Articles | Volume 15, issue 20
https://doi.org/10.5194/gmd-15-7879-2022
https://doi.org/10.5194/gmd-15-7879-2022
Development and technical paper
 | 
26 Oct 2022
Development and technical paper |  | 26 Oct 2022

Modeling the topographic influence on aboveground biomass using a coupled model of hillslope hydrology and ecosystem dynamics

Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers

Related authors

Short-term effects of hurricanes on nitrate-nitrogen runoff loading: a case study of Hurricane Ida using E3SM land model (v2.1)
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-70,https://doi.org/10.5194/gmd-2024-70, 2024
Preprint under review for GMD
Short summary
Discrete Global Grid System-based Flow Routing Datasets in the Amazon and Yukon Basins
Chang Liao, Darren Engwirda, Matthew Cooper, Mingke Li, and Yilin Fang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-398,https://doi.org/10.5194/essd-2023-398, 2024
Preprint under review for ESSD
Short summary
A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023,https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Inclusion of a cold hardening scheme to represent frost tolerance is essential to model realistic plant hydraulics in the Arctic–boreal zone in CLM5.0-FATES-Hydro
Marius S. A. Lambert, Hui Tang, Kjetil S. Aas, Frode Stordal, Rosie A. Fisher, Yilin Fang, Junyan Ding, and Frans-Jan W. Parmentier
Geosci. Model Dev., 15, 8809–8829, https://doi.org/10.5194/gmd-15-8809-2022,https://doi.org/10.5194/gmd-15-8809-2022, 2022
Short summary
Impact of the numerical solution approach of a plant hydrodynamic model (v0.1) on vegetation dynamics
Yilin Fang, L. Ruby Leung, Ryan Knox, Charlie Koven, and Ben Bond-Lamberty
Geosci. Model Dev., 15, 6385–6398, https://doi.org/10.5194/gmd-15-6385-2022,https://doi.org/10.5194/gmd-15-6385-2022, 2022
Short summary

Related subject area

Climate and Earth system modeling
Development and evaluation of the interactive Model for Air Pollution and Land Ecosystems (iMAPLE) version 1.0
Xu Yue, Hao Zhou, Chenguang Tian, Yimian Ma, Yihan Hu, Cheng Gong, Hui Zheng, and Hong Liao
Geosci. Model Dev., 17, 4621–4642, https://doi.org/10.5194/gmd-17-4621-2024,https://doi.org/10.5194/gmd-17-4621-2024, 2024
Short summary
A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs)
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024,https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Parallel SnowModel (v1.0): a parallel implementation of a distributed snow-evolution modeling system (SnowModel)
Ross Mower, Ethan D. Gutmann, Glen E. Liston, Jessica Lundquist, and Soren Rasmussen
Geosci. Model Dev., 17, 4135–4154, https://doi.org/10.5194/gmd-17-4135-2024,https://doi.org/10.5194/gmd-17-4135-2024, 2024
Short summary
LB-SCAM: a learning-based method for efficient large-scale sensitivity analysis and tuning of the Single Column Atmosphere Model (SCAM)
Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev., 17, 3975–3992, https://doi.org/10.5194/gmd-17-3975-2024,https://doi.org/10.5194/gmd-17-3975-2024, 2024
Short summary
Quantifying the impact of SST feedback frequency on Madden–Julian oscillation simulations
Yung-Yao Lan, Huang-Hsiung Hsu, and Wan-Ling Tseng
Geosci. Model Dev., 17, 3897–3918, https://doi.org/10.5194/gmd-17-3897-2024,https://doi.org/10.5194/gmd-17-3897-2024, 2024
Short summary

Cited articles

Ashby, S. F. and Falgout, R. D.: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations, Nucl. Sci. Eng., 124, 145–159, https://doi.org/10.13182/Nse96-A24230, 1996. 
Allen, C. D., Breshears, D. D., and McDowell, N. G.: On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene, Ecosphere, 6, 129, https://doi.org/10.1890/Es15-00203.1, 2015. 
Becker, P., Rabenold, P. E., Idol, J. R., and Smith, A. P.: Water Potential Gradients for Gaps and Slopes in a Panamanian Tropical Moist Forests Dry Season, J. Trop. Ecol., 4, 173–184, https://doi.org/10.1017/S0266467400002674, 1988. 
Benitez, F. L., Anderson, L. O., and Formaggio, A. R.: Evaluation of geostatistical techniques to estimate the spatial distribution of aboveground biomass in the Amazon rainforest using high-resolution remote sensing data, Acta Amazon., 46, 151–160, https://doi.org/10.1590/1809-4392201501254, 2016. 
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrol. Sci. B., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. 
Download
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.