Articles | Volume 15, issue 20
https://doi.org/10.5194/gmd-15-7879-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-7879-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling the topographic influence on aboveground biomass using a coupled model of hillslope hydrology and ecosystem dynamics
Pacific Northwest National Laboratory, Richland, WA, USA
L. Ruby Leung
Pacific Northwest National Laboratory, Richland, WA, USA
Charles D. Koven
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Gautam Bisht
Pacific Northwest National Laboratory, Richland, WA, USA
Matteo Detto
Department of Ecology and Evolutionary Biology, Princeton University,
Princeton, NJ, USA
Yanyan Cheng
Department of Industrial Systems Engineering and Management, National
University of Singapore, Singapore
Nate McDowell
Pacific Northwest National Laboratory, Richland, WA, USA
School of Biological Sciences, Washington State University, Pullman,
WA, USA
Helene Muller-Landau
Smithsonian Tropical Research Institute, Balboa, Panama
S. Joseph Wright
Smithsonian Tropical Research Institute, Balboa, Panama
Jeffrey Q. Chambers
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Related authors
Chang Liao, L. Ruby Leung, Yilin Fang, Teklu Tesfa, and Robinson Negron-Juarez
Geosci. Model Dev., 18, 4601–4624, https://doi.org/10.5194/gmd-18-4601-2025, https://doi.org/10.5194/gmd-18-4601-2025, 2025
Short summary
Short summary
Understanding horizontal groundwater flow is important for understanding how water moves through the ground. Current climate models often simplify this process because they do not have information about the land surface that is detailed enough. Our study developed a new model that divides the land surface into hillslopes to better represent how groundwater flows. This model can help improve predictions of water availability and how it affects ecosystems.
Chang Liao, Darren Engwirda, Matthew G. Cooper, Mingke Li, and Yilin Fang
Earth Syst. Sci. Data, 17, 2035–2062, https://doi.org/10.5194/essd-17-2035-2025, https://doi.org/10.5194/essd-17-2035-2025, 2025
Short summary
Short summary
Discrete global grid systems, or DGGS, are digital frameworks that help us organize information about our planet. Although scientists have used DGGS in areas like weather and nature, using them in the water cycle has been challenging because some core datasets are missing. We created a way to generate these datasets. We then developed the datasets in the Amazon and Yukon basins, which play important roles in our planet's climate. These datasets may help us improve our water cycle models.
Junyan Ding, Nate McDowell, Vanessa Bailey, Nate Conroy, Donnie J. Day, Yilin Fang, Kenneth M. Kemner, Matthew L. Kirwan, Charlie D. Koven, Matthew Kovach, Patrick Megonigal, Kendalynn A. Morris, Teri O’Meara, Stephanie C. Pennington, Roberta B. Peixoto, Peter Thornton, Mike Weintraub, Peter Regier, Leticia Sandoval, Fausto Machado-Silva, Alice Stearns, Nick Ward, and Stephanie J. Wilson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1544, https://doi.org/10.5194/egusphere-2025-1544, 2025
Short summary
Short summary
We used a vegetation model to study why coastal forests are dying due to rising water levels and what happens to the ecosystem when marshes take over. We found that tree death is mainly caused by water-damaged roots, leading to major changes in the environment, such as reduced water use and carbon storage. Our study helps explain how coastal ecosystems are shifting and offers new ideas to explore in future field research.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev., 18, 19–32, https://doi.org/10.5194/gmd-18-19-2025, https://doi.org/10.5194/gmd-18-19-2025, 2025
Short summary
Short summary
Hurricanes may worsen water quality in the lower Mississippi River basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate–nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in the LMRB during Hurricane Ida in 2021, albeit less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Marius S. A. Lambert, Hui Tang, Kjetil S. Aas, Frode Stordal, Rosie A. Fisher, Yilin Fang, Junyan Ding, and Frans-Jan W. Parmentier
Geosci. Model Dev., 15, 8809–8829, https://doi.org/10.5194/gmd-15-8809-2022, https://doi.org/10.5194/gmd-15-8809-2022, 2022
Short summary
Short summary
In this study, we implement a hardening mortality scheme into CTSM5.0-FATES-Hydro and evaluate how it impacts plant hydraulics and vegetation growth. Our work shows that the hydraulic modifications prescribed by the hardening scheme are necessary to model realistic vegetation growth in cold climates, in contrast to the default model that simulates almost nonexistent and declining vegetation due to abnormally large water loss through the roots.
Yilin Fang, L. Ruby Leung, Ryan Knox, Charlie Koven, and Ben Bond-Lamberty
Geosci. Model Dev., 15, 6385–6398, https://doi.org/10.5194/gmd-15-6385-2022, https://doi.org/10.5194/gmd-15-6385-2022, 2022
Short summary
Short summary
Accounting for water movement in the soil and water transport within the plant is important for plant growth in Earth system modeling. We implemented different numerical approaches for a plant hydrodynamic model and compared their impacts on the simulated aboveground biomass (AGB) at single points and globally. We found care should be taken when discretizing the number of soil layers for numerical simulations as it can significantly affect AGB if accuracy and computational costs are of concern.
Yunxiang Chen, Jie Bao, Yilin Fang, William A. Perkins, Huiying Ren, Xuehang Song, Zhuoran Duan, Zhangshuan Hou, Xiaoliang He, and Timothy D. Scheibe
Geosci. Model Dev., 15, 2917–2947, https://doi.org/10.5194/gmd-15-2917-2022, https://doi.org/10.5194/gmd-15-2917-2022, 2022
Short summary
Short summary
Climate change affects river discharge variations that alter streamflow. By integrating multi-type survey data with a computational fluid dynamics tool, OpenFOAM, we show a workflow that enables accurate and efficient streamflow modeling at 30 km and 5-year scales. The model accuracy for water stage and depth average velocity is −16–9 cm and 0.71–0.83 in terms of mean error and correlation coefficients. This accuracy indicates the model's reliability for evaluating climate impact on rivers.
Yanyan Cheng, Kalli Furtado, Cenlin He, Fei Chen, Alan Ziegler, Song Chen, Matteo Detto, Yuna Mao, Baoxiang Pan, Yoshiko Kosugi, Marryanna Lion, Shoji Noguchi, Satoru Takanashi, Lulie Melling, and Baoqing Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3898, https://doi.org/10.5194/egusphere-2025-3898, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Tropical land surface processes shape the Earth’s climate, but models often lack accuracy in the tropics due to limited data for validation. We improved the Noah-MP land surface model for the tropics using data from forests in Panama and Malaysia, and an urban site in Singapore. Calibration enhanced simulations of energy and water fluxes, and revealed key vegetation and soil parameters, as well as future directions for model improvement in tropical regions.
Zeli Tan, Donghui Xu, Sourav Taraphdar, Jiangqin Ma, Gautam Bisht, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 29, 3833–3852, https://doi.org/10.5194/hess-29-3833-2025, https://doi.org/10.5194/hess-29-3833-2025, 2025
Short summary
Short summary
Flow depth and velocity determine various river functions, but their high-resolution simulations are expensive. Here, we developed a downscaling approach that can provide fast and accurate estimation of high-resolution river hydrodynamics. The 84-fold acceleration achieved by the method makes reliable flood risk analysis that needs hundreds or thousands of model runs feasible. More importantly, it provides an opportunity to couple large-scale hydrodynamics with local processes in river models.
Jianfeng Li, Andrew Geiss, Zhe Feng, L. Ruby Leung, Yun Qian, and Wenjun Cui
Earth Syst. Sci. Data, 17, 3721–3740, https://doi.org/10.5194/essd-17-3721-2025, https://doi.org/10.5194/essd-17-3721-2025, 2025
Short summary
Short summary
We developed a high-resolution (4 km and hourly) observational derecho dataset over the United States east of the Rocky Mountains from 2004 to 2021 by using a mesoscale convective system dataset, bow echoes detected by a machine learning method, hourly gust speeds, and physically based identification criteria.
Chang Liao, L. Ruby Leung, Yilin Fang, Teklu Tesfa, and Robinson Negron-Juarez
Geosci. Model Dev., 18, 4601–4624, https://doi.org/10.5194/gmd-18-4601-2025, https://doi.org/10.5194/gmd-18-4601-2025, 2025
Short summary
Short summary
Understanding horizontal groundwater flow is important for understanding how water moves through the ground. Current climate models often simplify this process because they do not have information about the land surface that is detailed enough. Our study developed a new model that divides the land surface into hillslopes to better represent how groundwater flows. This model can help improve predictions of water availability and how it affects ecosystems.
Mara Y. McPartland, Tomas Lovato, Charles D. Koven, Jamie D. Wilson, Briony Turner, Colleen M. Petrik, José Licón-Saláiz, Fang Li, Fanny Lhardy, Jaclyn Clement Kinney, Michio Kawamiya, Birgit Hassler, Nathan P. Gillett, Cheikh Modou Noreyni Fall, Christopher Danek, Chris M. Brierley, Ana Bastos, and Oliver Andrews
EGUsphere, https://doi.org/10.5194/egusphere-2025-3246, https://doi.org/10.5194/egusphere-2025-3246, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Coupled Model Intercomparison Project (CMIP) is an international consortium of climate modeling groups that produce coordinated experiments in order to evaluate human influence on the climate and test knowledge of Earth systems. This paper describes the data requested for Earth systems research in CMIP7. We detail the request for model output of the carbon cycle, the flows of energy among the atmosphere, land and the oceans, and interactions between these and the global climate.
Victor Brovkin, Benjamin M. Sanderson, Noel G. Brizuela, Tomohiro Hajima, Tatiana Ilyina, Chris D. Jones, Charles Koven, David Lawrence, Peter Lawrence, Hongmei Li, Spencer Liddcoat, Anastasia Romanou, Roland Séférian, Lori T. Sentman, Abigail L. S. Swann, Jerry Tjiputra, Tilo Ziehn, and Alexander J. Winkler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3270, https://doi.org/10.5194/egusphere-2025-3270, 2025
Short summary
Short summary
Idealized experiments with Earth system models provide a basis for understanding the response of the carbon cycle to emissions. We show that most models exhibit a quasi-linear relationship between cumulative carbon uptake on land and in the ocean and hypothesize that this relationship does not depend on emission pathways. We reduce the coupled system to only one differential equation, which represents a powerful simplification of the Earth system dynamics as a function of fossil fuel emissions.
Lingbo Li, Hong-Yi Li, Guta Abeshu, Jinyun Tang, L. Ruby Leung, Chang Liao, Zeli Tan, Hanqin Tian, Peter Thornton, and Xiaojuan Yang
Earth Syst. Sci. Data, 17, 2713–2733, https://doi.org/10.5194/essd-17-2713-2025, https://doi.org/10.5194/essd-17-2713-2025, 2025
Short summary
Short summary
We have developed new maps that reveal how organic carbon from soil leaches into headwater streams over the contiguous United States. We use advanced artificial intelligence techniques and a massive amount of data, including observations at over 2500 gauges and a wealth of climate and environmental information. The maps are a critical step in understanding and predicting how carbon moves through our environment, hence making them a useful tool for tackling climate challenges.
Chang Liao, Darren Engwirda, Matthew G. Cooper, Mingke Li, and Yilin Fang
Earth Syst. Sci. Data, 17, 2035–2062, https://doi.org/10.5194/essd-17-2035-2025, https://doi.org/10.5194/essd-17-2035-2025, 2025
Short summary
Short summary
Discrete global grid systems, or DGGS, are digital frameworks that help us organize information about our planet. Although scientists have used DGGS in areas like weather and nature, using them in the water cycle has been challenging because some core datasets are missing. We created a way to generate these datasets. We then developed the datasets in the Amazon and Yukon basins, which play important roles in our planet's climate. These datasets may help us improve our water cycle models.
Mingjie Shi, Nate McDowell, Huilin Huang, Faria Zahura, Lingcheng Li, and Xingyuan Chen
Biogeosciences, 22, 2225–2238, https://doi.org/10.5194/bg-22-2225-2025, https://doi.org/10.5194/bg-22-2225-2025, 2025
Short summary
Short summary
Using Moderate Resolution Imaging Spectroradiometer data products, we quantitatively estimate the resistance and resilience of ecosystem functions to wildfires that occurred in the Columbia River basin in 2015. The carbon state exhibits lower resistance and resilience than the ecosystem fluxes. The random forest feature importance analysis indicates that burn severity plays a minor role in the resilience of grassland and a relatively major role in the resilience of forest and savanna.
Naser Mahfouz, Hassan Beydoun, Johannes Mülmenstädt, Noel Keen, Adam C. Varble, Luca Bertagna, Peter Bogenschutz, Andrew Bradley, Matthew W. Christensen, T. Conrad Clevenger, Aaron Donahue, Jerome Fast, James Foucar, Jean-Christophe Golaz, Oksana Guba, Walter Hannah, Benjamin Hillman, Robert Jacob, Wuyin Lin, Po-Lun Ma, Yun Qian, Balwinder Singh, Christopher Terai, Hailong Wang, Mingxuan Wu, Kai Zhang, Andrew Gettelman, Mark Taylor, L. Ruby Leung, Peter Caldwell, and Susannah Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2025-1868, https://doi.org/10.5194/egusphere-2025-1868, 2025
Short summary
Short summary
Our study assesses the aerosol effective radiative forcing in a global cloud-resolving atmosphere model at ultra-high resolution. We demonstrate that global ERFaer signal can be robustly reproduced across resolutions when aerosol activation processes are carefully parameterized. Further, we argue that simplified prescribed aerosol schemes will open the door for further process/mechanism studies under controlled conditions.
Pengfei Shi, L. Ruby Leung, and Bin Wang
Geosci. Model Dev., 18, 2443–2460, https://doi.org/10.5194/gmd-18-2443-2025, https://doi.org/10.5194/gmd-18-2443-2025, 2025
Short summary
Short summary
Improving climate predictions has significant socio-economic impacts. In this study, we develop and apply a new weakly coupled ocean data assimilation (WCODA) system to a coupled climate model. The WCODA system improves simulations of ocean temperature and salinity across many global regions. This system is meant to advance our understanding of the ocean's role in climate predictability.
Junyan Ding, Nate McDowell, Vanessa Bailey, Nate Conroy, Donnie J. Day, Yilin Fang, Kenneth M. Kemner, Matthew L. Kirwan, Charlie D. Koven, Matthew Kovach, Patrick Megonigal, Kendalynn A. Morris, Teri O’Meara, Stephanie C. Pennington, Roberta B. Peixoto, Peter Thornton, Mike Weintraub, Peter Regier, Leticia Sandoval, Fausto Machado-Silva, Alice Stearns, Nick Ward, and Stephanie J. Wilson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1544, https://doi.org/10.5194/egusphere-2025-1544, 2025
Short summary
Short summary
We used a vegetation model to study why coastal forests are dying due to rising water levels and what happens to the ecosystem when marshes take over. We found that tree death is mainly caused by water-damaged roots, leading to major changes in the environment, such as reduced water use and carbon storage. Our study helps explain how coastal ecosystems are shifting and offers new ideas to explore in future field research.
Guta Wakbulcho Abeshu, Hong-Yi Li, Mingjie Shi, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 29, 1847–1864, https://doi.org/10.5194/hess-29-1847-2025, https://doi.org/10.5194/hess-29-1847-2025, 2025
Short summary
Short summary
This study examined how water availability, climate dryness, and plant productivity interact at the catchment scale. Using various indices and statistical methods, we found a 0–2-month lag in these interactions. Strong correlations during peak-productivity months were observed, with a notable hysteresis effect in vegetation response to changes in water availability and climate dryness. The findings help better understand catchment responses to climate variability.
Sarah Camelo da Silva, Bárbara Bomfim, Jeffrey Quintin Chambers, Regison Costa de Oliveira, Cacilda Adélia Sampaio de Souza, Marcelo Nunes Vilas-Boas, Adriano José Nogueira Lima, Niro Higuchi, and Bruno Oliva Gimenez
EGUsphere, https://doi.org/10.5194/egusphere-2025-391, https://doi.org/10.5194/egusphere-2025-391, 2025
Short summary
Short summary
Tropical forest soils are known for low fertility, but support vegetation with high species diversity and biomass. Nutrients and carbon essential for forest functioning are stored in the soil and biomass. The region’s topographic gradient, with variations in soil texture and water table depth, influences species distribution. This study quantified macronutrients and carbon in trunks, leaves, and soil of generalist and specialist species across different soil types.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
James Stegen, Amy J. Burgin, Michelle H. Busch, Joshua B. Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian M. Deines, Julia A. Guimond, Peter Regier, Kenton Rod, Edward K. P. Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin L. Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon N. Sweetman, Jianqiu Zheng, Daniel C. Allen, Elizabeth Herndon, Beth A. Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad F. Patel
Biogeosciences, 22, 995–1034, https://doi.org/10.5194/bg-22-995-2025, https://doi.org/10.5194/bg-22-995-2025, 2025
Short summary
Short summary
The loss and gain of surface water (variable inundation) are common processes across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review the literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev., 18, 19–32, https://doi.org/10.5194/gmd-18-19-2025, https://doi.org/10.5194/gmd-18-19-2025, 2025
Short summary
Short summary
Hurricanes may worsen water quality in the lower Mississippi River basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate–nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in the LMRB during Hurricane Ida in 2021, albeit less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Johannes Mülmenstädt, Andrew S. Ackerman, Ann M. Fridlind, Meng Huang, Po-Lun Ma, Naser Mahfouz, Susanne E. Bauer, Susannah M. Burrows, Matthew W. Christensen, Sudhakar Dipu, Andrew Gettelman, L. Ruby Leung, Florian Tornow, Johannes Quaas, Adam C. Varble, Hailong Wang, Kai Zhang, and Youtong Zheng
Atmos. Chem. Phys., 24, 13633–13652, https://doi.org/10.5194/acp-24-13633-2024, https://doi.org/10.5194/acp-24-13633-2024, 2024
Short summary
Short summary
Stratocumulus clouds play a large role in Earth's climate by reflecting incoming solar energy back to space. Turbulence at stratocumulus cloud top mixes in dry, warm air, which can lead to cloud dissipation. This process is challenging for coarse-resolution global models to represent. We show that global models nevertheless agree well with our process understanding. Global models also think the process is less important for the climate than other lines of evidence have led us to conclude.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Fan Mei, Jennifer M. Comstock, Mikhail S. Pekour, Jerome D. Fast, Krista L. Gaustad, Beat Schmid, Shuaiqi Tang, Damao Zhang, John E. Shilling, Jason M. Tomlinson, Adam C. Varble, Jian Wang, L. Ruby Leung, Lawrence Kleinman, Scot Martin, Sebastien C. Biraud, Brian D. Ermold, and Kenneth W. Burk
Earth Syst. Sci. Data, 16, 5429–5448, https://doi.org/10.5194/essd-16-5429-2024, https://doi.org/10.5194/essd-16-5429-2024, 2024
Short summary
Short summary
Our study explores a comprehensive dataset from airborne field studies (2013–2018) conducted using the US Department of Energy's Gulfstream 1 (G-1). The 236 flights span diverse regions, including the Arctic, US Southern Great Plains, US West Coast, eastern North Atlantic, Amazon Basin in Brazil, and Sierras de Córdoba range in Argentina. This dataset provides unique insights into atmospheric dynamics, aerosols, and clouds and makes data available in a more accessible format.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Benjamin Mark Sanderson, Victor Brovkin, Rosie Fisher, David Hohn, Tatiana Ilyina, Chris Jones, Torben Koenigk, Charles Koven, Hongmei Li, David Lawrence, Peter Lawrence, Spencer Liddicoat, Andrew Macdougall, Nadine Mengis, Zebedee Nicholls, Eleanor O'Rourke, Anastasia Romanou, Marit Sandstad, Jörg Schwinger, Roland Seferian, Lori Sentman, Isla Simpson, Chris Smith, Norman Steinert, Abigail Swann, Jerry Tjiputra, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3356, https://doi.org/10.5194/egusphere-2024-3356, 2024
Short summary
Short summary
This study investigates how climate models warm in response to simplified carbon emissions trajectories, refining understanding of climate reversibility and commitment. Metrics are defined for warming response to cumulative emissions and for the cessation or ramp-down to net-zero and net-negative levels. Results indicate that previous concentration-driven experiments may have overstated zero emissions commitment due to emissions rates exceeding historical levels.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Dongyu Feng, Zeli Tan, Darren Engwirda, Jonathan D. Wolfe, Donghui Xu, Chang Liao, Gautam Bisht, James J. Benedict, Tian Zhou, Mithun Deb, Hong-Yi Li, and L. Ruby Leung
EGUsphere, https://doi.org/10.5194/egusphere-2024-2785, https://doi.org/10.5194/egusphere-2024-2785, 2024
Short summary
Short summary
Our study explores how riverine and coastal flooding during hurricanes is influenced by the interaction of atmosphere, land, river and ocean conditions. Using an advanced Earth system model, we simulate Hurricane Irene to evaluate how meteorological and hydrological uncertainties affect flood modeling. Our findings reveal the importance of a multi-component modeling system, how hydrological conditions play critical roles in flood modeling, and greater flood risks if multiple factors are present.
Johannes Mülmenstädt, Edward Gryspeerdt, Sudhakar Dipu, Johannes Quaas, Andrew S. Ackerman, Ann M. Fridlind, Florian Tornow, Susanne E. Bauer, Andrew Gettelman, Yi Ming, Youtong Zheng, Po-Lun Ma, Hailong Wang, Kai Zhang, Matthew W. Christensen, Adam C. Varble, L. Ruby Leung, Xiaohong Liu, David Neubauer, Daniel G. Partridge, Philip Stier, and Toshihiko Takemura
Atmos. Chem. Phys., 24, 7331–7345, https://doi.org/10.5194/acp-24-7331-2024, https://doi.org/10.5194/acp-24-7331-2024, 2024
Short summary
Short summary
Human activities release copious amounts of small particles called aerosols into the atmosphere. These particles change how much sunlight clouds reflect to space, an important human perturbation of the climate, whose magnitude is highly uncertain. We found that the latest climate models show a negative correlation but a positive causal relationship between aerosols and cloud water. This means we need to be very careful when we interpret observational studies that can only see correlation.
Tapio Schneider, L. Ruby Leung, and Robert C. J. Wills
Atmos. Chem. Phys., 24, 7041–7062, https://doi.org/10.5194/acp-24-7041-2024, https://doi.org/10.5194/acp-24-7041-2024, 2024
Short summary
Short summary
Climate models are crucial for predicting climate change in detail. This paper proposes a balanced approach to improving their accuracy by combining traditional process-based methods with modern artificial intelligence (AI) techniques while maximizing the resolution to allow for ensemble simulations. The authors propose using AI to learn from both observational and simulated data while incorporating existing physical knowledge to reduce data demands and improve climate prediction reliability.
Jacquelyn K. Shuman, Rosie A. Fisher, Charles Koven, Ryan Knox, Lara Kueppers, and Chonggang Xu
Geosci. Model Dev., 17, 4643–4671, https://doi.org/10.5194/gmd-17-4643-2024, https://doi.org/10.5194/gmd-17-4643-2024, 2024
Short summary
Short summary
We adapt a fire behavior and effects module for use in a size-structured vegetation demographic model to test how climate, fire regime, and fire-tolerance plant traits interact to determine the distribution of tropical forests and grasslands. Our model captures the connection between fire disturbance and plant fire-tolerance strategies in determining plant distribution and provides a useful tool for understanding the vulnerability of these areas under changing conditions across the tropics.
Lingcheng Li, Gautam Bisht, Dalei Hao, and L. Ruby Leung
Earth Syst. Sci. Data, 16, 2007–2032, https://doi.org/10.5194/essd-16-2007-2024, https://doi.org/10.5194/essd-16-2007-2024, 2024
Short summary
Short summary
This study fills a gap to meet the emerging needs of kilometer-scale Earth system modeling by developing global 1 km land surface parameters for land use, vegetation, soil, and topography. Our demonstration simulations highlight the substantial impacts of these parameters on spatial variability and information loss in water and energy simulations. Using advanced explainable machine learning methods, we identified influential factors driving spatial variability and information loss.
Bryce E. Harrop, Jian Lu, L. Ruby Leung, William K. M. Lau, Kyu-Myong Kim, Brian Medeiros, Brian J. Soden, Gabriel A. Vecchi, Bosong Zhang, and Balwinder Singh
Geosci. Model Dev., 17, 3111–3135, https://doi.org/10.5194/gmd-17-3111-2024, https://doi.org/10.5194/gmd-17-3111-2024, 2024
Short summary
Short summary
Seven new experimental setups designed to interfere with cloud radiative heating have been added to the Energy Exascale Earth System Model (E3SM). These experiments include both those that test the mean impact of cloud radiative heating and those examining its covariance with circulations. This paper documents the code changes and steps needed to run these experiments. Results corroborate prior findings for how cloud radiative heating impacts circulations and rainfall patterns.
Pengfei Shi, L. Ruby Leung, Bin Wang, Kai Zhang, Samson M. Hagos, and Shixuan Zhang
Geosci. Model Dev., 17, 3025–3040, https://doi.org/10.5194/gmd-17-3025-2024, https://doi.org/10.5194/gmd-17-3025-2024, 2024
Short summary
Short summary
Improving climate predictions have profound socio-economic impacts. This study introduces a new weakly coupled land data assimilation (WCLDA) system for a coupled climate model. We demonstrate improved simulation of soil moisture and temperature in many global regions and throughout the soil layers. Furthermore, significant improvements are also found in reproducing the time evolution of the 2012 US Midwest drought. The WCLDA system provides the groundwork for future predictability studies.
Yawen Liu, Yun Qian, Philip J. Rasch, Kai Zhang, Lai-yung Ruby Leung, Yuhang Wang, Minghuai Wang, Hailong Wang, Xin Huang, and Xiu-Qun Yang
Atmos. Chem. Phys., 24, 3115–3128, https://doi.org/10.5194/acp-24-3115-2024, https://doi.org/10.5194/acp-24-3115-2024, 2024
Short summary
Short summary
Fire management has long been a challenge. Here we report that spring-peak fire activity over southern Mexico and Central America (SMCA) has a distinct quasi-biennial signal by measuring multiple fire metrics. This signal is initially driven by quasi-biennial variability in precipitation and is further amplified by positive feedback of fire–precipitation interaction at short timescales. This work highlights the importance of fire–climate interactions in shaping fires on an interannual scale.
Donghui Xu, Gautam Bisht, Zeli Tan, Chang Liao, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Geosci. Model Dev., 17, 1197–1215, https://doi.org/10.5194/gmd-17-1197-2024, https://doi.org/10.5194/gmd-17-1197-2024, 2024
Short summary
Short summary
We aim to disentangle the hydrological and hydraulic controls on streamflow variability in a fully coupled earth system model. We found that calibrating only one process (i.e., traditional calibration procedure) will result in unrealistic parameter values and poor performance of the water cycle, while the simulated streamflow is improved. To address this issue, we further proposed a two-step calibration procedure to reconcile the impacts from hydrological and hydraulic processes on streamflow.
Han Qiu, Gautam Bisht, Lingcheng Li, Dalei Hao, and Donghui Xu
Geosci. Model Dev., 17, 143–167, https://doi.org/10.5194/gmd-17-143-2024, https://doi.org/10.5194/gmd-17-143-2024, 2024
Short summary
Short summary
We developed and validated an inter-grid-cell lateral groundwater flow model for both saturated and unsaturated zone in the ELMv2.0 framework. The developed model was benchmarked against PFLOTRAN, a 3D subsurface flow and transport model and showed comparable performance with PFLOTRAN. The developed model was also applied to the Little Washita experimental watershed. The spatial pattern of simulated groundwater table depth agreed well with the global groundwater table benchmark dataset.
Junyan Ding, Polly Buotte, Roger Bales, Bradley Christoffersen, Rosie A. Fisher, Michael Goulden, Ryan Knox, Lara Kueppers, Jacquelyn Shuman, Chonggang Xu, and Charles D. Koven
Biogeosciences, 20, 4491–4510, https://doi.org/10.5194/bg-20-4491-2023, https://doi.org/10.5194/bg-20-4491-2023, 2023
Short summary
Short summary
We used a vegetation model to investigate how the different combinations of plant rooting depths and the sensitivity of leaves and stems to drying lead to differential responses of a pine forest to drought conditions in California, USA. We found that rooting depths are the strongest control in that ecosystem. Deep roots allow trees to fully utilize the soil water during a normal year but result in prolonged depletion of soil moisture during a severe drought and hence a high tree mortality risk.
Calvin Howes, Pablo E. Saide, Hugh Coe, Amie Dobracki, Steffen Freitag, Jim M. Haywood, Steven G. Howell, Siddhant Gupta, Janek Uin, Mary Kacarab, Chongai Kuang, L. Ruby Leung, Athanasios Nenes, Greg M. McFarquhar, James Podolske, Jens Redemann, Arthur J. Sedlacek, Kenneth L. Thornhill, Jenny P. S. Wong, Robert Wood, Huihui Wu, Yang Zhang, Jianhao Zhang, and Paquita Zuidema
Atmos. Chem. Phys., 23, 13911–13940, https://doi.org/10.5194/acp-23-13911-2023, https://doi.org/10.5194/acp-23-13911-2023, 2023
Short summary
Short summary
To better understand smoke properties and its interactions with clouds, we compare the WRF-CAM5 model with observations from ORACLES, CLARIFY, and LASIC field campaigns in the southeastern Atlantic in August 2017. The model transports and mixes smoke well but does not fully capture some important processes. These include smoke chemical and physical aging over 4–12 days, smoke removal by rain, sulfate particle formation, aerosol activation into cloud droplets, and boundary layer turbulence.
Chonggang Xu, Bradley Christoffersen, Zachary Robbins, Ryan Knox, Rosie A. Fisher, Rutuja Chitra-Tarak, Martijn Slot, Kurt Solander, Lara Kueppers, Charles Koven, and Nate McDowell
Geosci. Model Dev., 16, 6267–6283, https://doi.org/10.5194/gmd-16-6267-2023, https://doi.org/10.5194/gmd-16-6267-2023, 2023
Short summary
Short summary
We introduce a plant hydrodynamic model for the U.S. Department of Energy (DOE)-sponsored model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). To better understand this new model system and its functionality in tropical forest ecosystems, we conducted a global parameter sensitivity analysis at Barro Colorado Island, Panama. We identified the key parameters that affect the simulated plant hydrodynamics to guide both modeling and field campaign studies.
Dongyu Feng, Zeli Tan, Donghui Xu, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 27, 3911–3934, https://doi.org/10.5194/hess-27-3911-2023, https://doi.org/10.5194/hess-27-3911-2023, 2023
Short summary
Short summary
This study assesses the flood risks concurrently induced by river flooding and coastal storm surge along the coast of the contiguous United States using statistical and numerical models. We reveal a few hotspots of such risks, the critical spatial variabilities within a river basin and over the whole US coast, and the uncertainties of the risk assessment. We highlight the importance of weighing different risk measures to avoid underestimating or exaggerating the compound flood impacts.
Bo Qu, Alexandre Roy, Joe R. Melton, Jennifer L. Baltzer, Youngryel Ryu, Matteo Detto, and Oliver Sonnentag
EGUsphere, https://doi.org/10.5194/egusphere-2023-1167, https://doi.org/10.5194/egusphere-2023-1167, 2023
Preprint archived
Short summary
Short summary
Accurately simulating photosynthesis and evapotranspiration challenges terrestrial biosphere models across North America’s boreal biome, in part due to uncertain representation of the maximum rate of photosynthetic carboxylation (Vcmax). This study used forest stand scale observations in an optimization framework to improve Vcmax values for representative vegetation types. Several stand characteristics well explained spatial Vcmax variability and were useful to improve boreal forest modelling.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Koichi Sakaguchi, L. Ruby Leung, Colin M. Zarzycki, Jihyeon Jang, Seth McGinnis, Bryce E. Harrop, William C. Skamarock, Andrew Gettelman, Chun Zhao, William J. Gutowski, Stephen Leak, and Linda Mearns
Geosci. Model Dev., 16, 3029–3081, https://doi.org/10.5194/gmd-16-3029-2023, https://doi.org/10.5194/gmd-16-3029-2023, 2023
Short summary
Short summary
We document details of the regional climate downscaling dataset produced by a global variable-resolution model. The experiment is unique in that it follows a standard protocol designed for coordinated experiments of regional models. We found negligible influence of post-processing on statistical analysis, importance of simulation quality outside of the target region, and computational challenges that our model code faced due to rapidly changing super computer systems.
Zhe Feng, Joseph Hardin, Hannah C. Barnes, Jianfeng Li, L. Ruby Leung, Adam Varble, and Zhixiao Zhang
Geosci. Model Dev., 16, 2753–2776, https://doi.org/10.5194/gmd-16-2753-2023, https://doi.org/10.5194/gmd-16-2753-2023, 2023
Short summary
Short summary
PyFLEXTRKR is a flexible atmospheric feature tracking framework with specific capabilities to track convective clouds from a variety of observations and model simulations. The package has a collection of multi-object identification algorithms and has been optimized for large datasets. This paper describes the algorithms and demonstrates applications for tracking deep convective cells and mesoscale convective systems from observations and model simulations at a wide range of scales.
Zeyu Xue, Paul Ullrich, and Lai-Yung Ruby Leung
Hydrol. Earth Syst. Sci., 27, 1909–1927, https://doi.org/10.5194/hess-27-1909-2023, https://doi.org/10.5194/hess-27-1909-2023, 2023
Short summary
Short summary
We examine the sensitivity and robustness of conclusions drawn from the PGW method over the NEUS by conducting multiple PGW experiments and varying the perturbation spatial scales and choice of perturbed meteorological variables to provide a guideline for this increasingly popular regional modeling method. Overall, we recommend PGW experiments be performed with perturbations to temperature or the combination of temperature and wind at the gridpoint scale, depending on the research question.
Dalei Hao, Gautam Bisht, Karl Rittger, Timbo Stillinger, Edward Bair, Yu Gu, and L. Ruby Leung
The Cryosphere, 17, 673–697, https://doi.org/10.5194/tc-17-673-2023, https://doi.org/10.5194/tc-17-673-2023, 2023
Short summary
Short summary
We comprehensively evaluated the snow simulations in E3SM land model over the western United States in terms of spatial patterns, temporal correlations, interannual variabilities, elevation gradients, and change with forest cover of snow properties and snow phenology. Our study underscores the need for diagnosing model biases and improving the model representations of snow properties and snow phenology in mountainous areas for more credible simulation and future projection of mountain snowpack.
Chandan Sarangi, Yun Qian, L. Ruby Leung, Yang Zhang, Yufei Zou, and Yuhang Wang
Atmos. Chem. Phys., 23, 1769–1783, https://doi.org/10.5194/acp-23-1769-2023, https://doi.org/10.5194/acp-23-1769-2023, 2023
Short summary
Short summary
We show that for air quality, the densely populated eastern US may see even larger impacts of wildfires due to long-distance smoke transport and associated positive climatic impacts, partially compensating the improvements from regulations on anthropogenic emissions. This study highlights the tension between natural and anthropogenic contributions and the non-local nature of air pollution that complicate regulatory strategies for improving future regional air quality for human health.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Marius S. A. Lambert, Hui Tang, Kjetil S. Aas, Frode Stordal, Rosie A. Fisher, Yilin Fang, Junyan Ding, and Frans-Jan W. Parmentier
Geosci. Model Dev., 15, 8809–8829, https://doi.org/10.5194/gmd-15-8809-2022, https://doi.org/10.5194/gmd-15-8809-2022, 2022
Short summary
Short summary
In this study, we implement a hardening mortality scheme into CTSM5.0-FATES-Hydro and evaluate how it impacts plant hydraulics and vegetation growth. Our work shows that the hydraulic modifications prescribed by the hardening scheme are necessary to model realistic vegetation growth in cold climates, in contrast to the default model that simulates almost nonexistent and declining vegetation due to abnormally large water loss through the roots.
Dongyu Feng, Zeli Tan, Darren Engwirda, Chang Liao, Donghui Xu, Gautam Bisht, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 5473–5491, https://doi.org/10.5194/hess-26-5473-2022, https://doi.org/10.5194/hess-26-5473-2022, 2022
Short summary
Short summary
Sea level rise, storm surge and river discharge can cause coastal backwater effects in downstream sections of rivers, creating critical flood risks. This study simulates the backwater effects using a large-scale river model on a coastal-refined computational mesh. By decomposing the backwater drivers, we revealed their relative importance and long-term variations. Our analysis highlights the increasing strength of backwater effects due to sea level rise and more frequent storm surge.
Meng Huang, Po-Lun Ma, Nathaniel W. Chaney, Dalei Hao, Gautam Bisht, Megan D. Fowler, Vincent E. Larson, and L. Ruby Leung
Geosci. Model Dev., 15, 6371–6384, https://doi.org/10.5194/gmd-15-6371-2022, https://doi.org/10.5194/gmd-15-6371-2022, 2022
Short summary
Short summary
The land surface in one grid cell may be diverse in character. This study uses an explicit way to account for that subgrid diversity in a state-of-the-art Earth system model (ESM) and explores its implications for the overlying atmosphere. We find that the shallow clouds are increased significantly with the land surface diversity. Our work highlights the importance of accurately representing the land surface and its interaction with the atmosphere in next-generation ESMs.
Yilin Fang, L. Ruby Leung, Ryan Knox, Charlie Koven, and Ben Bond-Lamberty
Geosci. Model Dev., 15, 6385–6398, https://doi.org/10.5194/gmd-15-6385-2022, https://doi.org/10.5194/gmd-15-6385-2022, 2022
Short summary
Short summary
Accounting for water movement in the soil and water transport within the plant is important for plant growth in Earth system modeling. We implemented different numerical approaches for a plant hydrodynamic model and compared their impacts on the simulated aboveground biomass (AGB) at single points and globally. We found care should be taken when discretizing the number of soil layers for numerical simulations as it can significantly affect AGB if accuracy and computational costs are of concern.
Sol Kim, L. Ruby Leung, Bin Guan, and John C. H. Chiang
Geosci. Model Dev., 15, 5461–5480, https://doi.org/10.5194/gmd-15-5461-2022, https://doi.org/10.5194/gmd-15-5461-2022, 2022
Short summary
Short summary
The Energy Exascale Earth System Model (E3SM) project is a state-of-the-science Earth system model developed by the US Department of Energy (DOE). Understanding how the water cycle behaves in this model is of particular importance to the DOE’s mission. Atmospheric rivers (ARs) – which are crucial to the global water cycle – move vast amounts of water vapor through the sky and produce rain and snow. We find that this model reliably represents atmospheric rivers around the world.
Lingcheng Li, Gautam Bisht, and L. Ruby Leung
Geosci. Model Dev., 15, 5489–5510, https://doi.org/10.5194/gmd-15-5489-2022, https://doi.org/10.5194/gmd-15-5489-2022, 2022
Short summary
Short summary
Land surface heterogeneity plays a critical role in the terrestrial water, energy, and biogeochemical cycles. Our study systematically quantified the effects of four dominant heterogeneity sources on water and energy partitioning via Sobol' indices. We found that atmospheric forcing and land use land cover are the most dominant heterogeneity sources in determining spatial variability of water and energy partitioning. Our findings can help prioritize the future development of land surface models.
Kai Zhang, Wentao Zhang, Hui Wan, Philip J. Rasch, Steven J. Ghan, Richard C. Easter, Xiangjun Shi, Yong Wang, Hailong Wang, Po-Lun Ma, Shixuan Zhang, Jian Sun, Susannah M. Burrows, Manish Shrivastava, Balwinder Singh, Yun Qian, Xiaohong Liu, Jean-Christophe Golaz, Qi Tang, Xue Zheng, Shaocheng Xie, Wuyin Lin, Yan Feng, Minghuai Wang, Jin-Ho Yoon, and L. Ruby Leung
Atmos. Chem. Phys., 22, 9129–9160, https://doi.org/10.5194/acp-22-9129-2022, https://doi.org/10.5194/acp-22-9129-2022, 2022
Short summary
Short summary
Here we analyze the effective aerosol forcing simulated by E3SM version 1 using both century-long free-running and short nudged simulations. The aerosol forcing in E3SMv1 is relatively large compared to other models, mainly due to the large indirect aerosol effect. Aerosol-induced changes in liquid and ice cloud properties in E3SMv1 have a strong correlation. The aerosol forcing estimates in E3SMv1 are sensitive to the parameterization changes in both liquid and ice cloud processes.
Donghui Xu, Gautam Bisht, Khachik Sargsyan, Chang Liao, and L. Ruby Leung
Geosci. Model Dev., 15, 5021–5043, https://doi.org/10.5194/gmd-15-5021-2022, https://doi.org/10.5194/gmd-15-5021-2022, 2022
Short summary
Short summary
The runoff outputs in Earth system model simulations involve high uncertainty, which needs to be constrained by parameter calibration. In this work, we used a surrogate-assisted Bayesian framework to efficiently calibrate the runoff-generation processes in the Energy Exascale Earth System Model v1 at a global scale. The model performance was improved compared to the default parameter after calibration, and the associated parametric uncertainty was significantly constrained.
Yun Lin, Jiwen Fan, Pengfei Li, Lai-yung Ruby Leung, Paul J. DeMott, Lexie Goldberger, Jennifer Comstock, Ying Liu, Jong-Hoon Jeong, and Jason Tomlinson
Atmos. Chem. Phys., 22, 6749–6771, https://doi.org/10.5194/acp-22-6749-2022, https://doi.org/10.5194/acp-22-6749-2022, 2022
Short summary
Short summary
How sea spray aerosols may affect cloud and precipitation over the region by acting as ice-nucleating particles (INPs) is unknown. We explored the effects of INPs from marine aerosols on orographic cloud and precipitation for an atmospheric river event observed during the 2015 ACAPEX field campaign. The marine INPs enhance the formation of ice and snow, leading to less shallow warm clouds but more mixed-phase and deep clouds. This work suggests models need to consider the impacts of marine INPs.
Charles D. Koven, Vivek K. Arora, Patricia Cadule, Rosie A. Fisher, Chris D. Jones, David M. Lawrence, Jared Lewis, Keith Lindsay, Sabine Mathesius, Malte Meinshausen, Michael Mills, Zebedee Nicholls, Benjamin M. Sanderson, Roland Séférian, Neil C. Swart, William R. Wieder, and Kirsten Zickfeld
Earth Syst. Dynam., 13, 885–909, https://doi.org/10.5194/esd-13-885-2022, https://doi.org/10.5194/esd-13-885-2022, 2022
Short summary
Short summary
We explore the long-term dynamics of Earth's climate and carbon cycles under a pair of contrasting scenarios to the year 2300 using six models that include both climate and carbon cycle dynamics. One scenario assumes very high emissions, while the second assumes a peak in emissions, followed by rapid declines to net negative emissions. We show that the models generally agree that warming is roughly proportional to carbon emissions but that many other aspects of the model projections differ.
Pinya Wang, Yang Yang, Huimin Li, Lei Chen, Ruijun Dang, Daokai Xue, Baojie Li, Jianping Tang, L. Ruby Leung, and Hong Liao
Atmos. Chem. Phys., 22, 4705–4719, https://doi.org/10.5194/acp-22-4705-2022, https://doi.org/10.5194/acp-22-4705-2022, 2022
Short summary
Short summary
China is now suffering from both severe ozone (O3) pollution and heat events. We highlight that North China Plain is the hot spot of the co-occurrences of extremes in O3 and high temperatures in China. Such coupled extremes exhibit an increasing trend during 2014–2019 and will continue to increase until the middle of this century. And the coupled extremes impose more severe health impacts to human than O3 pollution occurring alone because of elevated O3 levels and temperatures.
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Yunxiang Chen, Jie Bao, Yilin Fang, William A. Perkins, Huiying Ren, Xuehang Song, Zhuoran Duan, Zhangshuan Hou, Xiaoliang He, and Timothy D. Scheibe
Geosci. Model Dev., 15, 2917–2947, https://doi.org/10.5194/gmd-15-2917-2022, https://doi.org/10.5194/gmd-15-2917-2022, 2022
Short summary
Short summary
Climate change affects river discharge variations that alter streamflow. By integrating multi-type survey data with a computational fluid dynamics tool, OpenFOAM, we show a workflow that enables accurate and efficient streamflow modeling at 30 km and 5-year scales. The model accuracy for water stage and depth average velocity is −16–9 cm and 0.71–0.83 in terms of mean error and correlation coefficients. This accuracy indicates the model's reliability for evaluating climate impact on rivers.
Sally S.-C. Wang, Yun Qian, L. Ruby Leung, and Yang Zhang
Atmos. Chem. Phys., 22, 3445–3468, https://doi.org/10.5194/acp-22-3445-2022, https://doi.org/10.5194/acp-22-3445-2022, 2022
Short summary
Short summary
This study develops an interpretable machine learning (ML) model predicting monthly PM2.5 fire emission over the contiguous US at 0.25° resolution and compares the prediction skills of the ML and process-based models. The comparison facilitates attributions of model biases and better understanding of the strengths and uncertainties in the two types of models at regional scales, for informing future model development and their applications in fire emission projection.
Guta Wakbulcho Abeshu, Hong-Yi Li, Zhenduo Zhu, Zeli Tan, and L. Ruby Leung
Earth Syst. Sci. Data, 14, 929–942, https://doi.org/10.5194/essd-14-929-2022, https://doi.org/10.5194/essd-14-929-2022, 2022
Short summary
Short summary
Existing riverbed sediment particle size data are sparsely available at individual sites. We develop a continuous map of median riverbed sediment particle size over the contiguous US corresponding to millions of river segments based on the existing observations and machine learning methods. This map is useful for research in large-scale river sediment using model- and data-driven approaches, teaching environmental and earth system sciences, planning and managing floodplain zones, etc.
Hong-Yi Li, Zeli Tan, Hongbo Ma, Zhenduo Zhu, Guta Wakbulcho Abeshu, Senlin Zhu, Sagy Cohen, Tian Zhou, Donghui Xu, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 665–688, https://doi.org/10.5194/hess-26-665-2022, https://doi.org/10.5194/hess-26-665-2022, 2022
Short summary
Short summary
We introduce a new multi-process river sediment module for Earth system models. Application and validation over the contiguous US indicate a satisfactory model performance over large river systems, including those heavily regulated by reservoirs. This new sediment module enables future modeling of the transportation and transformation of carbon and nutrients carried by the fine sediment along the river–ocean continuum to close the global carbon and nutrient cycles.
Raquel Fernandes Araujo, Samuel Grubinger, Carlos Henrique Souza Celes, Robinson I. Negrón-Juárez, Milton Garcia, Jonathan P. Dandois, and Helene C. Muller-Landau
Biogeosciences, 18, 6517–6531, https://doi.org/10.5194/bg-18-6517-2021, https://doi.org/10.5194/bg-18-6517-2021, 2021
Short summary
Short summary
Our study contributed to improving the understanding of temporal variation and climate correlates of canopy disturbances mainly caused by treefalls and branchfalls. We used a unique dataset of 5 years of approximately monthly drone-acquired RGB (red–green–blue) imagery for 50 ha of mature tropical forest on Barro Colorado Island, Panama. We found that canopy disturbance rates were highly temporally variable, were higher in the wet season, and were related to extreme rainfall events.
Claudia Tebaldi, Kalyn Dorheim, Michael Wehner, and Ruby Leung
Earth Syst. Dynam., 12, 1427–1501, https://doi.org/10.5194/esd-12-1427-2021, https://doi.org/10.5194/esd-12-1427-2021, 2021
Short summary
Short summary
We address the question of how large an initial condition ensemble of climate model simulations should be if we are concerned with accurately projecting future changes in temperature and precipitation extremes. We find that for most cases (and both models considered), an ensemble of 20–25 members is sufficient for many extreme metrics, spatial scales and time horizons. This may leave computational resources to tackle other uncertainties in climate model simulations with our ensembles.
Dalei Hao, Gautam Bisht, Yu Gu, Wei-Liang Lee, Kuo-Nan Liou, and L. Ruby Leung
Geosci. Model Dev., 14, 6273–6289, https://doi.org/10.5194/gmd-14-6273-2021, https://doi.org/10.5194/gmd-14-6273-2021, 2021
Short summary
Short summary
Topography exerts significant influence on the incoming solar radiation at the land surface. This study incorporated a well-validated sub-grid topographic parameterization in E3SM land model (ELM) version 1.0. The results demonstrate that sub-grid topography has non-negligible effects on surface energy budget, snow cover, and surface temperature over the Tibetan Plateau and that the ELM simulations are sensitive to season, elevation, and spatial scale.
Benjamin M. Sanderson, Angeline G. Pendergrass, Charles D. Koven, Florent Brient, Ben B. B. Booth, Rosie A. Fisher, and Reto Knutti
Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021, https://doi.org/10.5194/esd-12-899-2021, 2021
Short summary
Short summary
Emergent constraints promise a pathway to the reduction in climate projection uncertainties by exploiting ensemble relationships between observable quantities and unknown climate response parameters. This study considers the robustness of these relationships in light of biases and common simplifications that may be present in the original ensemble of climate simulations. We propose a classification scheme for constraints and a number of practical case studies.
Polly C. Buotte, Charles D. Koven, Chonggang Xu, Jacquelyn K. Shuman, Michael L. Goulden, Samuel Levis, Jessica Katz, Junyan Ding, Wu Ma, Zachary Robbins, and Lara M. Kueppers
Biogeosciences, 18, 4473–4490, https://doi.org/10.5194/bg-18-4473-2021, https://doi.org/10.5194/bg-18-4473-2021, 2021
Short summary
Short summary
We present an approach for ensuring the definitions of plant types in dynamic vegetation models are connected to the underlying ecological processes controlling community composition. Our approach can be applied regionally or globally. Robust resolution of community composition will allow us to use these models to address important questions related to future climate and management effects on plant community composition, structure, carbon storage, and feedbacks within the Earth system.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Eva Sinha, Kate Calvin, Ben Bond-Lamberty, Beth Drewniak, Dan Ricciuto, Khachik Sargsyan, Yanyan Cheng, Carl Bernacchi, and Caitlin Moore
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-244, https://doi.org/10.5194/gmd-2021-244, 2021
Preprint withdrawn
Short summary
Short summary
Perennial bioenergy crops are not well represented in global land models, despite projected increase in their production. Our study expands Energy Exascale Earth System Model (E3SM) Land Model (ELM) to include perennial bioenergy crops and calibrates the model for miscanthus and switchgrass. The calibrated model captures the seasonality and magnitude of carbon and energy fluxes. This study provides the foundation for future research examining the impact of perennial bioenergy crop expansion.
Wu Ma, Lu Zhai, Alexandria Pivovaroff, Jacquelyn Shuman, Polly Buotte, Junyan Ding, Bradley Christoffersen, Ryan Knox, Max Moritz, Rosie A. Fisher, Charles D. Koven, Lara Kueppers, and Chonggang Xu
Biogeosciences, 18, 4005–4020, https://doi.org/10.5194/bg-18-4005-2021, https://doi.org/10.5194/bg-18-4005-2021, 2021
Short summary
Short summary
We use a hydrodynamic demographic vegetation model to estimate live fuel moisture dynamics of chaparral shrubs, a dominant vegetation type in fire-prone southern California. Our results suggest that multivariate climate change could cause a significant net reduction in live fuel moisture and thus exacerbate future wildfire danger in chaparral shrub systems.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Jianfeng Li, Zhe Feng, Yun Qian, and L. Ruby Leung
Earth Syst. Sci. Data, 13, 827–856, https://doi.org/10.5194/essd-13-827-2021, https://doi.org/10.5194/essd-13-827-2021, 2021
Short summary
Short summary
Deep convection has different properties at different scales. We develop a 4 km h−1 observational data product of mesoscale convective systems and isolated deep convection in the United States from 2004–2017. We find that both types of convective systems contribute significantly to precipitation east of the Rocky Mountains but with distinct spatiotemporal characteristics. The data product will be useful for observational analyses and model evaluations of convection events at different scales.
Robinson I. Negrón-Juárez, Jennifer A. Holm, Boris Faybishenko, Daniel Magnabosco-Marra, Rosie A. Fisher, Jacquelyn K. Shuman, Alessandro C. de Araujo, William J. Riley, and Jeffrey Q. Chambers
Biogeosciences, 17, 6185–6205, https://doi.org/10.5194/bg-17-6185-2020, https://doi.org/10.5194/bg-17-6185-2020, 2020
Short summary
Short summary
The temporal variability in the Landsat satellite near-infrared (NIR) band captured the dynamics of forest regrowth after disturbances in Central Amazon. This variability was represented by the dynamics of forest regrowth after disturbances were properly represented by the ELM-FATES model (Functionally Assembled Terrestrial Ecosystem Simulator (FATES) in the Energy Exascale Earth System Model (E3SM) Land Model (ELM)).
Maoyi Huang, Yi Xu, Marcos Longo, Michael Keller, Ryan G. Knox, Charles D. Koven, and Rosie A. Fisher
Biogeosciences, 17, 4999–5023, https://doi.org/10.5194/bg-17-4999-2020, https://doi.org/10.5194/bg-17-4999-2020, 2020
Short summary
Short summary
The Functionally Assembled Terrestrial Ecosystem Simulator (FATES) is enhanced to mimic the ecological, biophysical, and biogeochemical processes following a logging event. The model can specify the timing and aerial extent of logging events; determine the survivorship of cohorts in the disturbed forest; and modifying the biomass, coarse woody debris, and litter pools. This study lays the foundation to simulate land use change and forest degradation in FATES as part of an Earth system model.
Cited articles
Ashby, S. F. and Falgout, R. D.: A parallel multigrid preconditioned
conjugate gradient algorithm for groundwater flow simulations, Nucl. Sci. Eng.,
124, 145–159, https://doi.org/10.13182/Nse96-A24230, 1996.
Allen, C. D., Breshears, D. D., and McDowell, N. G.: On underestimation of
global vulnerability to tree mortality and forest die-off from hotter
drought in the Anthropocene, Ecosphere, 6, 129,
https://doi.org/10.1890/Es15-00203.1, 2015.
Becker, P., Rabenold, P. E., Idol, J. R., and Smith, A. P.: Water Potential
Gradients for Gaps and Slopes in a Panamanian Tropical Moist Forests Dry
Season, J. Trop. Ecol., 4, 173–184, https://doi.org/10.1017/S0266467400002674,
1988.
Benitez, F. L., Anderson, L. O., and Formaggio, A. R.: Evaluation of
geostatistical techniques to estimate the spatial distribution of
aboveground biomass in the Amazon rainforest using high-resolution remote
sensing data, Acta Amazon., 46, 151–160,
https://doi.org/10.1590/1809-4392201501254, 2016.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing
area model of basin hydrology/Un modèle à base physique de zone
d'appel variable de l'hydrologie du bassin versant, Hydrol. Sci. B., 24,
43–69, https://doi.org/10.1080/02626667909491834, 1979.
Bisht, G., Huang, M., Zhou, T., Chen, X., Dai, H., Hammond, G. E., Riley, W. J., Downs, J. L., Liu, Y., and Zachara, J. M.: Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0), Geosci. Model Dev., 10, 4539–4562, https://doi.org/10.5194/gmd-10-4539-2017, 2017.
Brooks, R. H. and Corey, A. T.: Properties of porous media affeting fluid
flow, Journal of Irrigation and Drainage Division, Proceedings of the American Society of Civil Engineer, 92, 61–90, 1966.
Busing, R. T. and Mailly, D.: Advances in spatial, individual-based
modelling of forest dynamics, J. Veg. Sci., 15, 831–842,
https://doi.org/10.1111/j.1654-1103.2004.tb02326.x, 2004.
Caldwell, P. M., Mametjanov, A., Tang, Q., Van Roekel, L. P., Golaz, J. C., Lin, W. Y., Bader, D. C., Keen, N. D., Feng, Y., Jacob, R., Maltrud, M. E., Roberts, A. F., Taylor, M. A., Veneziani, M., Wang, H. L., Wolfe, J. D., Balaguru, K., Cameron-Smith, P., Dong, L., Klein, S. A., Leung, L. R., Li, H. Y., Li, Q., Liu, X. H., Neale, R. B., Pinheiro, M., Qian, Y., Ullrich, P. A., Xie, S. C., Yang, Y., Zhang, Y. Y., Zhang, K., and Zhou, T.: The DOE E3SM Coupled Model Version 1: Description and Results at High Resolution, J. Adv. Model. Earth Sy., 11, 4095–4146, https://doi.org/10.1029/2019ms001870, 2019.
Chave, J., Condit, R., Lao, S., Caspersen, J. P., Foster, R. B., and
Hubbell, S. P.: Spatial and temporal variation of biomass in a tropical
forest: results from a large census plot in Panama, J. Ecol., 91, 240–252,
https://doi.org/10.1046/j.1365-2745.2003.00757.x, 2003.
Chave, J., Rejou-Mechain, M., Burquez, A., Chidumayo, E., Colgan, M. S.,
Delitti, W. B., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry,
M., Martinez-Yrizar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini,
M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E.,
Pelissier, R., Ploton, P., Ryan, C. M., Saldarriaga, J. G., and Vieilledent,
G.: Improved allometric models to estimate the aboveground biomass of
tropical trees, Glob. Change Biol., 20, 3177–3190,
https://doi.org/10.1111/gcb.12629, 2014.
Cheng, Y. Y., Leung, L. R., Huang, M. Y., Koven, C., Detto, M., Knox, R.,
Bisht, G., Bretfeld, M., and Fisher, R. A.: Modeling the Joint Effects of
Vegetation Characteristics and Soil Properties on Ecosystem Dynamics in a
Panama Tropical Forest, J. Adv. Model. Earth Sy., 14, ARTN e2021MS002603,
https://doi.org/10.1029/2021MS002603, 2022.
Chitra-Tarak, R., Xu, C. G., Aguilar, S., Anderson-Teixeira, K. J.,
Chambers, J., Detto, M., Faybishenko, B., Fisher, R. A., Knox, R. G., Koven,
C. D., Kueppers, L. M., Kunert, N., Kupers, S. J., McDowell, N. G., Newman,
B. D., Paton, S. R., Perez, R., Ruiz, L., Sack, L., Warren, J. M., Wolfe, B.
T., Wright, C., Wright, S. J., Zailaa, J., and McMahon, S. M.:
Hydraulically-vulnerable trees survive on deep-water access during droughts
in a tropical forest, New Phytol., 231, 1798–1813,
https://doi.org/10.1111/nph.17464, 2021.
Christoffersen, B. O., Gloor, M., Fauset, S., Fyllas, N. M., Galbraith, D. R., Baker, T. R., Kruijt, B., Rowland, L., Fisher, R. A., Binks, O. J., Sevanto, S., Xu, C., Jansen, S., Choat, B., Mencuccini, M., McDowell, N. G., and Meir, P.: Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro), Geosci. Model Dev., 9, 4227–4255, https://doi.org/10.5194/gmd-9-4227-2016, 2016.
Clapp, R. B. and Hornberger, G. M.: Empirical Equations for Some Soil
Hydraulic-Properties, Water Resour. Res., 14, 601–604,
https://doi.org/10.1029/WR014i004p00601, 1978.
Clark, D. B., Palmer, M. W., and Clark, D. A.: Edaphic factors and the
landscape-scale distributions of tropical rain forest trees, Ecology, 80,
2662–2675, https://doi.org/10.2307/177248, 1999.
Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis, D.
J., Hooper, R. P., Kumar, M., Leung, L. R., Mackay, D. S., Maxwell, R. M.,
Shen, C. P., Swenson, S. C., and Zeng, X. B.: Improving the representation
of hydrologic processes in Earth System Models, Water Resour. Res., 51,
5929–5956, https://doi.org/10.1002/2015wr017096, 2015.
Condit, R., Chisholm, R. A., and Hubbell, S. P.: Thirty Years of Forest
Census at Barro Colorado and the Importance of Immigration in Maintaining
Diversity, Plos One, 7, e49826,
https://doi.org/10.1371/journal.pone.0049826, 2012.
Condit, R., Hubbell, S. P., and Foster, R. B.: Mortality-Rates of 205
Neotropical Tree and Shrub Species and the Impact of a Severe Drought, Ecol.
Monogr., 65, 419–439, https://doi.org/10.2307/2963497, 1995.
Condit, R., Perez, R., Lao, S., Aguilar, S., and Hubbell, S. P.: Demographic
trends and climate over 35 years in the Barro Colorado 50 ha plot,
For. Ecosyst., 4, 17, https://doi.org/10.1186/s40663-017-0103-1, 2017.
Condit, R., Perez, R., Aguilar, S., Lao, S., Foster, R., and Hubbell, S. P.:
Complete data from the Barro Colorado 50 ha plot: 423617 trees, 35 years,
2019 version [data set], https://doi.org/10.15146/5xcp-0d46, 2019.
Condon, L. E. and Maxwell, R. M.: Evaluating the relationship between
topography and groundwater using outputs from a continental-scale integrated
hydrology model, Water Resour. Res., 51, 6602–6621,
https://doi.org/10.1002/2014wr016774, 2015.
Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R.: A
Statistical Exploration of the Relationships of Soil-Moisture
Characteristics to the Physical-Properties of Soils, Water Resour. Res., 20,
682–690, https://doi.org/10.1029/WR020i006p00682, 1984.
Costa, F. R. C., Magnusson, W. E., and Luizao, R. C.: Mesoscale distribution
patterns of Amazonian understorey herbs in relation to topography, soil and
watersheds, J. Ecol., 93, 863–878,
https://doi.org/10.1111/j.1365-2745.2005.01020.x, 2005.
Costa, F. R. C., Schietti, J., Stark, S. C., and Smith, M. N.: The other
side of tropical forest drought: do shallow water table regions of Amazonia
act as large-scale hydrological refugia from drought, Palavras-ChavePalabras
clave, New Phytol., 1–20, https://doi.org/10.1111/nph.17914, 2022.
Detto, M., Muller-Landau, H. C., Mascaro, J., and Asner, G. P.: Hydrological
Networks and Associated Topographic Variation as Templates for the Spatial
Organization of Tropical Forest Vegetation, Plos One, 8, e76296,
https://doi.org/10.1371/journal.pone.0076296, 2013.
Echiverri, L. and Macdonald, S. E.: Utilizing a topographic moisture index
to characterize understory vegetation patterns in the boreal forest, Forest
Ecol. Manag., 447, 35–52, https://doi.org/10.1016/j.foreco.2019.05.054, 2019.
Esteban, E. J. L., Castilho, C. V., Melgaco, K. L., and Costa, F. R. C.: The
other side of droughts: wet extremes and topography as buffers of negative
drought effects in an Amazonian forest, New Phytol., 229, 1995–2006,
https://doi.org/10.1111/nph.17005, 2021.
Faybishenko B., Paton S., Powell T., Knox R., Pastorello G., Varadharajan
C., Christianson, C., D., and Agarwal, D.: QA/QC-ed BCI meteorological
drivers. 1.0., NGEE Tropics Data Collection [data set],
https://doi.org/10.15486/ngt/1423307, 2018.
Famiglietti, J. S., Rudnicki, J. W., and Rodell, M.: Variability in surface
moisture content along a hillslope transect: Rattlesnake Hill, Texas, J.
Hydrol., 210, 259–281, https://doi.org/10.1016/S0022-1694(98)00187-5, 1998.
Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S.
L., Brooks, P. D., Dietrich, W. E., Flores, A., Grant, G., Kirchner, J. W.,
Mackay, D. S., McDonnell, J. J., Milly, P. C. D., Sullivan, P. L., Tague,
C., Ajami, H., Chaney, N., Hartmann, A., Hazenberg, P., McNamara, J.,
Pelletier, J., Perket, J., Rouholahnejad-Freund, E., Wagener, T., Zeng, X.,
Beighley, E., Buzan, J., Huang, M., Livneh, B., Mohanty, B. P., Nijssen, B.,
Safeeq, M., Shen, C., van Verseveld, W., Volk, J., and Yamazaki, D.:
Hillslope Hydrology in Global Change Research and Earth System Modeling,
Water Resour. Res., 55, 1737–1772, https://doi.org/10.1029/2018wr023903, 2019.
Fang, Y. L., Leung, L. R., Duan, Z. R., Wigmosta, M. S., Maxwell, R. M.,
Chambers, J. Q., and Tomasella, J.: Influence of landscape heterogeneity on
water available to tropical forests in an Amazonian catchment and
implications for modeling drought response, J. Geophys. Res.-Atmos., 122,
84108426, https://doi.org/10.1002/2017jd027066, 2017.
Fang, Y., Leung, L. R., Wolfe, B. T., Detto, M., Knox, R., McDowell, N., Grossiord, C., Xu, C., Christoffersen, B. O., Gentine, P., Koven, C. D., and Chambers, J. Q.: Dataset for modeling the impacts of plant hydraulics on tropical forest response to drought (v1.0), Zenodo, https://doi.org/10.5281/zenodo.3752127, 2020.
Fang, Y. L., Leung, L. R., Wolfe, B. T., Detto, M., Knox, R. G., McDowell,
N. G., Grossiord, C., Xu, C. G., Christoffersen, B. O., Gentine, P., Koven,
C. D., and Chambers, J. Q.: Disentangling the Effects of Vapor Pressure
Deficit and Soil Water Availability on Canopy Conductance in a Seasonal
Tropical Forest During the 2015 El Nino Drought, J. Geophys. Res.-Atmos., 126,
e2021JD035004, https://doi.org/10.1029/2021JD035004, 2021.
Fang, Y., Leung, R., Koven, C., Bisht, G., Detto, M., Cheng, Y., McDowell, N., Muller-Landau, H., Wright, J., and Chambers, J.: A coupled model of hillslope hydrology and ecosystem dynamics, version 1.0 (ELM-ParFlow-FATES 1.0), Zenodo, https://doi.org/10.5281/zenodo.6595795, 2022.
Feroz, S. M., Alam, M. R., Das, P., and Al Mamun, A.: Community ecology and
spatial distribution of trees in a tropical wet evergreen forest in Kaptai
national park in Chittagong Hill Tracts, Bangladesh, J. Forestry Res., 25,
311–318, https://doi.org/10.1007/s11676-013-0423-0, 2014.
Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N. G., Knox, R. G., Koven, C., Holm, J., Rogers, B. M., Spessa, A., Lawrence, D., and Bonan, G.: Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED), Geosci. Model Dev., 8, 3593–3619, https://doi.org/10.5194/gmd-8-3593-2015, 2015.
Fisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B. O.,
Dietze, M. C., Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox, R. G.,
Lawrence, P. J., Lichstein, J. W., Longo, M., Matheny, A. M., Medvigy, D.,
Muller-Landau, H. C., Powell, T. L., Serbin, S. P., Sato, H., Shuman, J. K.,
Smith, B., Trugman, A. T., Viskari, T., Verbeeck, H., Weng, E. S., Xu, C.
G., Xu, X. T., Zhang, T., and Moorcroft, P. R.: Vegetation demographics in
Earth System Models: A review of progress and priorities, Glob. Change
Biol., 24, 35–54, https://doi.org/10.1111/gcb.13910, 2018.
Garcia, M., Saatchi, S., Ferraz, A., Silva, C. A., Ustin, S., Koltunov, A.,
and Balzter, H.: Impact of data model and point density on aboveground
forest biomass estimation from airborne LiDAR, Carbon Bal. Manage., 12,
4, https://doi.org/10.1186/s13021-017-0073-1, 2017.
Goita, K., Mouloungou, J., and Benie, G. B.: Estimation of aboveground
biomass and carbon in a tropical rain forest in Gabon using remote sensing
and GPS data, Geocarto Int., 34, 243–259,
https://doi.org/10.1080/10106049.2017.1386720, 2019.
Golaz, J. C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q.,
Wolfe, J. D., Abeshu, G., Anantharaj, V., Asay-Davis, X. S., Bader, D. C.,
Baldwin, S. A., Bisht, G., Bogenschutz, P. A., Branstetter, M., Brunke, M.
A., Brus, S. R., Burrows, S. M., Cameron-Smith, P. J., Donahue, A. S.,
Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M., Foucar, J.
G., Fyke, J. G., Griffin, B. M., Hannay, C., Harrop, B. E., Hoffman, M. J.,
Hunke, E. C., Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones, P. W.,
Keen, N. D., Klein, S. A., Larson, V. E., Leung, L. R., Li, H. Y., Lin, W.
Y., Lipscomb, W. H., Ma, P. L., Mahajan, S., Maltrud, M. E., Mametjanov, A.,
McClean, J. L., McCoy, R. B., Neale, R. B., Price, S. F., Qian, Y., Rasch,
P. J., Eyre, J. E. J. R., Riley, W. J., Ringler, T. D., Roberts, A. F.,
Roesler, E. L., Salinger, A. G., Shaheen, Z., Shi, X. Y., Singh, B., Tang,
J. Y., Taylor, M. A., Thornton, P. E., Turner, A. K., Veneziani, M., Wan,
H., Wang, H. L., Wang, S. L., Williams, D. N., Wolfram, P. J., Worley, P.
H., Xie, S. C., Yang, Y., Yoon, J. H., Zelinka, M. D., Zender, C. S., Zeng,
X. B., Zhang, C. Z., Zhang, K., Zhang, Y., Zheng, X., Zhou, T., and Zhu, Q.:
The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard
Resolution, J. Adv. Model Earth Sy., 11, 2089–2129,
https://doi.org/10.1029/2018ms001603, 2019.
Goncalves, F., Treuhaft, R., Law, B., Almeida, A., Walker, W., Baccini, A., dos Santos, J. R., and Graca, P.: Estimating Aboveground Biomass in Tropical Forests: Field Methods and Error Analysis for the Calibration of Remote Sensing Observations, Remote Sens.-Basel, 9, 47, https://doi.org/10.3390/rs9010047, 2017.
Grasel, D., Giehl, E. L. H., Wittmann, F., and Jarenkow, J. A.: Tree
community patterns along pond-upland topographic gradients, upper Uruguay
River basin, southern Brazil, Folia Geobot., 55, 109–126,
https://doi.org/10.1007/s12224-020-09368-2, 2020.
Grimm, R., Behrens, T., Marker, M., and Elsenbeer, H.: Soil organic carbon
concentrations and stocks on Barro Colorado Island – Digital soil mapping
using Random Forests analysis, Geoderma, 146, 102–113,
https://doi.org/10.1016/j.geoderma.2008.05.008, 2008.
Hancock, M., Sitch, S., Fischer, F. J., Chave, J., O'Sullivan, M., Fawcett, D., and Mercado, L. M.: Modelling the impact of wood density dependent tree mortality on the spatial distribution of Amazonian vegetation carbon, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2022-87, in review, 2022.
Harms, K. E., Condit, R., Hubbell, S. P., and Foster, R. B.: Habitat
associations of trees and shrubs in a 50 ha neotropical forest plot, J. Ecol.,
89, 947–959, https://doi.org/10.1046/j.0022-0477.2001.00615.x, 2001.
Hawthorne, S. and Miniat, C. F.: Topography may mitigate drought effects on
vegetation along a hillslope gradient, Ecohydrology, 11, e1825,
https://doi.org/10.1002/eco.1825, 2018.
Hernandez-Stefanoni, J. L., Reyes-Palomeque, G., Castillo-Santiago, M. A.,
George-Chacon, S. P., Huechacona-Ruiz, A. H., Tun-Dzul, F., Rondon-Rivera,
D., and Dupuy, J. M.: Effects of Sample Plot Size and GPS Location Errors on
Aboveground Biomass Estimates from LiDAR in Tropical Dry Forests, Remote
Sens.-Basel, 10, 1586, https://doi.org/10.3390/rs10101586, 2018.
Hernandez-Stefanoni, J. L., Castillo-Santiago, M. A., Mas, J. F., Wheeler,
C. E., Andres-Mauricio, J., Tun-Dzul, F., George-Chacon, S. P.,
Reyes-Palomeque, G., Castellanos-Basto, B., Vaca, R., and Dupuy, J. M.:
Improving aboveground biomass maps of tropical dry forests by integrating
LiDAR, ALOS PALSAR, climate and field data, Carbon Bal. Manage., 15, 15,
https://doi.org/10.1186/s13021-020-00151-6, 2020.
Hofhansl, F., Chacon-Madrigal, E., Fuchslueger, L., Jenking, D.,
Morera-Beita, A., Plutzar, C., Silla, F., Andersen, K. M., Buchs, D. M.,
Dullinger, S., Fiedler, K., Franklin, O., Hietz, P., Huber, W., Quesada, C.
A., Rammig, A., Schrodt, F., Vincent, A. G., Weissenhofer, A., and Wanek,
W.: Climatic and edaphic controls over tropical forest diversity and
vegetation carbon storage, Sci. Rep.-UK, 10, 5066,
https://doi.org/10.1038/s41598-020-61868-5, 2020.
Houghton, R. A., Hall, F., and Goetz, S. J.: Importance of biomass in the
global carbon cycle, J. Geophys. Res.-Biogeo., 114, G00e03,
https://doi.org/10.1029/2009jg000935, 2009.
Hoylman, Z. H., Jencso, K. G., Hu, J., Martin, J. T., Holden, Z. A.,
Seielstad, C. A., and Rowell, E. M.: Hillslope Topography Mediates Spatial
Patterns of Ecosystem Sensitivity to Climate, J. Geophys. Res.-Biogeo., 123,
353–371, https://doi.org/10.1002/2017jg004108, 2018.
Huang, M., Xu, Y., Longo, M., Keller, M., Knox, R. G., Koven, C. D., and Fisher, R. A.: Assessing impacts of selective logging on water, energy, and carbon budgets and ecosystem dynamics in Amazon forests using the Functionally Assembled Terrestrial Ecosystem Simulator, Biogeosciences, 17, 4999–5023, https://doi.org/10.5194/bg-17-4999-2020, 2020.
Hubbell, S. P. and Foster, R. B.: Diversity of canopy trees in a neotropical
forest and implications for conservation, in: Tropical Rain Forest:
Ecology and Management, edited by: Whitmore, T., Chadwick, A., and Sutton, A.,
The British Ecological Society, 25–41, https://forestgeo.si.edu/diversity-canopy-trees-neotropical-forest-and-implications-conservation (last access: 20 October 2022), 1983.
Ingwell, L. L., Wright, S. J., Becklund, K. K., Hubbell, S. P., and
Schnitzer, S. A.: The impact of lianas on 10 years of tree growth and
mortality on Barro Colorado Island, Panama, J. Ecol., 98, 879–887,
https://doi.org/10.1111/j.1365-2745.2010.01676.x, 2010.
Jones, J. E. and Woodward, C. S.: Newton-Krylov-multigrid solvers for
large-scale, highly heterogeneous, variably saturated flow problems, Adv.
Water Resour., 24, 763–774, https://doi.org/10.1016/S0309-1708(00)00075-0,
2001.
Kelleners, T. J., Seyfried, M. S., Blonquist, J. M., Bilskie, J., and
Chandler, D. G.: Improved interpretation of water content reflectometer
measurements in soils, Soil Sci. Soc. Am. J., 69, 1684–1690,
https://doi.org/10.2136/sssaj2005.0023, 2005.
Kinap, N. M., Nagy-Reis, M., Bobrowiec, P. E. D., Gordo, M., and Spironello,
W. R.: Influence of topography gradient and seasonality on primate habitat
use in Central Amazonia, Mamm. Biol., 101, 251–259,
https://doi.org/10.1007/s42991-021-00108-3, 2021.
Kinner, D. A. and Stallard, R. F.: Identifying storm flow pathways in a
rainforest catchment using hydrological and geochemical modelling, Hydrol.
Process., 18, 2851–2875, https://doi.org/10.1002/hyp.1498, 2004.
Kollet, S. J. and Maxwell, R. M.: Integrated surface-groundwater flow
modeling: A free-surface overland flow boundary condition in a parallel
groundwater flow model, Adv. Water Resour., 29, 945–958,
https://doi.org/10.1016/j.advwatres.2005.08.006, 2006.
Koven, C. D., Knox, R. G., Fisher, R. A., Chambers, J. Q., Christoffersen, B. O., Davies, S. J., Detto, M., Dietze, M. C., Faybishenko, B., Holm, J., Huang, M., Kovenock, M., Kueppers, L. M., Lemieux, G., Massoud, E., McDowell, N. G., Muller-Landau, H. C., Needham, J. F., Norby, R. J., Powell, T., Rogers, A., Serbin, S. P., Shuman, J. K., Swann, A. L. S., Varadharajan, C., Walker, A. P., Wright, S. J., and Xu, C.: Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama, Biogeosciences, 17, 3017–3044, https://doi.org/10.5194/bg-17-3017-2020, 2020.
Kuffour, B. N. O., Engdahl, N. B., Woodward, C. S., Condon, L. E., Kollet, S., and Maxwell, R. M.: Simulating coupled surface–subsurface flows with ParFlow v3.5.0: capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model, Geosci. Model Dev., 13, 1373–1397, https://doi.org/10.5194/gmd-13-1373-2020, 2020.
Kupers, S. J., Engelbrecht, B. M. J., Hernandez, A., Wright, S. J., Wirth,
C., and Ruger, N.: Growth responses to soil water potential indirectly shape
local species distributions of tropical forest seedlings, J. Ecol., 107,
860–874, https://doi.org/10.1111/1365-2745.13096, 2019a.
Kupers, S. J., Wirth, C., Engelbrecht, B. M. J., and Ruger, N.: Dry season
soil water potential maps of a 50 hectare tropical forest plot on Barro
Colorado Island, Panama, Sci. Data, 6, 63,
https://doi.org/10.1038/s41597-019-0072-z, 2019b.
Lan, G. Y., Hu, Y. H., Cao, M., and Zhu, H.: Topography related spatial
distribution of dominant tree species in a tropical seasonal rain forest in
China, Forest Ecol. Manag., 262, 1507–1513,
https://doi.org/10.1016/j.foreco.2011.06.052, 2011.
Lawrence, D. M. and Slater, A. G.: Incorporating organic soil into a global
climate model, Clim. Dynam., 30, 145–160,
https://doi.org/10.1007/s00382-007-0278-1, 2008.
Ledo, A., Illian, J. B., Schnitzer, S. A., Wright, S. J., Dalling, J. W.,
and Burslem, D. F. R. P.: Lianas and soil nutrients predict fine-scale
distribution of above-ground biomass in a tropical moist forest, J. Ecol.,
104, 1819–1828, https://doi.org/10.1111/1365-2745.12635, 2016.
Leigh, E. G. J.: Tropical forest ecology: a view from Barro Colorado Island,
Oxford University Press, Oxford, 264 pp., 1999.
Leung, L. R., Bader, D. C., Taylor, M. A., and McCoy, R. B.: An Introduction
to the E3SM Special Collection: Goals, Science Drivers, Development, and
Analysis, J. Adv. Model. Earth Sy., 12, e2019MS001821,
https://doi.org/10.1029/2019MS001821, 2020.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A Simple
Hydrologically Based Model of Land-Surface Water and Energy Fluxes for
General-Circulation Models, J. Geophys. Res.-Atmos., 99, 14415–14428,
https://doi.org/10.1029/94jd00483, 1994.
Lobo, E. and Dalling, J. W.: Effects of topography, soil type and forest age on the frequency and size distribution of canopy gap disturbances in a tropical forest, Biogeosciences, 10, 6769–6781, https://doi.org/10.5194/bg-10-6769-2013, 2013.
Mackay, D. S., Roberts, D. E., Ewers, B. E., Sperry, J. S., McDowell, N. G.,
and Pockman, W. T.: Interdependence of chronic hydraulic dysfunction and
canopy processes can improve integrated models of tree response to drought,
Water Resour. Res., 51, 6156–6176, https://doi.org/10.1002/2015wr017244, 2015.
Mascaro, J., Asner, G. P., Muller-Landau, H. C., van Breugel, M., Hall, J., and Dahlin, K.: Controls over aboveground forest carbon density on Barro Colorado Island, Panama, Biogeosciences, 8, 1615–1629, https://doi.org/10.5194/bg-8-1615-2011, 2011.
Martínez Cano, I., Muller-Landau, H. C., Wright, S. J., Bohlman, S. A., and Pacala, S. W.: Tropical tree height and crown allometries for the Barro Colorado Nature Monument, Panama: a comparison of alternative hierarchical models incorporating interspecific variation in relation to life history traits, Biogeosciences, 16, 847–862, https://doi.org/10.5194/bg-16-847-2019, 2019.
Maxwell, R. M.: A terrain-following grid transform and preconditioner for
parallel, large-scale, integrated hydrologic modeling, Adv. Water Resour., 53,
109–117, https://doi.org/10.1016/j.advwatres.2012.10.001, 2013.
Maxwell, R. M. and Miller, N. L.: Development of a coupled land surface and groundwater model, J. Hydrometeorol., 6, 233–247, https://doi.org/10.1175/Jhm422.1, 2005.
Maxwell, R. M., Condon, L. E., and Kollet, S. J.: A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3, Geosci. Model Dev., 8, 923–937, https://doi.org/10.5194/gmd-8-923-2015, 2015.
McDowell, N., Allen, C. D., Anderson-Teixeira, K., Brando, P., Brienen, R.,
Chambers, J., Christoffersen, B., Davies, S., Doughty, C., Duque, A.,
Espirito-Santo, F., Fisher, R., Fontes, C. G., Galbraith, D., Goodsman, D.,
Grossiord, C., Hartmann, H., Holm, J., Johnson, D. J., Kassim, A., Keller,
M., Koven, C., Kueppers, L., Kumagai, T., Malhi, Y., McMahon, S. M.,
Mencuccini, M., Meir, P., Moorcroft, P., Muller-Landau, H. C., Phillips, O.
L., Powell, T., Sierra, C. A., Sperry, J., Warren, J., Xu, C. G., and Xu, X.
T.: Drivers and mechanisms of tree mortality in moist tropical forests, New
Phytol., 219, 851–869, https://doi.org/10.1111/nph.15027, 2018.
McDowell, N. G., Beerling, D. J., Breshears, D. D., Fisher, R. A., Raffa, K.
F., and Stitt, M.: The interdependence of mechanisms underlying
climate-driven vegetation mortality, Trends Ecol. Evol., 26, 523–532,
https://doi.org/10.1016/j.tree.2011.06.003, 2011.
McDowell, N. G., Phillips, N., Lunch, C., Bond, B. J., and Ryan, M. G.: An
investigation of hydraulic limitation and compensation in large, old
Douglas-fir trees, Tree Physiol., 22, 763–774,
https://doi.org/10.1093/treephys/22.11.763, 2002.
Miranda, A., Altamirano, A., Cayuela, L., Lara, A., and Gonzalez, M.: Native
forest loss in the Chilean biodiversity hotspot: revealing the evidence,
Reg. Environ. Change, 17, 285–297, https://doi.org/10.1007/s10113-016-1010-7,
2017.
Miron, A. C., Bezerra, T. G., Nascimento, R. G. M., Emmert, F., Pereira, R.
S., and Higuchi, N.: Spatial distribution of six managed tree species is
influenced by topography conditions in the Central Amazon, J. Environ. Manage.,
281, 111835, https://doi.org/10.1016/j.jenvman.2020.111835, 2021.
Moorcroft, P. R., Hurtt, G. C., and Pacala, S. W.: A method for scaling
vegetation dynamics: The ecosystem demography model (ED), Ecol. Monogr., 71,
557–585, https://doi.org/10.1890/0012-9615(2001)071[0557:Amfsvd]2.0.Co;2,
2001.
Moore, I. D., Burch, G. J., and Mackenzie, D. H.: Topographic Effects on the
Distribution of Surface Soil-Water and the Location of Ephemeral Gullies,
T. ASAE, 31, 1098–1107, https://doi.org/10.13031/2013.30829, 1988.
Negrón-Juárez, R. I., Holm, J. A., Faybishenko, B., Magnabosco-Marra, D., Fisher, R. A., Shuman, J. K., de Araujo, A. C., Riley, W. J., and Chambers, J. Q.: Landsat near-infrared (NIR) band and ELM-FATES sensitivity to forest disturbances and regrowth in the Central Amazon, Biogeosciences, 17, 6185–6205, https://doi.org/10.5194/bg-17-6185-2020, 2020.
Niu, G. Y., Yang, Z. L., Dickinson, R. E., and Gulden, L. E.: A simple
TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate
models, J. Geophys. Res.-Atmos., 110, D21106,
https://doi.org/10.1029/2005jd006111, 2005.
Nyberg, L.: Spatial variability of soil water content in the covered
catchment at Gardsjon, Sweden, Hydrol. Process., 10, 89–103,
https://doi.org/10.1002/(Sici)1099-1085(199601)10:1<89::Aid-Hyp303>3.0.Co;2-W, 1996.
O'Brien, S. T., Hubbell, S. P., Spiro, P., Condit, R., and Foster, R. B.:
Diameter, Height, Crown, and Age Relationship in Eight Neotropical Tree
Species, Ecology, 76, 1926–1939, https://doi.org/10.2307/1940724, 1995.
Oleson, K., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven,
C. D., Levis, S., Li, F., Riley, W.J., Subin, Z. M. Swenson, S. C.,
Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C.L., Kluzek, E.,
Lamarque, J., Lawrence, P. J., Leung, L. R., 110 Lipscomb, W., Muszala, S.,
Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., and Yang, Z.-L.: Technical
description of version 4.5 of the Community Land Model (CLM) (No.
NCAR/TN-503+STR) Research, Boulder, Colorado, National Center for
Atmospheric Rep., 420 pp., https://doi.org/10.5065/D6RR1W7M, 2013.
Oliveira, R. S., Costa, F. R. C., van Baalen, E., de Jonge, A., Bittencourt,
P. R., Almanza, Y., Barros, F. D., Cordoba, E. C., Fagundes, M. V., Garcia,
S., Guimaraes, Z. T., Hertel, M., Schietti, J., Rodrigues-Souza, J., and
Poorter, L.: Embolism resistance drives the distribution of Amazonian
rainforest tree species along hydro-topographic gradients, New. Phytol., 221,
1457–1465, https://doi.org/10.1111/nph.15463, 2019.
Pachepsky, Y. A., Timlin, D. J., and Rawls, W. J.: Soil water retention as
related to topographic variables, Soil Sci. Soc. Am. J., 65, 1787–1795,
https://doi.org/10.2136/sssaj2001.1787, 2001.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830,
2011.
Powell, T. L., Koven, C. D., Johnson, D. J., Faybishenko, B., Fisher, R. A.,
Knox, R. G., McDowell, N. G., Condit, R., Hubbell, S. P., Wright, S. J.,
Chambers, J. Q., and Kueppers, L. M.: Variation in hydroclimate sustains
tropical forest biomass and promotes functional diversity, New Phytol., 219,
932–946, https://doi.org/10.1111/nph.15271, 2018.
Saldarriaga, J. G., West, D. C., Tharp, M. L., and Uhl, C.: Long-Term
Chronosequence of Forest Succession in the Upper Rio Negro of Colombia and
Venezuela, J. Ecol., 76, 938–958, https://doi.org/10.2307/2260625, 1988.
Sato, H., Itoh, A., and Kohyama, T.: SEIB-DGVM: A new dynamic global
vegetation model using a spatially explicit individual-based approach, Ecol.
Model., 200, 279–307, https://doi.org/10.1016/j.ecolmodel.2006.09.006, 2007.
Schietti, J., Emilio, T., Renno, C. D., Drucker, D. P., Costa, F. R. C.,
Nogueira, A., Baccaro, F. B., Figueiredo, F., Castilho, C. V., Kinupp, V.,
Guillaumet, J. L., Garcia, A. R. M., Lima, A. P., and Magnusson, W. E.:
Vertical distance from drainage drives floristic composition changes in an
Amazonian rainforest, Plant Ecol. Divers., 7, 241–253,
https://doi.org/10.1080/17550874.2013.783642, 2014.
Schnitzer, S. A. and Bongers, F.: Increasing liana abundance and biomass in
tropical forests: emerging patterns and putative mechanisms, Ecol. Lett., 14,
397–406, https://doi.org/10.1111/j.1461-0248.2011.01590.x, 2011.
Schnitzer, S. A., Kuzee, M. E., and Bongers, F.: Disentangling above- and
below-ground competition between lianas and trees in a tropical forest, J.
Ecol., 93, 1115–1125, https://doi.org/10.1111/j.1365-2745.2005.01056.x, 2005.
Schumacher, S., Bugmann, H., and Mladenoff, D. J.: Improving the formulation
of tree growth and succession in a spatially explicit landscape model, Ecol.
Model., 180, 175–194, https://doi.org/10.1016/j.ecolmodel.2003.12.055, 2004.
Sener, E., Davraz, A., and Ozcelik, M.: An integration of GIS and remote
sensing in groundwater investigations: A case study in Burdur, Turkey,
Hydrogeol. J., 13, 826–834, https://doi.org/10.1007/s10040-004-0378-5, 2005.
Silveira, E. M. O., Silva, S. H. G., Acerbi, F. W., Carvalho, M. C.,
Carvalho, L. M. T., Scolforo, J. R. S., and Wulder, M. A.: Object-based
random forest modelling of aboveground forest biomass outperforms a
pixel-based approach in a heterogeneous and mountain tropical environment,
Int. J. Appl. Earth Obs., 78, 175–188,
https://doi.org/10.1016/j.jag.2019.02.004, 2019.
Steidinger, B.: Qualitative differences in tree species distributions along
soil chemical gradients give clues to the mechanisms of specialization: why
boron may be the most important soil nutrient at Barro Colorado Island, New
Phytol., 206, 895–899, https://doi.org/10.1111/nph.13298, 2015.
Swetnam, T. L., Brooks, P. D., Barnard, H. R., Harpold, A. A., and Gallo, E.
L.: Topographically driven differences in energy and water constrain
climatic control on forest carbon sequestration, Ecosphere, 8, e01797,
https://doi.org/10.1002/ecs2.1797, 2017.
Tague, C. L. and Band, L. E.: RHESSys: Regional Hydro-Ecologic Simulation
System-An Object-Oriented Approach to Spatially Distributed Modeling of
Carbon, Water, and Nutrient Cycling, Earth Interact., 8, 1–42,
https://doi.org/10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2, 2004.
Tai, X. N., Anderegg, W. R. L., Blanken, P. D., Burns, S. P., Christensen,
L., and Brooks, P. D.: Hillslope Hydrology Influences the Spatial and
Temporal Patterns of Remotely Sensed Ecosystem Productivity, Water Resour.
Res., 56, e2020WR027630, https://doi.org/10.1029/2020WR027630, 2020.
Terra, M. D. N. S., dos Santos, R. M., do Prado, J. A., de Mello, J. M.,
Scolforo, J. R. S., Fontes, M. A. L., Schiavini, I., dos Reis, A. A., Bueno,
I. T., Magnago, L. F. S., and ter Steege, H.: Water availability drives
gradients of tree diversity, structure and functional traits in the
Atlantic-Cerrado-Caatinga transition, Brazil, J. Plant Ecol., 11, 803–814,
https://doi.org/10.1093/jpe/rty017, 2018.
Wiegand, T., May, F., Kazmierczak, M., and Huth, A.: What drives the spatial
distribution and dynamics of local species richness in tropical forest?, P.
Roy. Soc. B, 284, 20171503,
https://doi.org/10.1098/rspb.2017.1503, 2017.
Wright, S. J.: The Smithsonian Tropical Research Institute: Ecological and
applied research, Biol. Conserv., 252, 108858,
https://doi.org/10.1016/j.biocon.2020.108858, 2020.
Wright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J.,
Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Diaz, S.,
Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O.,
Ruiz-Jaen, M. C., Salvador, C. M., and Zanne, A. E.: Functional traits and
the growth-mortality trade-off in tropical trees, Ecology, 91, 3664–3674,
https://doi.org/10.1890/09-2335.1, 2010.
Xie, Z. H., Wang, L. H., Wang, Y., Liu, B., Li, R. C., Xie, J. B., Zeng, Y.
J., Liu, S., Gao, J. Q., Chen, S., Jia, B. H., and Qin, P. H.: Land Surface
Model CAS-LSM: Model Description and Evaluation, J. Adv. Model. Earth Sy., 12,
e2020MS002339, https://doi.org/10.1029/2020MS002339, 2020.
Zaki, N. A. M. and Abd Latif, Z.: Carbon sinks and tropical forest biomass
estimation: a review on role of remote sensing in aboveground-biomass
modelling, Geocarto Int., 32, 701–716,
https://doi.org/10.1080/10106049.2016.1178814, 2017.
Zald, H. S. J., Wulder, M. A., White, J. C., Hilker, T., Hermosilla, T.,
Hobart, G. W., and Coops, N. C.: Integrating Landsat pixel composites and
change metrics with lidar plots to predictively map forest structure and
aboveground biomass in Saskatchewan, Canada, Remote Sens. Environ., 176,
188–201, https://doi.org/10.1016/j.rse.2016.01.015, 2016.
Zemunik, G., Davies, S. J., and Turner, B. L.: Soil drivers of local-scale
tree growth in a lowland tropical forest, Ecology, 99, 2844–2852,
https://doi.org/10.1002/ecy.2532, 2018.
Zimmermann, A., Schinn, D. S., Francke, T., Elsenbeer, H., and Zimmermann,
B.: Uncovering patterns of near-surface saturated hydraulic conductivity in
an overland flow-controlled landscape, Geoderma, 195, 1–11,
https://doi.org/10.1016/j.geoderma.2012.11.002, 2013.
Zinko, U., Seibert, J., Dynesius, M., and Nilsson, C.: Plant species numbers predicted by a topography-based groundwater flow index, Ecosystems, 8, 430–441, https://doi.org/10.1007/s10021-003-0125-0, 2005.
Zuleta, D., Russo, S. E., Barona, A., Barreto-Silva, J. S., Cardenas, D.,
Castano, N., Davies, S. J., Detto, M., Sua, S., Turner, B. L., and Duque,
A.: Importance of topography for tree species habitat distributions in a
terra firme forest in the Colombian Amazon, Plant Soil, 450, 133–149,
https://doi.org/10.1007/s11104-018-3878-0, 2020.
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
We develop a model that integrates an Earth system model with a three-dimensional hydrology...