 17, 8553–8568, https://doi.org/10.5194/gmd-17-8553-2024, https://doi.org/10.5194/gmd-17-8553-2024, 2024
Short summary
Short summary
Sea surface temperature (SST) is vital in climate, weather, and ocean sciences because it influences air–sea interactions. Errors in the ECMWF model's scheme for predicting ocean skin temperature prompted a revision of the ocean mixed layer model. Validation against infrared measurements and buoys showed a good correlation with minimal deviations. The revised model accurately simulates SST variations and aligns with solar radiation distributions, showing promise for weather and climate models.
Qin Zhou, Chen Zhao, Rupert Gladstone, Tore Hattermann, David Gwyther, and Benjamin Galton-Fenzi
Geosci. Model Dev., 17, 8243–8265, https://doi.org/10.5194/gmd-17-8243-2024, https://doi.org/10.5194/gmd-17-8243-2024, 2024
Short summary
Short summary
We introduce an accelerated forcing approach to address timescale discrepancies between the ice sheets and ocean components in coupled modelling by reducing the ocean simulation duration. The approach is evaluated using idealized coupled models, and its limitations in real-world applications are discussed. Our results suggest it can be a valuable tool for process-oriented coupled ice sheet–ocean modelling and downscaling climate simulations with such models.
Jan D. Zika and Taimoor Sohail
Geosci. Model Dev., 17, 8049–8068, https://doi.org/10.5194/gmd-17-8049-2024, https://doi.org/10.5194/gmd-17-8049-2024, 2024
Short summary
Short summary
We describe a method to relate fluxes of heat and freshwater at the sea surface to the resulting distribution of seawater among categories such as warm and salty or cold and salty. The method exploits the laws that govern how heat and salt change when water mixes. The method will allow the climate community to improve estimates of how much heat the ocean is absorbing and how rainfall and evaporation are changing across the globe.
Gloria Pietropolli, Luca Manzoni, and Gianpiero Cossarini
Geosci. Model Dev., 17, 7347–7364, https://doi.org/10.5194/gmd-17-7347-2024, https://doi.org/10.5194/gmd-17-7347-2024, 2024
Short summary
Short summary
Monitoring the ocean is essential for studying marine life and human impact. Our new software, PPCon, uses ocean data to predict key factors like nitrate and chlorophyll levels, which are hard to measure directly. By leveraging machine learning, PPCon offers more accurate and efficient predictions.
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024, https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Short summary
Global climate models do not reliably simulate sea-level change due to ice-sheet–ocean interactions. We propose a community modelling effort to conduct a series of well-defined experiments to compare models with observations and study how models respond to a range of perturbations in climate and ice-sheet geometry. The second Marine Ice Sheet–Ocean Model Intercomparison Project will continue to lay the groundwork for including ice-sheet–ocean interactions in global-scale IPCC-class models.
Qian Wang, Yang Zhang, Fei Chai, Y. Joseph Zhang, and Lorenzo Zampieri
Geosci. Model Dev., 17, 7067–7081, https://doi.org/10.5194/gmd-17-7067-2024, https://doi.org/10.5194/gmd-17-7067-2024, 2024
Short summary
Short summary
We coupled an unstructured hydro-model with an advanced column sea ice model to meet the growing demand for increased resolution and complexity in unstructured sea ice models. Additionally, we present a novel tracer transport scheme for the sea ice coupled model and demonstrate that this scheme fulfills the requirements for conservation, accuracy, efficiency, and monotonicity in an idealized test. Our new coupled model also has good performance in realistic tests.
Adrien Garinet, Marine Herrmann, Patrick Marsaleix, and Juliette Pénicaud
Geosci. Model Dev., 17, 6967–6986, https://doi.org/10.5194/gmd-17-6967-2024, https://doi.org/10.5194/gmd-17-6967-2024, 2024
Short summary
Short summary
Mixing is a crucial aspect of the ocean, but its accurate representation in computer simulations is made challenging by errors that result in unwanted mixing, compromising simulation realism. Here we illustrate the spurious effect that tides can have on simulations of south-east Asia. Although they play an important role in determining the state of the ocean, they can increase numerical errors and make simulation outputs less realistic. We also provide insights into how to reduce these errors.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Kazuyo Tachikawa, Camille Risi, and Gilles Ramstein
Geosci. Model Dev., 17, 6627–6655, https://doi.org/10.5194/gmd-17-6627-2024, https://doi.org/10.5194/gmd-17-6627-2024, 2024
Short summary
Short summary
Water isotopes (δ18O, δD) are one of the most widely used proxies in ocean climate research. Previous studies using water isotope observations and modelling have highlighted the importance of understanding spatial and temporal isotopic variability for a quantitative interpretation of these tracers. Here we present the first results of a high-resolution regional dynamical model (at 1/12° horizontal resolution) developed for the Mediterranean Sea, one of the hotspots of ongoing climate change.
Cara Nissen, Nicole S. Lovenduski, Mathew Maltrud, Alison R. Gray, Yohei Takano, Kristen Falcinelli, Jade Sauvé, and Katherine Smith
Geosci. Model Dev., 17, 6415–6435, https://doi.org/10.5194/gmd-17-6415-2024, https://doi.org/10.5194/gmd-17-6415-2024, 2024
Short summary
Short summary
Autonomous profiling floats have provided unprecedented observational coverage of the global ocean, but uncertainties remain about whether their sampling frequency and density capture the true spatiotemporal variability of physical, biogeochemical, and biological properties. Here, we present the novel synthetic biogeochemical float capabilities of the Energy Exascale Earth System Model version 2 and demonstrate their utility as a test bed to address these uncertainties.
Marko Rus, Hrvoje Mihanović, Matjaž Ličer, and Matej Kristan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2068, https://doi.org/10.5194/egusphere-2024-2068, 2024
Short summary
Short summary
HIDRA3 is a novel deep-learning model for predicting sea levels and storm surges, offering significant improvements over previous models and numerical simulations. It utilizes data from multiple tide gauges, enhancing predictions even with limited historical data and during sensor outages. With its advanced architecture, HIDRA3 outperforms the current state-of-the-art models by achieving up to 15 % lower mean absolute error, proving effective for coastal flood forecasting in diverse conditions.
Ye Yuan, Fujiang Yu, Zhi Chen, Xueding Li, Fang Hou, Yuanyong Gao, Zhiyi Gao, and Renbo Pang
Geosci. Model Dev., 17, 6123–6136, https://doi.org/10.5194/gmd-17-6123-2024, https://doi.org/10.5194/gmd-17-6123-2024, 2024
Short summary
Short summary
Accurate and timely forecasting of ocean waves is of great importance to the safety of marine transportation and offshore engineering. In this study, GPU-accelerated computing is introduced in WAve Modeling Cycle 6 (WAM6). With this effort, global high-resolution wave simulations can now run on GPUs up to tens of times faster than the currently available models can on a CPU node with results that are just as accurate.
Krysten Rutherford, Laura Bianucci, and William Floyd
Geosci. Model Dev., 17, 6083–6104, https://doi.org/10.5194/gmd-17-6083-2024, https://doi.org/10.5194/gmd-17-6083-2024, 2024
Short summary
Short summary
Nearshore ocean models often lack complete information about freshwater fluxes due to numerous ungauged rivers and streams. We tested a simple rain-based hydrological model as inputs into an ocean model of Quatsino Sound, Canada, with the aim of improving the representation of the land–ocean connection in the nearshore model. Through multiple tests, we found that the performance of the ocean model improved when providing 60 % or more of the freshwater inputs from the simple runoff model.
Neill Mackay, Taimoor Sohail, Jan David Zika, Richard G. Williams, Oliver Andrews, and Andrew James Watson
Geosci. Model Dev., 17, 5987–6005, https://doi.org/10.5194/gmd-17-5987-2024, https://doi.org/10.5194/gmd-17-5987-2024, 2024
Short summary
Short summary
The ocean absorbs carbon dioxide from the atmosphere, mitigating climate change, but estimates of the uptake do not always agree. There is a need to reconcile these differing estimates and to improve our understanding of ocean carbon uptake. We present a new method for estimating ocean carbon uptake and test it with model data. The method effectively diagnoses the ocean carbon uptake from limited data and therefore shows promise for reconciling different observational estimates.
Lucille Barré, Frédéric Diaz, Thibaut Wagener, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 17, 5851–5882, https://doi.org/10.5194/gmd-17-5851-2024, https://doi.org/10.5194/gmd-17-5851-2024, 2024
Short summary
Short summary
The carbonate system is typically studied using measurements, but modeling can contribute valuable insights. Using a biogeochemical model, we propose a new representation of total alkalinity, dissolved inorganic carbon, pCO2, and pH in a highly dynamic Mediterranean coastal area, the Bay of Marseille, a useful addition to measurements. Through a detailed analysis of pCO2 and air–sea CO2 fluxes, we show that variations are strongly impacted by the hydrodynamic processes that affect the bay.
Kyoko Ohashi, Arnaud Laurent, Christoph Renkl, Jinyu Sheng, Katja Fennel, and Eric Oliver
EGUsphere, https://doi.org/10.5194/egusphere-2024-1372, https://doi.org/10.5194/egusphere-2024-1372, 2024
Short summary
Short summary
We developed a modelling system of the northwest Atlantic Ocean that simulates the currents, temperature, salinity, and parts of the biochemical cycle of the ocean, as well as sea ice. The system combines advanced, open-source models and can be used to study, for example, the oceans’ capture of atmospheric carbon dioxide which is a key process in the global climate. The system produces realistic results, and we use it to investigate the roles of tides and sea ice in the northwest Atlantic Ocean.
Xuanxuan Gao, Shuiqing Li, Dongxue Mo, Yahao Liu, and Po Hu
Geosci. Model Dev., 17, 5497–5509, https://doi.org/10.5194/gmd-17-5497-2024, https://doi.org/10.5194/gmd-17-5497-2024, 2024
Short summary
Short summary
Storm surges generate coastal inundation and expose populations and properties to danger. We developed a novel storm surge inundation model for efficient prediction. Estimates compare well with in situ measurements and results from a numerical model. The new model is a significant improvement on existing numerical models, with much higher computational efficiency and stability, which allows timely disaster prevention and mitigation.
Vincenzo de Toma, Daniele Ciani, Yassmin Hesham Essa, Chunxue Yang, Vincenzo Artale, Andrea Pisano, Davide Cavaliere, Rosalia Santoleri, and Andrea Storto
Geosci. Model Dev., 17, 5145–5165, https://doi.org/10.5194/gmd-17-5145-2024, https://doi.org/10.5194/gmd-17-5145-2024, 2024
Short summary
Short summary
This study explores methods to reconstruct diurnal variations in skin sea surface temperature in a model of the Mediterranean Sea. Our new approach, considering chlorophyll concentration, enhances spatial and temporal variations in the warm layer. Comparative analysis shows context-dependent improvements. The proposed "chlorophyll-interactive" method brings the surface net total heat flux closer to zero annually, despite a net heat loss from the ocean to the atmosphere.
Isabel Jalón-Rojas, Damien Sous, and Vincent Marieu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-100, https://doi.org/10.5194/gmd-2024-100, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This study presents a novel modeling approach for understanding microplastic transport in coastal waters. The model accurately replicates experimental data and reveals key transport mechanisms. The findings enhance our knowledge of how microplastics move in nearshore environments, aiding in coastal management and efforts to combat plastic pollution globally.
Peter Mlakar, Antonio Ricchi, Sandro Carniel, Davide Bonaldo, and Matjaž Ličer
Geosci. Model Dev., 17, 4705–4725, https://doi.org/10.5194/gmd-17-4705-2024, https://doi.org/10.5194/gmd-17-4705-2024, 2024
Short summary
Short summary
We propose a new point-prediction model, the DEep Learning WAVe Emulating model (DELWAVE), which successfully emulates the Simulating WAves Nearshore model (SWAN) over synoptic to climate timescales. Compared to control climatology over all wind directions, the mismatch between DELWAVE and SWAN is generally small compared to the difference between scenario and control conditions, suggesting that the noise introduced by surrogate modelling is substantially weaker than the climate change signal.
Susanna Winkelbauer, Michael Mayer, and Leopold Haimberger
Geosci. Model Dev., 17, 4603–4620, https://doi.org/10.5194/gmd-17-4603-2024, https://doi.org/10.5194/gmd-17-4603-2024, 2024
Short summary
Short summary
Oceanic transports shape the global climate, but the evaluation and validation of this key quantity based on reanalysis and model data are complicated by the distortion of the used modelling grids and the large number of different grid types. We present two new methods that allow the calculation of oceanic fluxes of volume, heat, salinity, and ice through almost arbitrary sections for various models and reanalyses that are independent of the used modelling grids.
Xiaoyu Fan, Baylor Fox-Kemper, Nobuhiro Suzuki, Qing Li, Patrick Marchesiello, Peter P. Sullivan, and Paul S. Hall
Geosci. Model Dev., 17, 4095–4113, https://doi.org/10.5194/gmd-17-4095-2024, https://doi.org/10.5194/gmd-17-4095-2024, 2024
Short summary
Short summary
Simulations of the oceanic turbulent boundary layer using the nonhydrostatic CROCO ROMS and NCAR-LES models are compared. CROCO and the NCAR-LES are accurate in a similar manner, but CROCO’s additional features (e.g., nesting and realism) and its compressible turbulence formulation carry additional costs.
Greig Oldford, Tereza Jarníková, Villy Christensen, and Michael Dunphy
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-58, https://doi.org/10.5194/gmd-2024-58, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We developed a physical ocean model called the Hindcast of the Salish Sea (HOTSSea) that recreates conditions throughout the Salish Sea from 1980 to 2018, filling in the gaps in patchy measurements. The model predicts physical ocean properties with sufficient accuracy to be useful for a variety of applications. The model corroborates observed ocean temperature trends and was used to examine areas with few observations. Results indicate that some seasons and areas are warming faster than others.
Jilian Xiong and Parker MacCready
Geosci. Model Dev., 17, 3341–3356, https://doi.org/10.5194/gmd-17-3341-2024, https://doi.org/10.5194/gmd-17-3341-2024, 2024
Short summary
Short summary
The new offline particle tracking package, Tracker v1.1, is introduced to the Regional Ocean Modeling System, featuring an efficient nearest-neighbor algorithm to enhance particle-tracking speed. Its performance was evaluated against four other tracking packages and passive dye. Despite unique features, all packages yield comparable results. Running multiple packages within the same circulation model allows comparison of their performance and ease of use.
Sylvain Cailleau, Laurent Bessières, Léonel Chiendje, Flavie Dubost, Guillaume Reffray, Jean-Michel Lellouche, Simon van Gennip, Charly Régnier, Marie Drevillon, Marc Tressol, Matthieu Clavier, Julien Temple-Boyer, and Léo Berline
Geosci. Model Dev., 17, 3157–3173, https://doi.org/10.5194/gmd-17-3157-2024, https://doi.org/10.5194/gmd-17-3157-2024, 2024
Short summary
Short summary
In order to improve Sargassum drift forecasting in the Caribbean area, drift models can be forced by higher-resolution ocean currents. To this goal a 3 km resolution regional ocean model has been developed. Its assessment is presented with a particular focus on the reproduction of fine structures representing key features of the Caribbean region dynamics and Sargassum transport. The simulated propagation of a North Brazil Current eddy and its dissipation was found to be quite realistic.
Gaetano Porcile, Anne-Claire Bennis, Martial Boutet, Sophie Le Bot, Franck Dumas, and Swen Jullien
Geosci. Model Dev., 17, 2829–2853, https://doi.org/10.5194/gmd-17-2829-2024, https://doi.org/10.5194/gmd-17-2829-2024, 2024
Short summary
Short summary
Here a new method of modelling the interaction between ocean currents and waves is presented. We developed an advanced coupling of two models, one for ocean currents and one for waves. In previous couplings, some wave-related calculations were based on simplified assumptions. Our method uses more complex calculations to better represent wave–current interactions. We tested it in a macro-tidal coastal area and found that it significantly improves the model accuracy, especially during storms.
Colette Gabrielle Kerry, Moninya Roughan, Shane Keating, David Gwyther, Gary Brassington, Adil Siripatana, and Joao Marcos A. C. Souza
Geosci. Model Dev., 17, 2359–2386, https://doi.org/10.5194/gmd-17-2359-2024, https://doi.org/10.5194/gmd-17-2359-2024, 2024
Short summary
Short summary
Ocean forecasting relies on the combination of numerical models and ocean observations through data assimilation (DA). Here we assess the performance of two DA systems in a dynamic western boundary current, the East Australian Current, across a common modelling and observational framework. We show that the more advanced, time-dependent method outperforms the time-independent method for forecast horizons of 5 d. This advocates the use of advanced methods for highly variable oceanic regions.
Ivan Hernandez, Leidy M. Castro-Rosero, Manuel Espino, and Jose M. Alsina Torrent
Geosci. Model Dev., 17, 2221–2245, https://doi.org/10.5194/gmd-17-2221-2024, https://doi.org/10.5194/gmd-17-2221-2024, 2024
Short summary
Short summary
The LOCATE numerical model was developed to conduct Lagrangian simulations of the transport and dispersion of marine debris at coastal scales. High-resolution hydrodynamic data and a beaching module that used particle distance to the shore for land–water boundary detection were used on a realistic debris discharge scenario comparing hydrodynamic data at various resolutions. Coastal processes and complex geometric structures were resolved when using nested grids and distance-to-shore beaching.
Ngoc B. Trinh, Marine Herrmann, Caroline Ulses, Patrick Marsaleix, Thomas Duhaut, Thai To Duy, Claude Estournel, and R. Kipp Shearman
Geosci. Model Dev., 17, 1831–1867, https://doi.org/10.5194/gmd-17-1831-2024, https://doi.org/10.5194/gmd-17-1831-2024, 2024
Short summary
Short summary
A high-resolution model was built to study the South China Sea (SCS) water, heat, and salt budgets. Model performance is demonstrated by comparison with observations and simulations. Important discards are observed if calculating offline, instead of online, lateral inflows and outflows of water, heat, and salt. The SCS mainly receives water from the Luzon Strait and releases it through the Mindoro, Taiwan, and Karimata straits. SCS surface interocean water exchanges are driven by monsoon winds.
Louis Thiry, Long Li, Guillaume Roullet, and Etienne Mémin
Geosci. Model Dev., 17, 1749–1764, https://doi.org/10.5194/gmd-17-1749-2024, https://doi.org/10.5194/gmd-17-1749-2024, 2024
Short summary
Short summary
We present a new way of solving the quasi-geostrophic (QG) equations, a simple set of equations describing ocean dynamics. Our method is solely based on the numerical methods used to solve the equations and requires no parameter tuning. Moreover, it can handle non-rectangular geometries, opening the way to study QG equations on realistic domains. We release a PyTorch implementation to ease future machine-learning developments on top of the presented method.
Zheqi Shen, Yihao Chen, Xiaojing Li, and Xunshu Song
Geosci. Model Dev., 17, 1651–1665, https://doi.org/10.5194/gmd-17-1651-2024, https://doi.org/10.5194/gmd-17-1651-2024, 2024
Short summary
Short summary
Parameter estimation is the process that optimizes model parameters using observations, which could reduce model errors and improve forecasting. In this study, we conducted parameter estimation experiments using the CESM and the ensemble adjustment Kalman filter. The obtained initial conditions and parameters are used to perform ensemble forecast experiments for ENSO forecasting. The results revealed that parameter estimation could reduce analysis errors and improve ENSO forecast skills.
Ali Abdolali, Saeideh Banihashemi, Jose Henrique Alves, Aron Roland, Tyler J. Hesser, Mary Anderson Bryant, and Jane McKee Smith
Geosci. Model Dev., 17, 1023–1039, https://doi.org/10.5194/gmd-17-1023-2024, https://doi.org/10.5194/gmd-17-1023-2024, 2024
Short summary
Short summary
This article presents an overview of the development and implementation of Great Lake Wave Unstructured (GLWUv2.0), including the core model and workflow design and development. The validation was conducted against in situ data for the re-forecasted duration for summer and wintertime (ice season). The article describes the limitations and challenges encountered in the operational environment and the path forward for the next generation of wave forecast systems in enclosed basins like the GL.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Andrew C. Ross, Charles A. Stock, Alistair Adcroft, Enrique Curchitser, Robert Hallberg, Matthew J. Harrison, Katherine Hedstrom, Niki Zadeh, Michael Alexander, Wenhao Chen, Elizabeth J. Drenkard, Hubert du Pontavice, Raphael Dussin, Fabian Gomez, Jasmin G. John, Dujuan Kang, Diane Lavoie, Laure Resplandy, Alizée Roobaert, Vincent Saba, Sang-Ik Shin, Samantha Siedlecki, and James Simkins
Geosci. Model Dev., 16, 6943–6985, https://doi.org/10.5194/gmd-16-6943-2023, https://doi.org/10.5194/gmd-16-6943-2023, 2023
Short summary
Short summary
We evaluate a model for northwest Atlantic Ocean dynamics and biogeochemistry that balances high resolution with computational economy by building on the new regional features in the MOM6 ocean model and COBALT biogeochemical model. We test the model's ability to simulate impactful historical variability and find that the model simulates the mean state and variability of most features well, which suggests the model can provide information to inform living-marine-resource applications.
Luca Arpaia, Christian Ferrarin, Marco Bajo, and Georg Umgiesser
Geosci. Model Dev., 16, 6899–6919, https://doi.org/10.5194/gmd-16-6899-2023, https://doi.org/10.5194/gmd-16-6899-2023, 2023
Short summary
Short summary
We propose a discrete multilayer shallow water model based on z-layers which, thanks to the insertion and removal of surface layers, can deal with an arbitrarily large tidal oscillation independently of the vertical resolution. The algorithm is based on a two-step procedure used in numerical simulations with moving boundaries (grid movement followed by a grid topology change, that is, the insertion/removal of surface layers), which avoids the appearance of very thin surface layers.
Lucille Barré, Frédéric Diaz, Thibaut Wagener, France Van Wambeke, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 16, 6701–6739, https://doi.org/10.5194/gmd-16-6701-2023, https://doi.org/10.5194/gmd-16-6701-2023, 2023
Short summary
Short summary
While several studies have shown that mixotrophs play a crucial role in the carbon cycle, the impact of environmental forcings on their dynamics remains poorly investigated. Using a biogeochemical model that considers mixotrophs, we study the impact of light and nutrient concentration on the ecosystem composition in a highly dynamic Mediterranean coastal area: the Bay of Marseille. We show that mixotrophs cope better with oligotrophic conditions compared to strict auto- and heterotrophs.
Trygve Halsne, Kai Håkon Christensen, Gaute Hope, and Øyvind Breivik
Geosci. Model Dev., 16, 6515–6530, https://doi.org/10.5194/gmd-16-6515-2023, https://doi.org/10.5194/gmd-16-6515-2023, 2023
Short summary
Short summary
Surface waves that propagate in oceanic or coastal environments get influenced by their surroundings. Changes in the ambient current or the depth profile affect the wave propagation path, and the change in wave direction is called refraction. Some analytical solutions to the governing equations exist under ideal conditions, but for realistic situations, the equations must be solved numerically. Here we present such a numerical solver under an open-source license.
Jiangyu Li, Shaoqing Zhang, Qingxiang Liu, Xiaolin Yu, and Zhiwei Zhang
Geosci. Model Dev., 16, 6393–6412, https://doi.org/10.5194/gmd-16-6393-2023, https://doi.org/10.5194/gmd-16-6393-2023, 2023
Short summary
Short summary
Ocean surface waves play an important role in the air–sea interface but are rarely activated in high-resolution Earth system simulations due to their expensive computational costs. To alleviate this situation, this paper designs a new wave modeling framework with a multiscale grid system. Evaluations of a series of numerical experiments show that it has good feasibility and applicability in the WAVEWATCH III model, WW3, and can achieve the goals of efficient and high-precision wave simulation.
Doroteaciro Iovino, Pier Giuseppe Fogli, and Simona Masina
Geosci. Model Dev., 16, 6127–6159, https://doi.org/10.5194/gmd-16-6127-2023, https://doi.org/10.5194/gmd-16-6127-2023, 2023
Short summary
Short summary
This paper describes the model performance of three global ocean–sea ice configurations, from non-eddying (1°) to eddy-rich (1/16°) resolutions. Model simulations are obtained following the Ocean Model Intercomparison Project phase 2 (OMIP2) protocol. We compare key global climate variables across the three models and against observations, emphasizing the relative advantages and disadvantages of running forced ocean–sea ice models at higher resolution.
Johannes Röhrs, Yvonne Gusdal, Edel S. U. Rikardsen, Marina Durán Moro, Jostein Brændshøi, Nils Melsom Kristensen, Sindre Fritzner, Keguang Wang, Ann Kristin Sperrevik, Martina Idžanović, Thomas Lavergne, Jens Boldingh Debernard, and Kai H. Christensen
Geosci. Model Dev., 16, 5401–5426, https://doi.org/10.5194/gmd-16-5401-2023, https://doi.org/10.5194/gmd-16-5401-2023, 2023
Short summary
Short summary
A model to predict ocean currents, temperature, and sea ice is presented, covering the Barents Sea and northern Norway. To quantify forecast uncertainties, the model calculates ensemble forecasts with 24 realizations of ocean and ice conditions. Observations from satellites, buoys, and ships are ingested by the model. The model forecasts are compared with observations, and we show that the ocean model has skill in predicting sea surface temperatures.
Jin-Song von Storch, Eileen Hertwig, Veit Lüschow, Nils Brüggemann, Helmuth Haak, Peter Korn, and Vikram Singh
Geosci. Model Dev., 16, 5179–5196, https://doi.org/10.5194/gmd-16-5179-2023, https://doi.org/10.5194/gmd-16-5179-2023, 2023
Short summary
Short summary
The new ocean general circulation model ICON-O is developed for running experiments at kilometer scales and beyond. One targeted application is to simulate internal tides crucial for ocean mixing. To ensure their realism, which is difficult to assess, we evaluate the barotropic tides that generate internal tides. We show that ICON-O is able to realistically simulate the major aspects of the observed barotropic tides and discuss the aspects that impact the quality of the simulated tides.
Bror F. Jönsson, Christopher L. Follett, Jacob Bien, Stephanie Dutkiewicz, Sangwon Hyun, Gemma Kulk, Gael L. Forget, Christian Müller, Marie-Fanny Racault, Christopher N. Hill, Thomas Jackson, and Shubha Sathyendranath
Geosci. Model Dev., 16, 4639–4657, https://doi.org/10.5194/gmd-16-4639-2023, https://doi.org/10.5194/gmd-16-4639-2023, 2023
Short summary
Short summary
While biogeochemical models and satellite-derived ocean color data provide unprecedented information, it is problematic to compare them. Here, we present a new approach based on comparing probability density distributions of model and satellite properties to assess model skills. We also introduce Earth mover's distances as a novel and powerful metric to quantify the misfit between models and observations. We find that how 3D chlorophyll fields are aggregated can be a significant source of error.
Rafael Santana, Helen Macdonald, Joanne O'Callaghan, Brian Powell, Sarah Wakes, and Sutara H. Suanda
Geosci. Model Dev., 16, 3675–3698, https://doi.org/10.5194/gmd-16-3675-2023, https://doi.org/10.5194/gmd-16-3675-2023, 2023
Short summary
Short summary
We show the importance of assimilating subsurface temperature and velocity data in a model of the East Auckland Current. Assimilation of velocity increased the representation of large oceanic vortexes. Assimilation of temperature is needed to correctly simulate temperatures around 100 m depth, which is the most difficult region to simulate in ocean models. Our simulations showed improved results in comparison to the US Navy global model and highlight the importance of regional models.
David Byrne, Jeff Polton, Enda O'Dea, and Joanne Williams
Geosci. Model Dev., 16, 3749–3764, https://doi.org/10.5194/gmd-16-3749-2023, https://doi.org/10.5194/gmd-16-3749-2023, 2023
Short summary
Short summary
Validation is a crucial step during the development of models for ocean simulation. The purpose of validation is to assess how accurate a model is. It is most commonly done by comparing output from a model to actual observations. In this paper, we introduce and demonstrate usage of the COAsT Python package to standardise the validation process for physical ocean models. We also discuss our five guiding principles for standardised validation.
Katherine Hutchinson, Julie Deshayes, Christian Éthé, Clément Rousset, Casimir de Lavergne, Martin Vancoppenolle, Nicolas C. Jourdain, and Pierre Mathiot
Geosci. Model Dev., 16, 3629–3650, https://doi.org/10.5194/gmd-16-3629-2023, https://doi.org/10.5194/gmd-16-3629-2023, 2023
Short summary
Short summary
Bottom Water constitutes the lower half of the ocean’s overturning system and is primarily formed in the Weddell and Ross Sea in the Antarctic due to interactions between the atmosphere, ocean, sea ice and ice shelves. Here we use a global ocean 1° resolution model with explicit representation of the three large ice shelves important for the formation of the parent waters of Bottom Water. We find doing so reduces salt biases, improves water mass realism and gives realistic ice shelf melt rates.
Daniele Bianchi, Daniel McCoy, and Simon Yang
Geosci. Model Dev., 16, 3581–3609, https://doi.org/10.5194/gmd-16-3581-2023, https://doi.org/10.5194/gmd-16-3581-2023, 2023
Short summary
Short summary
We present NitrOMZ, a new model of the oceanic nitrogen cycle that simulates chemical transformations within oxygen minimum zones (OMZs). We describe the model formulation and its implementation in a one-dimensional representation of the water column before evaluating its ability to reproduce observations in the eastern tropical South Pacific. We conclude by describing the model sensitivity to parameter choices and environmental factors and its application to nitrogen cycling in the ocean.
Rui Sun, Alison Cobb, Ana B. Villas Bôas, Sabique Langodan, Aneesh C. Subramanian, Matthew R. Mazloff, Bruce D. Cornuelle, Arthur J. Miller, Raju Pathak, and Ibrahim Hoteit
Geosci. Model Dev., 16, 3435–3458, https://doi.org/10.5194/gmd-16-3435-2023, https://doi.org/10.5194/gmd-16-3435-2023, 2023
Short summary
Short summary
In this work, we integrated the WAVEWATCH III model into the regional coupled model SKRIPS. We then performed a case study using the newly implemented model to study Tropical Cyclone Mekunu, which occurred in the Arabian Sea. We found that the coupled model better simulates the cyclone than the uncoupled model, but the impact of waves on the cyclone is not significant. However, the waves change the sea surface temperature and mixed layer, especially in the cold waves produced due to the cyclone.
Pengcheng Wang and Natacha B. Bernier
Geosci. Model Dev., 16, 3335–3354, https://doi.org/10.5194/gmd-16-3335-2023, https://doi.org/10.5194/gmd-16-3335-2023, 2023
Short summary
Short summary
Effects of sea ice are typically neglected in operational flood forecast systems. In this work, we capture these effects via the addition of a parameterized ice–ocean stress. The parameterization takes advantage of forecast fields from an advanced ice–ocean model and features a novel, consistent representation of the tidal relative ice–ocean velocity. The new parameterization leads to improved forecasts of tides and storm surges in polar regions. Associated physical processes are discussed.
Yue Xu and Xiping Yu
Geosci. Model Dev., 16, 2811–2831, https://doi.org/10.5194/gmd-16-2811-2023, https://doi.org/10.5194/gmd-16-2811-2023, 2023
Short summary
Short summary
An accurate description of the wind energy input into ocean waves is crucial to ocean wave modeling, and a physics-based consideration of the effect of wave breaking is absolutely necessary to obtain such an accurate description, particularly under extreme conditions. This study evaluates the performance of a recently improved formula, taking into account not only the effect of breaking but also the effect of airflow separation on the leeside of steep wave crests in a reasonably consistent way.
Yankun Gong, Xueen Chen, Jiexin Xu, Jieshuo Xie, Zhiwu Chen, Yinghui He, and Shuqun Cai
Geosci. Model Dev., 16, 2851–2871, https://doi.org/10.5194/gmd-16-2851-2023, https://doi.org/10.5194/gmd-16-2851-2023, 2023
Short summary
Short summary
Internal solitary waves (ISWs) play crucial roles in mass transport and ocean mixing in the northern South China Sea. Massive numerical investigations have been conducted in this region, but there was no systematic evaluation of a three-dimensional model about precisely simulating ISWs. Here, an ISW forecasting model is employed to evaluate the roles of resolution, tidal forcing and stratification in accurately reproducing wave properties via comparison to field and remote-sensing observations.
Johannes Bieser, David J. Amptmeijer, Ute Daewel, Joachim Kuss, Anne L. Soerensen, and Corinna Schrum
Geosci. Model Dev., 16, 2649–2688, https://doi.org/10.5194/gmd-16-2649-2023, https://doi.org/10.5194/gmd-16-2649-2023, 2023
Short summary
Short summary
MERCY is a 3D model to study mercury (Hg) cycling in the ocean. Hg is a highly harmful pollutant regulated by the UN Minamata Convention on Mercury due to widespread human emissions. These emissions eventually reach the oceans, where Hg transforms into the even more toxic and bioaccumulative pollutant methylmercury. MERCY predicts the fate of Hg in the ocean and its buildup in the food chain. It is the first model to consider Hg accumulation in fish, a major source of Hg exposure for humans.
Cited articles
Abrahams, A., Schlegel, R. W., and Smit, A. J.: A novel approach to quantify metrics of
upwelling intensity, frequency, and duration, PLoS ONE, 16, e0254026,
https://doi.org/10.1371/journal.pone.0254026, 2021.
Andrée, E., Su, J., Larsen, M. A. D., Madsen, K. S., and Drews, M.:
Simulating major storm surge events in a complex coastal region, Ocean
Model., 162, 101802, https://doi.org/10.1016/j.ocemod.2021.101802, 2021.
Barnard, S., Barnier, B., Beckmann, A., Böning, C. W., Coulibaly, M.,
DeCuevas, D., Dengg, J., Dietrich, C., Ernst, U., Herrmann, P., Jia, Y.,
Killworth, P. D., Kröger, J., Lee, M. M., LeProvost, C., Molines, J.-M.,
New, A. L., Oschlies, A., Reynaud, T., West, L. J., Willebrand, J., and
DYNAMO Group: DYNAMO: dynamics of North Atlantic models : simulation and
assimilation with high resolution models. Berichte aus dem Institut für
Meereskunde an der Christian-Albrechts-Universität Kiel, 294, Institut
für Meereskunde, Kiel, Germany, 334 pp., https://doi.org/10.3289/ifm_ber_294, 1997.
Berg, P. and Weismann Poulsen, J.: Implementation details for HBM. DMI
Technical Report No. 12-11, Copenhagen, 149 pp., https://www.dmi.dk/fileadmin/Rapporter/TR/tr12-11.pdf (last access: 17 November 2022), 2012.
Bergström, S. and Carlsson, B.: river runoff to the Baltic Sea
1950–1990, Ambio, 23, 280–287, 1994.
Burchard, H. and Rennau, H.: Comparative quantification of physically and
numerically induced mixing in ocean models, Ocean Model., 20, 293–311,
2008.
Campin, J.-M., Marshall, J., and Ferreira, D.: Sea ice-ocean coupling
using a rescaled vertical coordinate z*, Ocean Model., 24, 1–14,
https://doi.org/10.1016/j.ocemod.2008.05.005, 2008.
Chubarenko, I. and
Stepanova, N.: Cold intermediate layer of the Baltic Sea: Hypothesis of the
formation of its core, Prog. Oceanogr., 167, 1-10, https://doi.org/10.1016/j.pocean.2018.06.012, 2018.
Chubarenko, I. P., Demchenko, N. Y., Esiukova, E. E., Lobchuk, O. I.,
Karmanov, K. V., Pilipchuk, V. A., Isachenko, I. A., Kulshov, A. F.,
Chugaevich, V. Y., Stepanova, N. B., Krechik, V. A., and Bagaev, A. V.: Spring
thermocline formation in the coastal zone of the southeastern Baltic Sea
based on field data in 2010–2013, Oceanology, 57, 632–638, 2017.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach,
H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F., The ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
Dieterich, C., Wang, S., Schimanke, S., Gröger, M., Klein, B., Hordoir,
R., Samuelsson, P., Liu, Y., Axell, L., Höglund, A., and Meier, H. E. M.:
Surface heat budget over the North Sea in climate change simulations.
Atmosphere, 10, 272, https://doi.org/10.3390/atmos10050272, 2019.
Donnelly, C., Andersson, J. F. C., and Arheimer, B.: Using flow signatures and
catchment similarities to evaluate the E-HYPE multi-basin model across
Europe, Hydrolog. Sci. J., 61, 255–273,
https://doi.org/10.1080/02626667.2015.1027710, 2016.
Döös, K., Meier, H. E. M., and Döscher, R.: The Baltic Haline
Conveyor Belt or the Overturning Circulation and Mixing in the Baltic,
Ambio, 33, 261–66,
2004.
Dutheil, C., Meier, H. E. M., Gröger, M., and Börgel, F.: Understanding
past and future sea surface temperature trends in the Baltic Sea, Clim.
Dynam., 50, 3021–3039, https://doi.org/10.1007/s00382-021-06084-1, 2021.
Eilola, K.:
Development of a spring thermocline at temperatures below the temperature of
maximum density with application to the Baltic Sea, J. Geophys. Res.-Atmos.,
102, 8657–8662, https://doi.org/10.1029/97JC00295, 1997.
Eilola, K., Gustafson, B. G., Kuznetsov, I., Meier, H. E. M., Neumann, T., and Savchuk, O.
P.: Evaluation of biogeochemical cycles in an ensemble of three
state-of-the-art numerical models of the Baltic Sea, J. Marine
Syst., 88, 267–284, 2011.
Eilola, K., Rosell, E. A., Dieterich, C., Fransner, F., Höglund, A., and Markus
Meier, H. E. M.: Modeling nutrient transports and exchanges of nutrients
between shallow regions and the open Baltic sea in present and future
climate, Ambio, 41, 586–599, https://doi.org/10.1007/s13280-012-0322-1, 2012.
Feistel, R:
TEOS-10: a new international oceanographic standard for seawater, ice, fluid
water, and humid air, Int. J. Thermophys., 33, 1335–1351,
2012.
Geyer, B.: High-resolution atmospheric reconstruction for Europe 1948–2012: coastDat2, Earth Syst. Sci. Data, 6, 147–164, https://doi.org/10.5194/essd-6-147-2014, 2014.
Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Balaji, V., Böning, C. W., Chassignet, E. P., Curchitser, E., Deshayes, J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M., Haak, H., Hallberg, R. W., Heimbach, P., Hewitt, H. T., Holland, D. M., Ilyina, T., Jungclaus, J. H., Komuro, Y., Krasting, J. P., Large, W. G., Marsland, S. J., Masina, S., McDougall, T. J., Nurser, A. J. G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J., Taylor, K. E., Treguier, A. M., Tsujino, H., Uotila, P., Valdivieso, M., Wang, Q., Winton, M., and Yeager, S. G.: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project, Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, 2016.
Gröger, M., Dieterich, C., Meier, H. E. M., and Schimanke, S.: Thermal
air–sea coupling in hindcast simulations for the North Sea and Baltic Sea
on the NW European shelf, Tellus A, 67, 26911,
https://doi.org/10.3402/tellusa.v67.26911, 2015.
Gröger, M., Arneborg, L., Dieterich, C., Höglund, A., and Meier,
H. E. M.: Summer hydrographic changes in the Baltic Sea, Kattegat and
Skagerrak projected in an ensemble of climate scenarios downscaled with a
coupled regional ocean–sea ice–atmosphere model, Clim. Dynam., 53, 5945–5966,
https://doi.org/10.1007/s00382-019-04908-9, 2019.
Gröger, M., Dieterich, C., Haapala, J., Ho-Hagemann, H. T. M., Hagemann, S., Jakacki, J., May, W., Meier, H. E. M., Miller, P. A., Rutgersson, A., and Wu, L.: Coupled regional Earth system modeling in the Baltic Sea region, Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, 2021a.
Gröger, M., Dieterich, C., and Meier, H. E. M.: Is interactive air sea
coupling relevant for simulating the future climate of Europe?, Clim.
Dynam., 56, 491–514, https://doi.org/10.1007/s00382-020-05489-8, 2021b.
Gröger, M., Dieterich, C., Dutheil, C., Meier, H. E. M., and Sein, D. V.: Atmospheric rivers in CMIP5 climate ensembles downscaled with a high-resolution regional climate model, Earth Syst. Dynam., 13, 613–631, https://doi.org/10.5194/esd-13-613-2022, 2022.
Hegerl, G. C., Ballinger, A. P., Booth, B. B. B., Borchert, L. F., Brunner, L., Donat, M. G.,
Doblas-Reyes, F. J., Harris, G. R., Lowe, J., Mahmood, R., Mignot, J., Murphy, J. M.,
Swingedouw, D., and Weisheimer, A: Toward Consistent Observational Constraints
in Climate Predictions and Projections, Front. Clim., 3, 678109, https://doi.org/10.3389/fclim.2021.678109, 2021.
Hobday, A. J., Oliver, E. C. J., Gupta, A. S., Benthuysen, J. A., Burrows, M. T., Donat, M. G., Holbrook, N. J., Moore, P. J., Thomsen, M. S., Wernberg, T., and Smale, D. A.: Categorizing and naming marine heatwaves,
Oceanography, 31, 162–173, 2018.
Hofmeister, R., Burchard, H., and Beckers, J.-M.: Non-uniform adaptive
vertical grids for 3D numerical ocean models, Ocean Model., 33,
70–86, https://doi.org/10.1016/j.ocemod.2009.12.003, 2010.
Hordoir, R. and Meier, H. E. M: Effect of climate change on the thermal
stratification of the baltic sea: a sensitivity experiment, Clim. Dynam. 38,
1703–1713, https://doi.org/10.1007/s00382-011-1036-y, 2012.
Hordoir, R., Axell, L., Höglund, A., Dieterich, C., Fransner, F., Gröger, M., Liu, Y., Pemberton, P., Schimanke, S., Andersson, H., Ljungemyr, P., Nygren, P., Nord, A., Jönsson, A., Lake, I., Döös, K., Hieronymus, M., Dietze, H., Löptien, U., and Haapala, J.: Nemo-Nordic 1.0: A NEMO based ocean model for Baltic & North Seas, research and operational applications, Zenodo [data set], https://doi.org/10.5281/zenodo.1493117, 2018.
Hordoir, R., Axell, L., Höglund, A., Dieterich, C., Fransner, F., Gröger, M., Liu, Y., Pemberton, P., Schimanke, S., Andersson, H., Ljungemyr, P., Nygren, P., Falahat, S., Nord, A., Jönsson, A., Lake, I., Döös, K., Hieronymus, M., Dietze, H., Löptien, U., Kuznetsov, I., Westerlund, A., Tuomi, L., and Haapala, J.: Nemo-Nordic 1.0: a NEMO-based ocean model for the Baltic and North seas – research and operational applications, Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019, 2019.
Hunke, E. C. and Dukowicz, J. K.: An elastic-viscous-plastic model
for sea ice dynamics, J. Phys. Oceanogr., 27, 1849–1867, 1997.
Hunke, E. C. and Dukowicz, J. K.: An elastic-viscous-plastic model for sea
ice dynamics, J. Phys. Oceanogr., 27, 1849–1867, 1997.
Kara, A. B., Hurlburt, H. E., and Wallcraft, A. J. : Stability-Dependent
Exchange Coefficients for Air–Sea Fluxes, J. Atmos.
Ocean. Tech., 22, 1080–1094,
https://doi.org/10.1175/JTECH1747.1, 2005.
Kleine, E. and Skylar, S.: Mathematical features of Hibler's model of
large-scale sea-ice dynamics, Ocean Dynam., 47, 179–230, 1995.
Kent, E. C., Rayner, N. A., Berry, D. I., Eastman, R., Grigorieva, V. G., Huang, B., Kennedy, J. J.,
Smith, S. R., and Willett, K. M.: Observing Requirements for Long-Term Climate
Records at the Ocean Surface, Front. Mar. Sci., 6, 441, https://doi.org/10.3389/fmars.2019.00441, 2019.
Knudsen, M.: Erneuerung der unteren Wasserschichte in der Ostsee,
Annalen der Hydrographie und Maritimen Meteorologie, 28, 586–590, 1900.
Krauss, W.: The erosion of a thermocline, J. Phys. Oceanogr., 11, 415–433,
https://doi.org/10.1175/1520-0485(1981)011<0415:TEOAT>2.0.CO;2, 1981.
Kushnir, Y.: Interdecadal Variations in North Atlantic Sea Surface
Temperature and Associated Atmospheric Conditions, J. Climate, 7,
141–157, https://journals.ametsoc.org/view/journals/clim/7/1/1520-0442_1994_007_0141_ivinas_2_0_co_2.xml (last access: 17 November 2022), 1994.
Large, W. G. and Yeager, S.: Diurnal to decadal global forcing for ocean and
sea-ice models: the data sets and flux climatologies, NCAR Technical Note,
NCAR/TN-460+STR, CGD Division of the National Center for Atmospheric
Research, https://doi.org/10.5065/D6KK98Q6, 2004.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air-sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009.
Lehmann, A., Krauss, W., and Hinrichsen, H.-H.: Effects of remote and local
atmospheric forcing on circulation and upwelling in the Baltic Sea, Tellus
A, 54, 299–316, https://doi.org/10.3402/tellusa.v54i3.12138, 2002.
Lehmann, A., Myrberg, K., and Höflich, K. : A statistical approach to
coastal upwelling in the Baltic Sea based on the analysis of satellite data
for 1990–2009, Oceanologia, 54, 369–393, 2012.
Levier, B., Treìguier, A.-M., Madec, G., and Garnier, V.: Free surface and
variable volume in the nemo code, Tech. rep., MERSEA MERSEA IP report
WP09-CNRS-STR-03-1A, 47 pp., Zenodo, https://doi.org/10.5281/zenodo.3244182, 2007.
Liblik, T. and Lips, U.: Characteristics and variability of the vertical
thermohaline structure in the Gulf of Finland in summer, Borela Environ.
Res., 16, 73–83, 2011.
Liblik, T. and Lips, U.: Stratification has strengthened in the Baltic
Sea–an analysis of 35 years of observational data, Front. Earth
Sci., 7, 174, https://doi.org/10.3389/feart.2019.00174, 2019.
Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., and Arheimer, B.:
Development and testing of the HYPE (Hydrological Predictions for the
Environment) water quality model for different spatial scales, Hydrol. Res.,
41, 295–319, https://doi.org/10.2166/nh.2010.007, 2010.
Lips, U., Kikas, V., Liblik, T., and Lips, I.: Multi-sensor in situ observations to resolve the sub-mesoscale features in the stratified Gulf of Finland, Baltic Sea, Ocean Sci., 12, 715–732, https://doi.org/10.5194/os-12-715-2016, 2016.
Liu, Y., Meier, H. E. M., and Eilola, K.: Nutrient transports in the Baltic Sea – results from a 30-year physical–biogeochemical reanalysis, Biogeosciences, 14, 2113–2131, https://doi.org/10.5194/bg-14-2113-2017, 2017.
Matthäus, W. and Franck, H.: Characteristics of major Baltic
inflows – a statistical analysis, Cont. Shelf Res., 12, 1375–1400, 1992.
Meier, H. E. M.: On the parameterization of mixing in three-dimensional
Baltic Sea models, J. Geophys. Res.-Oceans, 106,
30997–31016, 2001.
Meier, H. E. M.: Modeling the pathways and ages of inflowing salt- and
freshwater in the Baltic Sea, Estuarine, Coast. Shelf Sci., 74, 610–627, 2007.
Meier, H. E. M. and Saraiva, S.: Projected Oceanographical Changes in the
Baltic Sea until 2100., Oxford Research Encyclopedia of Climate Science,
online publication date, https://doi.org/10.1093/acrefore/9780190228620.013.69, 2020.
Meier, H. E. M., Döscher, R., Coward, A. C., Nycander, J., and Döös, K.:
RCO–Rossby Centre regional Ocean climate model: model description (version
1.0) and first results from the hindcast period 1992/93, Reports
Oceanography No. 26, SMHI, Norrköping, Sweden, p. 102, https://www.diva-portal.org/smash/get/diva2:947959/FULLTEXT01.pdf (last access: 17 November 2022), 1999.
Meier, H. E. M, Edman, M., Eilola, K., Placke, M., Neumann, T., Andersson, H.,
Brunnabend, S.-E., Dieterich, C., Frauen, C., Friedland, R., Gröger, M.,
Gustafsson, B., Gustafsson, E., Isaev, A., Kniebusch, M., Kuznetsov, I.,
Müller-Karulis, B., Omstedt, A., Ryabchenko, V., Saraiva, S., and
Savchuk, O. P.: Assessment of eutrophication abatement scenarios for the
Baltic Sea by multi-model ensemble simulations, Front. Mar. Sci., 5, 440, https://doi.org/10.3389/fmars.2018.00440, 2018.
Meier, H. E. M., Edman, M., Eilola, K., Placke, M., Neumann, T., Andersson,
H., Brunnabend, S., Dieterich, C., Frauen, C., Friedland, R., Gröger,
M., Gustafsson, B., Gustafsson, E., Isaev, A., Kniebusch, M., Kuznetsov, I.,
Müller-Karulis, B., Naumann, M., Omstedt, A., Ryabchenko, V., Saraiva,
S., and Savchuk, O.: Assessment of uncertainties in scenario simulations of
biogeochemical cycles in the Baltic Sea, Front. Mar. Sci., 6, 46,
https://doi.org/10.3389/fmars.2019.00046, 2019a.
Meier, H. E. M., Dieterich, C., Eilola, K., Gröger, M., Höglund, A.,
Radtke, H., Saraiva, S., and Wåhlström, I.: Future projections of
record-breaking sea surface temperature and cyanobacteria bloom events in
the Baltic Sea, AMBIO, 48, 1362–1376, https://doi.org/10.1007/s13280-019-01235-5, 2019b.
Meier, H. E. M., Dieterich, C., and Gröger, M.: Natural variability is a
large source of uncertainty in future projections of hypoxia in the Baltic
Sea, Commun. Earth Environ., 2, 50, https://doi.org/10.1038/s43247-021-00115-9,
2021a.
Meier, H. E. M., Dieterich, C., Gröger, M., Dutheil, C., Börgel, F., Safonova, K., Christensen, O. B., and Kjellström, E.: Oceanographic regional climate projections for the Baltic Sea until 2100, Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, 2022.
Myrberg, K., Ryabchenko, V., Isaev, A., Vankevich, R., Andrejev, O.,
Bendtsen, J., Erichsen, A., Funkquist, L., Inkala, A., Neelov, I., Rasmus,
K., Rodriguez Medina, M., Raudsepp, U., Passenko, J., Söderkvist, J.,
Sokolov, A., Kuosa, H., Anderson, T. R., Lehmann, A., and Skogen, M. D.:
Validation of three-dimensional hydrodynamic models of the Gulf of Finland,
Boreal Environ. Res., 15, 453–479, 2010.
Neumann, T.: Model code and boundary data for “Non-Redfield carbon model for the Baltic Sea (ERGOM version 1.2) – Implementation and Budget estimates” paper (Version 2), Zenodo [data set], https://doi.org/10.5281/zenodo.6560174, 2022.
Oliver, E. C. Burrows, M. T., Donat, M. G., Sen Gupta, A., Alexander, L. V.,
Perkins-Kirkpatrick, S. E., and Thomsen, M. S.: rojected marine heatwaves in the
21st century and the potential for ecological impact, Front. Mar.
Sci., 6, 734, https://doi.org/10.3389/fmars.2019.00734, 2019.
Omstedt, A.: Modelling the Baltic Sea as thirteen sub-basins with vertical
resolution, Tellus A, 42, 286–301, 1990.
Omstedt, A. and Axell, L. B.: Modeling the variations of salinity and
temperature in the large Gulfs of the Baltic Sea, Cont. Shelf
Res., 23, 265–294, 2003.
Onken, R., Baschek, B., and Angel-Benavides, I. M.: Very high-resolution modelling of submesoscale turbulent patterns and processes in the Baltic Sea, Ocean Sci., 16, 657–684, https://doi.org/10.5194/os-16-657-2020, 2020.
Pätsch, J., Burchard, H., Dieterich, C., Gräwe, U., Gröger, M.,
Mathis, M., Kapitza, H., Bersch, M., Moll, A., Pohlmann, T., Su, J.,
Ho-Hagemann, H. T., Schulz, A., Elizalde, A., and Eden, C.: An evaluation of
the North Sea circulation in global and regional models relevant for
ecosystem simulations, Ocean Model., 116, 70–95,
https://doi.org/10.1016/j.ocemod.2017.06.005, 2017.
Placke, M., Meier, H. E. M., Gräwe, U., Neumann, T., Frauen, C., and Liu, Y.:
Long-Term Mean Circulation of the Baltic Sea as Represented by Various Ocean
Circulation Models, Front. Mar. Sci., 5, 287, https://doi.org/10.3389/fmars.2018.00287,
2018.
Placke, M., Meier, H. E. M., and Neumann, T.: Sensitivity of the Baltic Sea
overturning circulation to long-term atmospheric and hydrological changes,
J. Geophys. Res.-Oceans, 126, e2020JC016079, https://doi.org/10.1029/2020JC016079,
2021.
Saraiva, S., Meier, H. E. M., Andersson, H., Höglund, A., Dieterich, C.,
Gröger, M. Hordoir, H., and Eilola, K.: Baltic Sea ecosystem response to
various nutrient load scenarios in present and future climates, Clim.
Dynam., 52, 3369–3387, https://doi.org/10.1007/s00382-018-4330-0, 2019.
Samuelsson, P., Jones, C. G., Willén, U., Ullerstig, A., Gollvik, S.,
Hansson, U., Jansson, E., Kjellström, C., Nikulin, G., and Wyser K.: The
Rossby Centre Regional Climate model RCA3: model description and
performance, Tellus A, 63, 4–23, 2011.
Schimanke, S.: Subset of UERRA Harmonie v1 Reanalysis variables, https://doi.org/10.12754/data-2022-0005, 2022.
Schinke, H. and Matthäus, W.: On the causes of major Baltic
inflows–an analysis of long time series, Cont. Shelf Res.,
18, 67–97, 1998.
Su, J.: HBM DKSS version 2013 (DKSS-2013), Zenodo [data set], https://doi.org/10.5281/zenodo.6769238, 2022.
Suursaar, Ü: Combined impact of summer heat waves and coastal upwelling
in the Baltic Sea, Oceanologia, 62, 511–524,
https://doi.org/10.1016/j.oceano.2020.08.003, 2020.
Stigebrandt, A.: A model for the exchange of water and salt between the
Baltic and the Skagerrak, J. Phys. Oceanogr., 13, 411–427, 1983.
Stigebrandt, A.: A model for the vertial circulation of the Baltic deep
water, J. Phys. Oceanogr., 17, 1772–1785, 1987.
Väli, G., Meier, H. M., and Elken, J.: Simulated halocline variability
in the Baltic Sea and its impact on hypoxia during 1961–2007, J. Geophys. Res.-Oceans, 118,
6982–7000, 2013.
Väli, G., Zhurbas, V., Lips, U., and Laanemets, J.: Submesoscale structures
related to upwelling events in the Gulf of Finland, Baltic Sea (numerical
experiments), J. Mar. Syst., 171, 31–42, https://doi.org/10.1016/j.jmarsys.2016.06.010, 2017.
Väli, G., Zhurbas, V., Lips, U., and Laanemets, J.: Clustering of
floating particles due to submesoscale dynamics: a simulation study for the
Gulf of Finland, Baltic Sea, 11,
21–35, https://doi.org/10.7868/s2073667318020028, 2018.
Väli, G., Meier, H. E. M., Placke, M., and Dieterich, C.: River runoff
forcing for ocean modeling within the Baltic Sea Model Intercomparison
Project, Meereswiss. Ber., Warnemünde, 113, 1–25,
https://doi.org/10.12754/msr-2019-0113, 2019.
Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., and
Maqueda, M. A. M.: Simulating the mass balance and salinity of Arctic and
Antarctic sea ice. 1. Model description and validation, Ocean Model., 27,
33–53, https://doi.org/10.1016/j.ocemod.2008.10.005, 2009.
Vortmeyer-Kley, R., Lünsmann, B., Berthold, M., Gräwe, U., and Feudel, U.:
Eddies: Fluid Dynamical Niches or Transporters? – A Case Study in the Western
Baltic Sea, Front. Mar. Sci., 6, 118, https://doi.org/10.3389/fmars.2019.00118, 2019a.
Vortmeyer-Kley, R., Holtermann, P., Feudel, U., and Gräwe, U.: Comparing Eulerian and
Lagrangian eddy census for a tide-less, semi-enclosed basin, the Baltic Sea,
Ocean Dynam., 69, 701–717,
https://doi.org/10.1007/s10236-019-01269-z, 2019b.
Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie,
B., Gröger, M., Eilola, K., Andersson, H., and Plikshs, M.:
Combined climate change and nutrient load impacts on future habitats and
eutrophication indicators in a eutrophic coastal sea, Limnol. Oceanogr.,
65, 2170–2187, https://doi.org/10.1002/lno.11446, 2020.
Wåhlström, I., Hammar, L., Hume, D., Pålsson, J., Almroth-Rosell, E., Dieterich, C., Arneborg, L., Gröger, M., Mattsson, M., Zillén Snowball, L., Kågesten, G., Törnqvist, O., Breviere, E., Brunnabend, S.-E., and Jonsson, P. R.: Projected climate change impact on a coastal sea–As significant as all current pressures combined, Glob. Change Biol., 28, 5310–5319, https://doi.org/10.1111/gcb.16312, 2022.
Welander, P.: Two-layer exchange in an estuary basin, with special
reference to the Baltic Sea, J. Phys. Oceanogr., 4, 542–556, 1974.
Winton, M.: A reformulated three-layer sea ice model, J.
Atmos. Ocean. Tech., 17, 525–531, 2000.
Zhurbas, V., Väli, G., and Kuzmina, N.: Rotation of floating particles in submesoscale cyclonic and anticyclonic eddies: a model study for the southeastern Baltic Sea, Ocean Sci., 15, 1691–1705, https://doi.org/10.5194/os-15-1691-2019, 2019a.
Zhurbas, V., Väli, G., Kostianoy, A., and Lavrova, O.: Hindcast of the
mesoscale eddy field in the Southeastern Baltic Sea: Model output vs
satellite imagery, Russian Journal of Earth Sciences, 19, 1–17, https://doi.org/10.2205/2019ES000672, 2019b.
Zumwald, M., Knüsel, B., Baumberger, C., Hirsch Hadorn, G., Bresch, D. N.,
and Knutti, R.: Understanding and assessing uncertainty of observational climate
datasets for model evaluation using ensembles, WIREs Clim Change, 11, e654, https://doi.org/10.1002/wcc.654, 2020.
Short summary
Comparisons of oceanographic climate data from different models often suffer from different model setups, forcing fields, and output of variables. This paper provides a protocol to harmonize these elements to set up multidecadal simulations for the Baltic Sea, a marginal sea in Europe. First results are shown from six different model simulations from four different model platforms. Topical studies for upwelling, marine heat waves, and stratification are also assessed.
Comparisons of oceanographic climate data from different models often suffer from different...