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Abstract. Topographic heterogeneity and lateral subsurface
flow at the hillslope scale of ≤ 1 km may have outsized im-
pacts on tropical forest through their impacts on water avail-
able to plants under water-stressed conditions. However, veg-
etation dynamics and finer-scale hydrologic processes are
not concurrently represented in Earth system models. In this
study, we integrate the Energy Exascale Earth System Model
(E3SM) land model (ELM) that includes the Functionally
Assembled Terrestrial Ecosystem Simulator (FATES), with
a three-dimensional hydrology model (ParFlow) to explic-
itly resolve hillslope topography and subsurface flow and
perform numerical experiments to understand how hillslope-
scale hydrologic processes modulate vegetation along wa-
ter availability gradients at Barro Colorado Island (BCI),
Panama. Our simulations show that groundwater table depth
(WTD) can play a large role in governing aboveground
biomass (AGB) when drought-induced tree mortality is trig-
gered by hydraulic failure. Analyzing the simulations using
random forest (RF) models, we find that the domain-wide
simulated AGB and WTD can be well predicted by static to-
pographic attributes, including surface elevation, slope, and
convexity, and adding soil moisture or groundwater table
depth as predictors further improves the RF models. Differ-
ent model representations of mortality due to hydraulic fail-
ure can change the dominant topographic driver for the simu-
lated AGB. Contrary to the simulations, the observed AGB in
the well-drained 50 ha forest census plot within BCI cannot

be well predicted by the RF models using topographic at-
tributes and observed soil moisture as predictors, suggesting
other factors such as nutrient status may have a larger influ-
ence on the observed AGB. The new coupled model may be
useful for understanding the diverse impact of local hetero-
geneity by isolating the water availability and nutrient avail-
ability from the other external and internal factors in ecosys-
tem modeling.

1 Introduction

The aboveground biomass (AGB) within forests is a large
storage pool for carbon, so reliably quantifying the spatial
distribution of AGB is important for understanding the role
of forests in the carbon cycle and in climate change mitiga-
tion (Garcia et al., 2017; Hernandez-Stefanoni et al., 2020;
Houghton et al., 2009). The spatial distribution of AGB is
commonly acquired from remote sensing or extensive field
collection of plot data (Benitez et al., 2016; Condit et al.,
2019; Goita et al., 2019; Goncalves et al., 2017; Hernandez-
Stefanoni et al., 2018, 2020; Zaki and Abd Latif, 2017; Zald
et al., 2016). However, it is challenging to understand the dy-
namic structure and biomass of forests and how they may re-
spond to climate change, especially for tropical forests with
high tree diversity (Clark et al., 1999; Feroz et al., 2014; Wie-
gand et al., 2017).
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One factor that could play an important role in organizing
the spatial distributions of tropical tree species is habitat vari-
ability, such as topographic conditions, soil biotic and abi-
otic characteristics, and soil water levels (Costa et al., 2005;
Echiverri and Macdonald, 2019; Grasel et al., 2020; Kinap et
al., 2021; Mascaro et al., 2011; Miron et al., 2021; Oliveira
et al., 2019; Schietti et al., 2014; Steidinger, 2015; Zuleta et
al., 2020). Analyses of the spatial patterns of tropical species
have shown that topographic attributes, such as slope and
curvature, are a strong driver in controlling AGB variation
in tropical forests (Detto et al., 2013; Mascaro et al., 2011;
Silveira et al., 2019). However, the mechanisms responsible
for the association between topography and forest structure
are not well understood. For example, soil moisture varies
strongly with topography, and several studies have demon-
strated how drought-associated mortality, species composi-
tion, structure, and functions are all dependent on soil mois-
ture gradients and water table depth (Schietti et al., 2014;
Terra et al., 2018).

Previous ecosystem dynamics modeling studies have in-
cluded foci on non-spatial species distribution, the statistical
species–area relationship, and spatially explicit trees (Fisher
et al., 2018; Moorcroft et al., 2001; Sato et al., 2007; Schu-
macher et al., 2004; Wiegand et al., 2017, and references
therein). However, they largely ignored hillslope hydrolog-
ical processes, which fundamentally modulate water, energy,
and biogeochemical fluxes at local scales (Fan et al., 2019).
A quantitative assessment of the influence of hillslope wa-
ter availability on ecosystem dynamics has not been under-
taken, partly due to limited availability of observational data
and limited capabilities of models to represent processes at
relevant scales. Our aim for this study is to develop a new
modeling capability that incorporates the forest response to
variation in hillslope soil moisture content and water table
dynamics into an Earth system modeling framework. While
ecosystem dynamics models have been coupled to land sur-
face models, the latter generally ignore hillslope hydrologic
processes or represent them crudely using subgrid param-
eterizations (Clark et al., 2015). More detailed hydrologic
models that represent hillslope hydrology and subsurface
processes have been coupled to land surface models, but
ecosystem dynamics models have not been included in those
land surface models (e.g., Kollet and Maxwell, 2006). Mod-
els such as the Regional Hydro-Ecologic Simulation Sys-
tem (RHEESyS) (Tague and Band, 2004) and Terrestrial Re-
gional Ecosystem Exchange Simulator (TREES) (Mackay et
al., 2015) can represent vegetation dynamics with hillslope
hydrology, but they have not been incorporated into Earth
system models for modeling the coupled Earth system pro-
cesses. In a comparison of a land surface model with a three-
dimensional hydrology model in the Asu catchment of the
Amazon basin, Fang et al. (2017) found a significant influ-
ence of topography on groundwater table and runoff. Without
subsurface lateral flow, the land surface model cannot repro-
duce the seasonal dynamics of the groundwater table simu-

lated by the three-dimensional hydrology model. Hawthorne
and Miniat (2018) suggested that, through redistribution of
soil moisture, topography may mitigate drought effects on
vegetation along a hillslope gradient. It is recommended by
Swetnam et al. (2017) that the nonlinear effects of lateral re-
distribution of water in complex terrain should be taken into
account to improve the prediction accuracy of tree mortal-
ity. These motivate the need for modeling of hillslope hydro-
logic processes and ecosystem dynamics in a single Earth
system modeling framework, as the seasonal dynamics of
water available to plants could have a significant effect on
plant growth and survival during drought.

To develop a new modeling capability to study the role
of hillslope water availability in ecosystem dynamics, we
couple the land component of the Energy Exascale Earth
System Model (E3SM) (Golaz et al., 2019; Leung et al.,
2020) in a configuration that includes a vegetation demo-
graphic model called the Functionally Assembled Terrestrial
Ecosystem Simulator (FATES) (Huang et al., 2020; Koven
et al., 2020; Negron-Juarez et al., 2020; Powell et al., 2018)
to a three-dimensional hydrology model (ParFlow) (Ashby
and Falgout, 1996; Jones and Woodward, 2001; Kollet and
Maxwell, 2006; Maxwell, 2013). The goal is to provide a
tool in Earth system modeling to isolate plant water availabil-
ity from the other controlling factors associated with topog-
raphy for AGB variability. The coupled model developed in
this study is used to evaluate the role of hillslope water avail-
ability in ecosystem functioning at Barro Colorado Island
(BCI), Panama, where observations of both vegetation and
hydrology are available. BCI exhibits higher aboveground
biomass on slopes and wet swamps (Chave et al., 2003). Fur-
thermore, a higher mortality rate of canopy trees on a plateau
in BCI during 1983 was attributed to water stress by low pre-
cipitation and high temperature (Condit et al., 1995). To our
knowledge, no coupled modeling of ecosystem dynamics and
hillslope hydrology has been conducted at the site.

Hydraulic failure is the inability of a plant to move water
from roots to leaves. It is one of the physiological mecha-
nisms for tree mortality (McDowell et al., 2011). Observed
and projected increases in drought frequency, intensity, and
duration increased the risk of hydraulic failure and vulner-
ability of trees (Allen et al., 2015). We hypothesize that
hydraulic-failure-induced mortality has a significant impact
on AGB variability along the hillslope hydraulic gradient.
In this study, we conduct numerical experiments using the
newly developed coupled model to investigate how model
structure (i.e., a model with or without lateral flow cap-
tured by ParFlow), plant functional composition (represented
by different functional traits in FATES), as well as alter-
native methods representing hydraulic-failure-induced mor-
tality can influence ecosystem dynamics at BCI. We briefly
summarize each model, followed by a description of the ap-
proach used to couple the models. We then describe a set of
numerical experiments and compare the model simulations
with field observations. To evaluate the influence of topog-
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raphy on AGB through its impact on hydrologic processes,
we analyze and compare the simulations across the model
domain to determine the sensitivity of the simulated AGB
to model structure, plant functional composition, soil prop-
erty, and representations of hydraulic failure. Lastly, we de-
velop random forest (RF) models using various topographic
attributes and the simulated and observed soil water states as
predictors to predict the simulated and observed AGB. The
purpose of the RF models is to reveal whether there are sim-
ilar nonlinear relationships between topography, soil water
states, and AGB in the coupled simulations and in the obser-
vations. This analysis may reveal model limitations in captur-
ing certain nonlinear relationships found in the observations
and inform future efforts to improve modeling of coupled
hydrology–vegetation processes.

2 Methods

2.1 Model descriptions

To achieve the goals of this study, we used the land model
of the Energy Exascale Earth System Model (E3SM) called
ELM, the integrated hydrology model called ParFlow capa-
ble of simulating surface and subsurface flow at hillslope
scale, and the FATES vegetation demographic model to de-
velop a coupled model of vegetation–hydrology interactions
at hillslope scale. The model components and the coupling
approach are described below.

2.1.1 ELM

E3SM is an Earth system model containing modules for land,
ocean, sea ice, and rivers (Caldwell et al., 2019; Leung et
al., 2020). The land model in E3SM, referred to as ELM,
started as a branch of the Community Land Model version
4.5 (CLM4.5) (Oleson et al., 2013). The one-dimensional
model simulates changes in canopy water, surface water,
snow water, soil water, soil ice, and water in the unconfined
aquifer through parameterization of interception, throughfall,
canopy drip, snow accumulation and snowmelt, water trans-
fer between snow layers, infiltration, evaporation, surface
runoff, subsurface drainage, vertical redistribution within the
soil column, and groundwater discharge and recharge (Ole-
son et al., 2013). The default soil hydrology model in ELM
solves the one-dimensional Richards equation in unevenly
spaced vertical soil layers. The solution of the Richards equa-
tion is driven by precipitation, infiltration, subsurface runoff,
evaporation, and canopy transpiration through root extrac-
tion and interactions with groundwater. Water flux input to
the ground surface (the top grid cell surface) is the liquid
water reaching the ground, which is then partitioned be-
tween surface runoff, surface water storage, and infiltration
into the soil. Runoff generation in ELM can be parameter-
ized using either the TOPMODEL-based (Beven and Kirkby,
1979) runoff model (SIMTOP) (Niu et al., 2005) or the

runoff parameterization of the Variable Infiltration Capacity
(VIC) model (Liang et al., 1994). Soil hydraulic properties
are determined according to sand and clay contents based
on the work by Clapp and Hornberger (1978) and Cosby et
al. (1984) and organic properties of the soil (Lawrence and
Slater, 2008).

2.1.2 ParFlow

ParFlow solves the following Richards equation in variably
saturated soils in three dimensions (Kollet and Maxwell,
2006; Kuffour et al., 2020):

SsSw (h)
∂h

∂t
+φ

∂Sw (h)

∂t
=−∇ dkskr (h)∇ (h+ z)e+qs, (1)

where t is time (s), Ss is the specific storage (m−1), Sw is the
relative saturation (–), φ is the effective porosity of the me-
dia, h is the pressure head (m), ks is the saturated hydraulic
conductivity tensor (m h−1), kr(h) is the relative permeabil-
ity (–), z is the elevation (m), and qs is the source term (h−1).
The saturation–pressure and relative permeability–saturation
functions can be represented by either the van Genuchten
(1980) or Brooks and Corey relationships (Brooks and Corey,
1966). The following simplified Brooks and Corey relation-
ship is used in this study:

θ − θr

φ− θr
=

(
pa

p

)λ
, (2)

kr =

(
θ − θr

φ− θr

)n
, (3)

where θ is water content, θ = φs(p), θr is the residual water
content, λ is the pore size distribution index, pa is the bub-
bling capillary pressure, and n is the pore disconnectedness
index, which equals 3+ 2λ.

ParFlow has an integrated overland flow simulation capa-
bility, where a free-surface overland flow boundary condition
is applied at the land surface and overland flow is solved with
the kinematic wave equation (Kollet and Maxwell, 2006). At
the top boundary between the surface and subsurface sys-
tems, pressure continuity between the two systems is as-
signed. Only when the top cell of the subsurface domain is
ponded is the kinetic wave equation activated (Maxwell et
al., 2015). One of the model options we use in this study is
the terrain-following grid (TFG) (Maxwell, 2013) capabil-
ity to define the gridded domain to conform to topography,
which is useful for coupled surface–subsurface flow prob-
lems. When discretized numerically into grids in three di-
mensions, Eq. (1) equates the time rate of change in water
mass within a grid with the mass fluxes of water across the
surfaces of each grid as well as water sources/sinks. This re-
sults in a matrix equation including every grid, both horizon-
tally and vertically. The water table is the surface where the
water pressure head is equal to the atmospheric pressure. The
surface was calculated by the hydraulic head of the water-
saturated (i.e., the soil moisture equals the porosity) grid
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near the ground surface. The Richards equation is solved
numerically using a cell-centered finite difference in space
and an implicit backward Euler scheme in time (Kollet and
Maxwell, 2006). It is designed for high-performance appli-
cations and is solved using a parallel, globalized Newton
method and a multigrid-preconditioned linear solver (Ashby
and Falgout, 1996; Jones and Woodward, 2001).

2.1.3 FATES

FATES is a cohort model of vegetation competition and co-
existence that was originally separated from the ecosystem
demography model in the community land model, CLM(ED)
(Fisher et al., 2015), which was based on the ecosystem
demography concept in Moorcroft et al. (2001). The tiling
structure in FATES represents the disturbance history of the
ecosystem by dynamically tracking areas with similar distur-
bance histories, which are referred to as “patches”, replac-
ing the plant functional type (PFT) structure in the organi-
zation hierarchy in the CLM. The patch has no spatial lo-
cation association. In doing so, FATES uses a given “host
land model”. Currently supported host land models are the
Community Land Model of the Community Terrestrial Sys-
tems Model (CLM-CTSM) and ELM. Boundary conditions
are clearly identified between FATES and the host land mod-
els where FATES functions are invoked (Koven et al., 2020).

Figure 1 shows the information that is passed between
FATES and ELM at each ELM model step (half-hourly) for
biophysics and at the end of each day for vegetation dynam-
ics. At each ELM time step, ELM provides FATES with envi-
ronmental conditions (e.g., soil moisture, atmospheric forc-
ing), and FATES calculates surface processes and provides
ELM terms (e.g., canopy conductance, albedo, leaf area in-
dex, root water extraction to meet transpiration demand) to
calculate canopy-level fluxes. Daily cohort-level carbon in-
crement or net primary productivity is used to allocate car-
bon to plant organs and alter the cohort structures. At the
daily time step, daily carbon increment calculated in FATES
is sequentially allocated per cohort (Koven et al., 2020). The
amount is subtracted from the cohort’s storage pool if the
carbon increment is negative. If the carbon increment is pos-
itive, the cohort first replenishes the carbon storage pool, and
tissue turnover is then compensated. The cohort will allo-
cate the remaining increment to any organ pools (leaf, stem,
coarse root, fine root, and seed) that are below their allomet-
ric targets. The cohort will grow its stem diameter, allocating
to each pool proportionally to that pool’s derivative with re-
spect to stem diameter using the remaining carbon increment
(if any). Patch structures can also be altered by disturbance
processes from fires, small-scale tree mortality, and anthro-
pogenic disturbance.

FATES uses allometric relationships with stem diameter
(D) to determine tree height (h) and crown area (C). There
are five model options for tree height in FATES. In this study,

we used a power function described in O’Brien et al. (1995),

h= 10(log10(D∗)·a+b), (4)
D∗ =min(D,Dmax), (5)

and a Michaelis–Menten form in Martinez Cano et al. (2019):

h=
cDd∗

k+Dd∗
. (6)

The allometry function for crown area is

C =

{
fDg D <Dmax,

fD
g
max D ≥Dmax,

(7)

where a, b, c, d , k, f , and g are allometric parameters, and
Dmax is the diameter of the plant where maximum height
occurs.

Target biomasses (the projected quantity along the tan-
gent of the allometric curves from where they started) of
leaf, structure, stem, fine root, seed, and storage are also cal-
culated using allometry functions in FATES (Koven et al.,
2020). Target biomasses of fine root and storage are assumed
to be linearly proportional to the target leaf biomass, and the
target structure biomass is linearly proportional to the target
sapwood biomass.

A power law allometric model is used for the target leaf
biomass (L):

L=mD
g
∗ , (8)

where m and g are allometric parameters, and g is the same
as in Eq. (7).

FATES has three allometry function options to calculate
target stem aboveground biomass (Cagb); we used the func-
tional form in Saldarriaga et al. (1988),

Cagb = fagbp1h
p2Dp3ρp4 , (9)

and a functional form in Chave et al. (2014),

Cagb =
1

c2b
p1

(
ρD2h

)p2
, (10)

where fagb is the fraction of stem above ground, p1, p2,
p3, and p4 are allometry parameters, c2b is the carbon-to-
biomass ratio, and ρ is the plant wood density.

Once tissue turnover and storage carbon demands are met,
FATES uses a constant fraction of net primary production for
seed production. The total AGB reported in the study is the
sum of leaf biomass, aboveground stem biomass, and seed
biomass.

Total plant mortality per cohort is simulated as the sum
of the six additive terms, including mortality due to carbon
starvation and hydraulic failure (McDowell et al., 2011), fire,
size, age, and background mortality, which is unaccounted
for by any of the other mortality rates. Among these mortality
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mechanisms within the model, we are particularly interested
in the mortality induced by hydraulic failure, as we expect a
different vegetation response to plant water availability along
the hillslope.

The default hydraulic failure model in FATES uses a proxy
for hydraulic-failure-induced mortality. For each day, mortal-
ity with a rate Mhf,coh is triggered (or a set fraction of trees
is killed) if the plant wilting factor is beyond a threshold (the
default is 10−6; unitless) using the following equation:

Mhf,coh =

{
mft forβ < 10−6,

0.0 forβ ≥ 10−6,
(11)

wheremft is a constant specific to a plant functional type, and
β is the water stress factor that depends on soil water matric
potential as follows (Oleson et al., 2013):

β =
∑
i

ψC−ψS,i

ψC−ψO
ri, (12)

where ψS,i is the soil water matric potential in soil layer i
(m), ri is the root fraction in soil layer i, ψC is the soil water
potential (m) when stomata are fully closed, and ψO is the
soil water potential (m) when stomata are fully open. β = 1
when vegetation is unstressed, and β = 0 when the plant wilt-
ing point is reached. The threshold value of 10−6 represents
a state where the average soil moisture potential is within
10−6 of the wilting point. As a default option in FATES,
when β is below this threshold, a set fraction of the tress with
rate Mhf,coh (yr−1) is killed as a proxy for hydraulic-failure-
induced mortality.

Alternatively, a mechanistic hydraulic failure model is
based on the plant hydraulics model in FATES, i.e., FATES-
hydro, where hydraulic failure mortality begins when plant
fractional loss of conductivity (ftc) reaches a threshold (ftc,
t ; the default is 0.5):

Mhf,coh =

{ ftc−ftc,t
1−ftc,t mft for ftc≥ ftc, t,

0.0 for ftc< ftct,
(13)

where mft is the maximum mortality rate (yr−1). FATES-
hydro solves the water transport through different organs in
the plants, from roots to leaves. It considers the plant-internal
water storage, which can buffer the imbalance of root water
uptake and transpiration demand. Details of FATES-hydro
can be found in Christofferson et al. (2016) and Fang et
al. (2021).

We also tested another hydraulic failure model, assuming
the drought mortality rate to be a linear function of soil water
potential using, for example, the slope derived in Kupers et
al. (2019a) based on the observations of the first-year mor-
tality rate of naturally regenerating seedlings to soil water
potential for one species from the study site:

Mhf,coh = bψS, (14)

where b is a constant (b = 0.49 yr−1 MPa−1), and ψS is soil
water potential (MPa).

2.2 Model coupling approach

ParFlow was previously coupled to version 3.5 of CLM or
CLM3.5 to simulate physical processes related to the en-
ergy and mass balance at the land surface (Maxwell and
Miller, 2005). Many changes have been made relative to
CLM3.5 ever since then in terms of processes and modular-
ized code structure. CLM3.5 was not designed to host FATES
because of its code structure. Instead of modifying CLM3.5,
the ELM and ParFlow coupling approach in this study com-
bines the approaches used to couple the land model and the
subsurface model adopted by Maxwell and Miller (2005),
Kollet and Maxwell (2006), and Bisht et al. (2017). Cou-
pling is achieved by (1) replacing the one-dimensional mod-
els for flow in unsaturated and groundwater zones in ELM
by ParFlow to simulate unsaturated–saturated flow within
the three-dimensional subsurface domain, (2) replacing the
runoff scheme in ELM with the integrated overland flow
module in ParFlow, and (3) providing ELM with the soil
moisture simulated by ParFlow (Fig. 1) at each time step.

ParFlow is incorporated into ELM in a distributed man-
ner as a module through an external model interface. Only
vegetated surfaces are allowed in this coupling, such that
each tile in ELM coincides with the upper face of the up-
permost cell (ground surface of the subsurface computa-
tional domain) in ParFlow using a terrain-following grid.
In other words, each vertical column of the ParFlow grids
corresponds to a soil column in ELM. The decomposition
approaches for ELM and ParFlow are round-robin decom-
position and domain decomposition, respectively. Therefore,
mapping of gridded data from one model onto the grids of
the other is required through sparse matrix vector multiplica-
tion based on preprocessed sparse weight matrices between
the two models (Bisht et al., 2017). For simplification, the
sizes of soil columns of the two models are the same; i.e.,
the elements in the sparse weight matrices are 1.0. The new
namelist “use_parflow_emi” in the land model is required to
run the coupled model. As shown in Fig. 1, for each time
step, ParFlow receives infiltration, evaporation, and root wa-
ter extraction from ELM and provides its calculated soil
moisture to ELM through the model coupling interface. Note
that FATES does not have a direct interface with ParFlow.
The effect of ParFlow on FATES is through the soil mois-
ture it passes to ELM, and the effect of FATES on ParFlow
is through the root water extraction it passes to ELM, as in-
dicated by the dashed red boxes in Fig. 1.

2.3 Site description and observation data

Our model experiments are conducted at BCI (9◦10′ N,
79◦51′W), Panama, which is one of the world’s best-studied
tropical forests (Leigh, 1999) because of the century-long
presence of a research station and ongoing scientific in-
vestigation focused mainly on terrestrial forest ecology and
related fields (Wright, 2020). BCI is administered by the
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Figure 1. Schematics of ELM, ParFlow, and FATES and the approach to coupling the three models. Hydrology in ELM is replaced by
ParFlow. Arrows show the passing of variables between models. Black arrows indicate the exchange of variables within FATES and between
ELM and FATES. Red arrows highlight the exchange of variables between ELM and ParFlow. Interactions between FATES and ParFlow are
mediated through ParFlow’s influence on soil water and FATES’ influence on root water extraction, shown in the red dashed boxes.

Smithsonian Tropical Research Institute (STRI). After canal
construction and the formation of Gatún Lake in the Chagres
River in 1914, BCI became isolated from the surrounding
mainland (Zimmermann et al., 2013). It rises out of the wa-
ters of the artificial Gatún Lake (normal water level of 26 m
above sea level) and has an area of 1560 ha which is covered
by forest that has remained relatively undisturbed for at least
100 years (https://biogeodb.stri.si.edu/physical_monitoring/
research/barrocolorado, last access: 20 October 2022). The
two main geological formations at BCI are the Bohio from
the early Oligocene and the younger Caimito formation from
the late Oligocene, both sedimentary rocks consisting of vol-
canic and marine facies (Grimm et al., 2008, and references
therein). The clay-rich Cambisols and Ferralsols dominate
the soils at BCI, and the mean soil textures largely belong to
the silty loam, silty clay, clay, and clay loam textural classes
(Grimm et al., 2008). Measured saturated hydraulic conduc-
tivity at the site varies from 0.016 to 13.2 mm h−1 (Kinner
and Stallard, 2004).

The site has long-term meteorological and hydrological
data. Meteorological data from 2003 to 2016 are available
from a meteorological tower near the Lutz catchment at
BCI (Faybishenko et al., 2018). The wet season at BCI is
roughly from May to December, and the dry season is from
late December to April. Annual mean precipitation during

the simulation period is 2382.7 mm, while mean precipita-
tion in the dry season is 219 mm. Observed evapotranspi-
ration (ET), gross primary production (GPP), sensible heat
flux (SH), and latent heat flux (LH) at the site were obtained
from an eddy-covariance system installed in July 2012 on
the AVA tower (∼ 1.25 km from the Lutz catchment) located
41 m above the ground on the top plateau. Locations of the
Lutz tower and the AVA tower are shown in Fig. 2. Three
time domain reflectometers (TDRs, CS616, Campbell Sci-
entific) were installed vertically in the vicinity of the AVA
tower in July 2012. The apparent dielectric permittivity of
soil measured by TDR probes is related to the soil water
content using an ad hoc calibration curve (Kelleners et al.,
2005) using seven in situ gravimetric soil water content sam-
ples (0–15 cm) collected near the probes during different
soil moisture regimes (30 campaigns). The 50 ha permanent
plot at BCI (1000m× 500m) was established in 1981. Cen-
suses were carried out in 1981–1983 and every 5 years from
1985 to 2015. In each census, all woody stems with least
1 cm diameter at breast height were identified, measured, and
mapped. Over 350 000 individual trees have been tallied over
35 years (Condit et al., 2012, 2017, 2019; Hubbell and Fos-
ter, 1983). The aboveground biomass along with a 5 m to-
pography survey of the BCI 50 ha plot by Harms et al. (2001)
can be found in the 2019 version the BCI forest census plot
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Figure 2. Simulation domain and elevation. The black rectangle in-
side is the ParFlow simulation domain, and the smaller grey rectan-
gle indicates the 50 ha census plot on the highland. Locations of the
AVA eddy-covariance tower and the Lutz meteorological tower are
shown by the small triangles.

database (Condit et al., 2019). Maps of soil water potential
and soil water content for several dry season stages during
2015 and 2016 in the 50 ha plot were generated by Kupers et
al. (2019b) based on measurements of a total of 1299 samples
at a total of 363 sites that covered all soil types and habitats
in the plot area. Most samples were taken at 15 cm depth.

2.4 Numerical experiments

Figure 2 shows the ParFlow simulation domain and the sur-
face elevation at the site as well as the 50 ha forest dynamics
plot (consisting of quadrats of 5 m by 5 m). The ParFlow do-
main is selected to minimize the boundary effect on the flow
within the 50 ha plot by providing a buffer between the edge
of the ParFlow domain boundary and the 50 ha plot bound-
ary. The elevation in the study domain ranged from ∼ 28 to
186 m above sea level, with a moderately gentle topography
(Lobo and Dalling, 2013). The model is driven by the same
atmospheric forcing (i.e., precipitation, air temperature, rel-
ative humidity, wind speed, and surface pressure) for 2003–
2016 measured at a meteorological tower near the Lutz catch-
ment at BCI (Faybishenko et al., 2018) in all grids due to the
lack of spatial forcing. Comparison of the precipitation at the
tower and a clearing near the Lutz catchment shows good
agreement, supporting the use of the same atmospheric forc-
ing for all grids of the model.

Seven model experiments (Table 1) are conducted to eval-
uate model sensitivity to model structure, plant traits, soil
properties, and the hydraulic failure representations. Specif-

ically, two of the experiments are run using ELM–FATES
without ParFlow to evaluate sensitivity to model structure
(Cases 1 and 2). The other five simulations are run using
ELM–ParFlow–FATES with different combinations of plant
traits, soil properties, and representations of tree mortality
rates due to hydraulic failure. The reasons for these selected
simulations are that (1) plant traits directly affect vegeta-
tion structure and water use, (2) soil property affects WTD
and thus plant water availability, and (3) an elevated mor-
tality rate for canopy trees at BCI was observed during the
severe dry season of 1983 (Condit et al., 1995), which can
be triggered by hydraulic failure. Soil-saturated hydraulic
conductivity and saturation function parameters for ParFlow
are calculated from ELM based on soil texture and organic
matter content. Another set of soil water retention param-
eters was derived from soil water potential data in Kupers
et al. (2019b). As there are no site-wide groundwater table
measurements, for simplicity, no-flux boundary conditions
are applied at the bottom boundary and the lateral bound-
aries of the ParFlow simulation domain assuming they have
minimal impact on the results at the 50 ha plot in the center
of the domain, at least 0.5 km away from the lateral bound-
aries, as 50 ha is in the high-elevation zone of the domain.
The number of grids in the x, y, and z directions are 31, 21,
and 15, respectively. The grid resolution for ParFlow in the
x and y directions is 90 m and varies from 7 mm (near the
ground surface) to 35 m (near the bedrock) in the z direction.
The 30 m-resolution digital elevation model (DEM) of the
Republic of Panama generated by the NASA SRTM program
is aggregated and smoothed using a cubic convolution resam-
pling technique to 90 m resolution to calculate the slopes for
the ParFlow simulations.

In FATES, PFTs are represented by a vector of plant
traits. All of the numerical experiments are initialized with
an equally low number density of seedling (0.2 individu-
als per square meter) of broadleaf evergreen tropical PFTs
and are spun up for 100 years using ELM–FATES, without
ParFlow. Model comparisons are based on the results for an-
other 100 years after the spinup for Cases 1 to 4 and an ad-
ditional 16 years for Cases 3, 6, and 7 for hydraulic failure
model comparisons starting from the 200-year result of Case
3. The 16-year simulation period was chosen such that the
meteorological forcing aligns with the years of observations.
Another cycle of forcing was run for Case 4 using a soil
property derived from Kupers et al. (2019b) to get the re-
sults of Case 5. If not noted, results reported in this study are
based on the corresponding simulation years after the spinup.
Two PFTs representing early successional and late succes-
sional species are simulated at the same time in competition
with each other using two input files of plant traits selected
from previous ensemble simulations that best matched ob-
servations for tropical forests (Cheng et al., 2022; Huang et
al., 2020). Further parameter tuning is beyond the scope of
this work. Those ensemble simulations were used to examine
the sensitivity of tropical forest dynamics to hydrological and
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physiological parameters. The two input files we use contain
trait parameters for both early and later successional species,
and they are referred to as F1 and F2, respectively. F1 and F2
differ in vegetation biomass allometric models and parame-
ters as well as the fraction of woody biomass that is above
ground and the mortality rate from carbon starvation. The al-
lometric models for tree height and target stem aboveground
biomass in F1 are defined in Eqs. (4) and (9), respectively,
and those in F2 are defined in Eqs. (6) and (10), respec-
tively. F2 has a smaller maximum carbon starvation mortality
rate (Sm,ft) and a larger aboveground woody biomass frac-
tion compared to F1. The complete parameters for F1 and
F2 are included in the Supplement. In FATES, the actual car-
bon starvation mortality (Mcs,coh) is calculated as a function
of the non-structural carbon storage (Cstore,coh) and the PFT-
specific “target” leaf carbon (Cleaf,target) as

Mcs,coh =max
(

0.0,Sm,ft

(
0.5−

Cstore,coh

Cleaf,target

))
. (15)

Three drought mortality models, M1, M2, and M3, corre-
sponding to Eqs. (5), (6), and (7), respectively, are evaluated.
FATES-hydro is turned off for models M1 and M3. Details
of each case are given in Table 1.

2.5 Random forest models

Topography attributes have previously been found to influ-
ence soil water, groundwater depth, and vegetation structures
(Condon and Maxwell, 2015; Detto et al., 2013; Hoylman
et al., 2018; Lan et al., 2011; Mascaro et al., 2011; Pachep-
sky et al., 2001; Sener et al., 2005; Tai et al., 2020; Zinko
et al., 2005). As the relationships between AGB, hydrologic
processes, and topographic attributes are likely complex and
nonlinear, we develop RF regression models to evaluate how
well static topographic attributes and hydrologic states may
be used to predict the AGB in observations and model simu-
lations. Such analysis can be used to determine how well the
nonlinear relationships in observations may be captured by
the coupled model and whether the RF models may be used
as a more computationally efficient approach to represent the
nonlinear relationships simulated by the complex models. To
evaluate which topographic attributes (land surface elevation
(DEM), slope, and Laplacian convexity) have more controls
on plant water availability and aboveground biomass, we de-
velop RF models using monthly output at each grid from our
coupled model in the year 2015 (a year when observations
were also available) for Cases 3, 5, and 6, based on a su-
pervised machine learning module from the Scikit-learn ma-
chine learning library in Python (Pedregosa et al., 2011). The
analyses are performed both domain-wide and for the 50 ha
plot (Fig. 2). Variables that are simulated based on model-
ing of physical processes are also used as predictors to eval-
uate RF model accuracy. Similar analysis is performed for
the observations in the 50 ha plot using AGB, soil moisture
estimated based on measurements across the plot, and the

5 m DEM grid from the 2019 version of the BCI database.
The spatial soil water contents across the plot in Kupers et
al. (2019b) are linearly interpolated, and AGB is aggregated
at each of the 5 m DEM grid locations for the analysis.

The slope and convexity are computed from the first- and
second-order derivatives of the smoothed DEM (z) that is
aggregated for the 90 m resolution as follows (Detto et al.,
2013):

slope= arctan
√
f 2
x + f

2
y ; fx =

∂z

∂x
; fy =

∂z

∂y
(16)

convexity= fxx + fyy;fxx =
∂2z

∂x2 ; fy =
∂2z

∂y2 (17)

Positive convexity values are in the areas of depressions and
valleys and negative values in peaks or ridges.

For each RF model based on the simulated results and ob-
servation in the year 2015, 75 % of the data are allocated to
the training set and 25 % to the test set. Hyperparameters of
the RF models are selected using the Scikit-learn function
“RandomizedSearchCV” (Pedregosa et al., 2011). Permuta-
tion importance, which measures the increase in model error
or how much the model depends on a feature when the rela-
tionship between the feature and the target is broken, is re-
ported for each RF model. To calculate the permutation im-
portance, a reference score (prediction error) for a trained
regression model m is first calculated. Each feature j (a col-
umn) in the training or testing dataset is randomly shuffled
to generate a corrupted dataset, and the score of the model
m on the corrupted dataset is calculated. The shuffling and
the corrupted dataset score computation are repeated multi-
ple times. The importance of feature j is computed as the dif-
ference between the reference score and the arithmetic mean
of the scores of the model m on the corrupted datasets. This
is documented in https://scikit-learn.org/stable/about.html#
citing-scikit-learn (last access: 20 October 2022).

The performances of the RF models are quantified using
the mean absolute percentage error (MAPE) and percent of
variance explained (VARex):

MAPE=
1
n

∑n

i=1

∣∣∣∣yi,pred− yi

yi

∣∣∣∣× 100%, (18)

VARex =

(
1−

∑n
i=1
(
yi,pred− yi

)2∑n
i=1(yi − yi)

2

)
× 100%. (19)

3 Results

3.1 Model sensitivity to lateral flow representation

This section focuses on model sensitivity analysis as no spa-
tial observations are available for comparison with the model
simulations. Averages for the year 2015 for selected variables
are plotted in Fig. 3 for ELM-F1-M1 and ELM-PF-F1-M1
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Table 1. Definition of model experiments with ELM, PF, F, and M denoting the E3SM land model, ParFlow, different parameters for plant
traits, and different mortality models, respectively. K in the experiment name of Case 5 indicates that the soil property derived from Kupers
et al. (2019b) is used. An extra 16 years of simulation were conducted for four experiments. K in the experiment name of Case 5 indicates
that the soil property derived from Kupers et al. (2019b) is used.

Cases Model experiments Plant traits Soil property ParFlow Drought mortality Extra simulation years
model for model comparison

1 ELM-F1-M1 F1 S1 No Eq. (11)
2 ELM-F2-M1 F2 S1 No Eq. (11)
3 ELM-PF-F1-M1 F1 S1 Yes Eq. (11) 16 from Case 3
4 ELM-PF-F2-M1 F2 S1 Yes Eq. (11)
5 ELM-PF-F2-M1,K F2 S2 Yes Eq. (11) 16 from Case 4
6 ELM-PF-F1-M2 F1 S1 Yes Eq. (13) 16 from Case 3
7 ELM-PF-F1-M3 F1 S1 Yes Eq. (14) 16 form Case 3

to assess the spatial impact of lateral flow on these variables.
Results from ELM-PF-F1-M1 exhibit the largest spatial vari-
ability in terms of WTD, vegetation biomass, and heat fluxes,
showing large gradients between plateau and valley. Lacking
representations of lateral flow (case ELM-F1-M1) results in
less spatial variability in those variables of interest (Fig. 3a,
c, e, g). ELM-F1-M1 simulates shallower water table depth
below the ground surface and a lower Bowen ratio (the ratio
of sensible to latent heat fluxes) at the plateau compared to
the lowland (Fig. 3a, g). For ELM-PF-F1-M1, wetter soil at
the lowland favors higher latent heat flux and smaller sensi-
ble heat flux, resulting in a smaller Bowen ratio compared
with the plateau area (Fig. 3h). In ELM-PF-F1-M1, the sim-
ulated groundwater table elevation generally follows the to-
pography. There is a sharp transition in AGB and GPP asso-
ciated with the large hydraulic gradients or sharp transition of
groundwater table depth above and below∼ 5 m at lowlands,
with wetter areas having larger AGB and GPP. Note that this
is based on model comparisons. Spatial observations at those
locations are needed to validate the model, but such obser-
vations are not currently available. However, away from the
transition zone, AGB and GPP are relatively insensitive to
WTD in these model configurations (Fig. 3d, f).

The simulated AGB is 3 times smaller than the observed
AGB (15.5 kg C m−2 assuming a conversion factor of 0.5
from dry weight to carbon equivalents) in 2015 using plant
trait F1 and 2 times smaller using plant trait F2 (Fig. 4e).
With a main interest in the spatial variability of AGB and
without model calibration to reduce differences between sim-
ulations and observations, we compare the observed AGB
and the simulated AGB using normalized values (scaling to
the unit norm). Standard deviations of the normalized AGB
at the 50 ha plot for ELM-F1-M1 and ELM-PF-F1-M1 are
0.008 and 0.014, respectively. They are smaller than 0.072
calculated from the observed AGB aggregated to the sim-
ulation grids. From Fig. 3a, b, variability of the normal-
ized WTD from the simulations is 0.011 and 0.16 for ELM-
F1-M1 and ELM-PF-F1-M1, respectively, at the 50 ha plot,
higher than the variability of the simulated AGB. The spa-

tial correlation between modeled and observed biomass is
not significant inside the 50 ha plot for all of the simulations
because of homogeneity of the meteorological forcing, soil
properties, and gentle topography. This suggests that WTD
is not the dominant controlling factor for AGB at the plot
based on correlation analysis and model assumptions.

3.2 Influence of model configurations

Model experiments with plant trait F1 result in the survival
of only early succession trees. Here we evaluate and compare
model simulations with F1 and F2 in different model con-
figurations to evaluate the impacts of the latter. Across the
various simulations shown in Table 1, simulation ELM-PF-
F1-M1 shows the maximum spatial standard deviations of
variables of interest (shaded area in Fig. 4). From that simu-
lation, the spatial standard deviation (SD) of monthly GPP is
1.42 (g m−2 d−1) (Fig. 4a), LH is 19.5 (W m−2) (Fig. 4b), SH
is 17.2 (W m−2) (Fig. 4c), volumetric water content (VWC)
in the top 15 cm of soil is 0.084 (m3 m−3) (Fig. 4d), AGB
is 0.28 (kg C m−2) (Fig. 4e), and WTD is 13.7 (m) (Fig. 4f).
For each month, standard deviations are calculated based on
the spatial variability within the simulation domain, and the
monthly maximum standard deviations are determined by
comparing the standard deviations across the model simu-
lations. However, even the largest variability of AGB is only
5.5 % of the average AGB, while the VWC variability can
be as large as 21 % of the average VWC. WTD is deeper
and has a large seasonal variability when lateral flow is rep-
resented in simulations with ParFlow. The large differences
in the spatial averages of GPP, LH, and SH among simula-
tions in the wet season are caused by plant functional traits,
while the differences in VWC and WTD and land surface
fluxes in the dry season are caused by lateral flow represen-
tation (Fig. 4). In general, the simulated GPP and LH center
around the observations, while the simulated SH and VWC
are biased high and low, respectively, compared with the ob-
servations. As sensible heat flux is negatively related to soil
moisture, it can be improved by a better parametrization of

https://doi.org/10.5194/gmd-15-7879-2022 Geosci. Model Dev., 15, 7879–7901, 2022



7888 Y. Fang et al.: Modeling the topographic influence on aboveground biomass

Figure 3. Sensitivity of model predictions to lateral flow dynamics and water table depth. Water table depth (WTD) (a, b), aboveground
biomass (AGB) (c, d), GPP (e, f), and Bowen ratio (g, h) for ELM-F1-M1 (no lateral flow) and ELM-PF-F1-M1. The blue contour lines
in (d), (f), and (h) are WTD, and the black contour lines in the rest are ground surface elevation (m). The 50 ha plot is located in the region
within the dashed line.

soil moisture dynamics, for example, by using different soil
properties in the model, as will be shown later. The model
was not able to capture the temporal dynamics of GPP, but
it is not clear what the cause is. Model parameters and mea-
surement uncertainty can both contribute to the biases. This
is a model limitation that needs to be addressed in the future.

Using plant trait F2, ELM-PF-F2-M1 generates a forest
of coexisting early succession and late successional PFTs.
The spatial SDs of the aforementioned variables of interest
for simulation ELM-PF-F2-M1 are slightly smaller than for
ELM-PF-F1-M1. The difference in SD between ELM-PF-

F2-M1 and ELM-PF-F1-M1 is larger for VWC, LH, and SH
compared to GPP, AGB and WTD. With this plant traits F2,
AGB increases by 47.5 % and GPP decreases by 19 % on
average (Fig. 4). As the soil moisture (VWC) simulated us-
ing ELM-PF-F1-M1 and ELM-PF-F2-M1 is close (Fig. 4d),
GPP is mainly affected by growth allometry, while AGB is
the result of both growth and mortality. Using plant traits F2
results in larger growth rates and significantly lower mortal-
ity rates (Fig. S1 in the Supplement) and thus increases in
AGB for F2 compared to F1. However, simulation with F2
results in much lower exposed leaf area index and thus lower
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GPP compared to that with F1. Based on the model results,
species competition also cannot explain the observed vari-
ance of AGB at the 50 ha plot without accounting for the
spatial heterogeneity of soil properties, nutrient availability,
plant traits, etc., in the model. For example, wood density
can contribute to the observed variability as it is a parameter
used to define the allometry function (Eq. 10). AGB can be
further increased by parameter tuning, but we do not expect
it to significantly change the AGB variability.

Model structure (ELM vs. ELM-PF) and soil property
have larger effects on soil water than on energy, carbon
fluxes, and AGB and vice versa for plant traits (Figs. 4
and 5). Using the soil water retention curve from Kupers et
al. (2019b) improved wet season soil moisture, dry season
sensible heat flux, and GPP as well as some of the observed
peak GPP in the wet season. It also significantly changed
WTD compared to the simulation with the original soil prop-
erty (Fig. 5f). The soil moisture in the dry season was overes-
timated, possibly due to the no-flux boundary conditions that
created an overall wetter soil in the domain in areas adjacent
to the boundaries.

3.3 Impact of water availability on site-wide vegetation
structure and mortality

As there is no spatial observation of the WTD at the site, this
section is for model comparison only. The simulated AGB
decreases nonlinearly with WTD and becomes flat at WTD
around 15 m (Fig. 6a, e) when ParFlow is coupled. When
hydraulic mortality is triggered (M2 and M3), the slope of
the relationship between AGB and WTD (dAGB / dWTD)
increases, so WTD plays a larger role in limiting AGB. As
AGB does not fluctuate seasonally, the slope becomes large
in the wet season. On the other hand, AGB has a positive re-
lationship with soil moisture content (VWC) (Fig. 6b, f) and
reaches maximum when the soil water content is near satura-
tion. AGB from ELM-PF-F1-M1 is the least sensitive to wa-
ter table depth because the plant wilting factor (Eq. 12) cal-
culated at the site is much larger than the prescribed thresh-
old of 10−6, which results in no mortality due to hydraulic
failure. ELM-PF-F1-M2 simulates wetter soil in the dry sea-
son compared to ELM-PF-F1-M3 because of hydraulic redis-
tribution simulated by ELM-PF-F1-M2 using FATES-hydro.
However, the fast decrease in AGB with WTD using the M2
and M3 functions seems to be unrealistic and requires future
exploration. The variability of the normalized AGB across
the whole simulation domain considering hydraulic mortal-
ity is 0.08, which is comparable to that from the observation,
but the variability at the 50 ha plot is still quite low because
of the relatively homogeneous soil hydrology there. Note that
the water table may be artificially increased near the outer
boundary due to the no-flow assumption, but a sensitivity ex-
periment using the water level in Gatún Lake at the outer
boundaries shows no impact on the conclusion that lower ar-
eas are more resilient to water stress and has more biomass.

AGB from ELM-PF-F1-M2 is smaller compared to that
from ELM-PF-F1-M3, especially at locations where the wa-
ter table is shallow (WTD < 2 m). This is due to the higher
mortality rate triggered by hydraulic failure in ELM-PF-F1-
M2 at those locations (Fig. 6c), resulting in fewer grids with
AGB > 4.5 kg C m−2 (Fig. S2). Hydraulic mortality rates
from ELM-PF-F1-M2 are much lower than those from ELM-
PF-F1-M3 in the dry season (Fig. 6c), even though on the
plateaus WTD is simulated greater than 15 m for both mod-
els. The high hydraulic mortality rates within WTD between
0 and 5 m for ELM-PF-F1-M2 are associated with trees with
a diameter at breast height (DBH) of greater than 16 cm.
Mortality from hydraulic failure outcompetes mortality by
carbon starvation for ELM-PF-F1-M3, and there is almost no
carbon-starvation-related mortality in both wet and dry sea-
sons when WTD is greater than 7.5 m (Fig. 6d, h) because
of the reduced maintenance and turnover requirements with
fewer trees with DBH between 1 and 5 cm. For ELM-PF-F1-
M2, mortality related to carbon starvation and hydraulic fail-
ure co-occurs with similar magnitude in the dry season. In the
wet season, there is almost no mortality related to hydraulic
failure except for tall trees, with DBH > 16 cm dominant in
regions of shallow water table depth. Tall trees are hydrauli-
cally more vulnerable than short trees because of their more
negative stem water potentials due to longer hydraulic path
length (McDowell et al., 2002). Carbon starvation mortality
consistently occurs during the dry and wet seasons when wa-
ter table depth is greater than 15 m. Carbon starvation mortal-
ity rates for ELM-PF-F1-M2 and ELM-PF-F1-M3 decrease
with WTD between 0 and 7.5 m as hydraulic mortality rates
increase.

3.4 Environmental and physical controls on the
simulated results

The RF models have shown good performance. They can ex-
plain 90 % and more of the variance (VARex in Table 2) in
AGB and WTD for both the training data and the unseen test
data, suggesting that the predictors selected are sufficient to
explain AGB and WTD. They perform better for AGB than
for WTD, with a MAPE of less than 10 %, as opposed to
30 % for WTD (Table 2). All explanatory variables used as
predictors in the RF models can capture portions of the vari-
ability of the simulated AGB and WTD, but the relative im-
portance of the predictors is different for the different ELM-
PF models (Fig. 7). Among the three predictors, convexity is
most important for describing the spatial variabilities of AGB
simulated from ELM-PF-F1-M1. The variable importance
for AGB is similar between ELM-PF-F1-M2 and ELM-PF-
F1-M3, with slope showing the highest importance (Fig. 7a).
For WTD, the variable importance for ELM-PF-F1-M1 and
ELM-PF-F1-M3 is comparable (Fig. 7b), as there is no feed-
back to soil water from plant roots in either model. However,
convexity and slope play more important roles than DEM in
simulating WTD for all models (Fig. 7b) as slope influences
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Figure 4. Simulated GPP (a), latent heat flux (LH) (b), sensible heat flux (SH) (c), top 15 cm volumetric water content (VWC) (d), AGB (e),
and WTD (f) for simulations ELM-F1-M1, ELM-F2-M1, ELM-PF-F1-M1, and ELM-PF-F2-M1. Dashed line is the observation if available.
Solid line is the spatial average, and the shaded area is the standard deviation over the simulation domain.

water movement (Famiglietti et al., 1998; Moore et al., 1988;
Nyberg, 1996) and convexity is associated with distance to
drainage channels, i.e., whether an area in a hydrologic net-
work is a local depression (valley, swamp) or peak (hilltop,
ridge) (Detto et al., 2013).

Introducing the vertically averaged VWC, for example,
from the first month of the various simulations as an addi-
tional predictor, the RF models have lower AGB errors (col-
umn AGBRF2 vs. column AGBRF1 in Table 2) and explain
more variance in both the training and test data for all the
models, and VWC becomes the most important feature for
ELM-PF-F1-M2 and ELM-PF-F1-M3 as hydraulic mortality
is tied to soil water status. Similar accuracy of the RF models
can be achieved if WTD is introduced as an additional pre-
dictor. These results highlight the importance of representing
the interactions between the dynamic physical processes and
the static topographic attributes in controlling AGB.

Using the same approach as described above for the
domain-wide simulations, we also develop RF regression
models to identify the important explanatory variables that
can describe the simulated AGB and WTD and the observed
AGB and VWC at the 50 ha plot in 2015. The RF model for
the observation is at 5 m resolution based on the DEM from
the BCI census database. We first analyze the results from
the RF models developed based on model simulations at the
50 ha plot. All variables have almost the same level of impor-
tance describing the WTD results for ELM-PF-F1-M2 and
ELM-PF-F1-M3 (Fig. 8b), but slope is more important than
DEM and convexity for ELM-PF-F1-M1. For AGB, the vari-
able importance shows larger differences across the predictor
variables and the models. For example, convexity is more im-
portant in describing AGB than DEM and slope for ELM-PF-
F1-M2, while slope is much more important than DEM and
convexity in describing ABG for ELM-PF-F1-M1 (Fig. 8a).
The accuracy of the RF model for AGB simulated by ELM-
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Figure 5. Simulated GPP (a), LH (b), SH (c), top 15 cm VWC (d), AGB (e), and WTD (f) for simulations with the default soil property
(ELM-F2-M1) and the soil property derived from Kupers et al. (2019b) (ELM-PF-F2-M1, K). Dashed line is the observation if available.
Solid line is the spatial average, and the shaded area is the standard deviation over the simulation domain.

Table 2. Random forest model performance on the simulated aboveground biomass (AGB) and water table depth (WTD) from the site-wide
and 50 ha locations, respectively. Model performance is quantified by mean absolute percentage error (MAPE; %) and percent of variance
explained (VARex; %). The paired data separated by “/” in each column are metrics for training data (left) and unseen test data (right).
Subscript RF1 indicates the random forest models using topographic features, while subscript RF2 indicates a model using simulated soil
moisture as a predictor in addition to the predictors used in RF1 models.

Case Site-wide 50 ha

AGBRF1 AGBRF2 WTD AGBRF1 AGBRF2 WTD

MAPE (%) ELM-PF-F1-M1 0.34/0.38 0.27/0.3 28.4/32.3 0.4/0.5 0.23/0.5 13.4/13.7
ELM-PF-F1-M2 4.4/4.9 4.05/4.56 31.2/35.5 5.1/6.0 2.7/4.8 11.4/12.6
ELM-PF-F1-M3 5.2/5.9 4.85/5.42 27.7/31.6 6.4/7.4 1.1/2.6 11.5/12.6

VARex (%) ELM-PF-F1-M1 98.5/98.1 99.7/99.6 92.7/91.4 97.8/96.6 98.8/95.1 78.1/79.4
ELM-PF-F1-M2 99.1/98.9 99.7/99.6 91.7/89.8 81.3/77.8 93.4/79.8 84.4/81.4
ELM-PF-F1-M3 99.1/98.9 99.7/99.6 93.0/91.8 38.3/27.0 96.7/88.1 83.8/80.6
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Figure 6. The blue, orange, and green circles represent results from ELM-PF-F1-M1, ELM-PF-F1-M2, and ELM-PF-F1-M3, respectively.
Simulated AGB with respect to groundwater table depth, WTD (a, e), top 1 m soil water content, VWC (b, f), simulated hydraulic mortality (c,
g), and carbon starvation mortality (d, h) with respect to WTD in the dry season (a–d) and wet season (e–h).

PF-F1-M3 is the lowest with high MAPE (6.4 %), and the RF
model is not able to capture the underlying spatial variability
of the data, explaining less than 40 % of the variance (Ta-
ble 2). Hence the predictor variables are uninformative with
respect to the simulated AGB at the 50 ha plot as the plot is
fairly homogeneous topographically. When adding VWC as
an explanatory variable, it is the most important variable for
describing the AGB simulated by ELM-PF-F1-M3 (Fig. 8c)
as the hydraulic mortality is a linear function of VWC. It can
explain more than 80 % of the variance (Table 2). VWC is
also important for ELM-PF-F1-M2 for describing the simu-

lated AGB because plant water is linked to soil water. The
accuracies of AGB are all improved when VWC is added as
a predictor (Table 2). When there is almost no hydraulic mor-
tality (ELM-PF-F1-M1), slope is the dominant driver for the
simulated AGB and WTD (Fig. 8a, c).

Compared to the RF regression model for the simu-
lated AGB and VWC, explanatory variables including DEM,
slope, and convexity can also well describe the observed
VWC with 57.5 % variance explained for the training data
and 46.8 % for the test data, and MAPEs are 4.0 % and 4.4 %
for the training and test data, respectively. DEM and slope
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Figure 7. Variable importance for the explanatory variables (x axis) included in the random forest model for the site-wide simulated AGB (a)
and WTD (b) as response variables using elevation, slope, and convexity as explanatory variables and for the simulated AGB (c) using VWC
as an additional explanatory variable. The number on top of each bar is the importance value.

have a slightly higher importance compared to convexity for
the observed VWC (not shown). However, the RF model of
the observed AGB using the topographic features and the ob-
served VWC as explanatory variables can only master the
training data. Even though it finds that slope is an impor-
tant driving factor in the training data of the observed AGB,
as supported by Mascaro et al. (2011) using the multiple re-
gression method to examine controls over AGB derived from
airborne light detection and ranging (lidar) at BCI, it cannot
master the test data (negative explained variance). Thus, the
RF model based on the observed AGB is not able to gener-
alize well. All the predictor variables including the observed
VWC besides DEM, slope, and convexity are uninformative
for the spatial variability of the observed AGB. This suggests
that the data are sparse and/or that the observed AGB may de-
pend on other factors such as soil heterogeneity and nutrient
availability.

4 Discussions and conclusions

There are many external and internal factors controlling
ecosystem functioning, one of which is plant water availabil-
ity. We developed a model to incorporate three-dimensional
subsurface modeling in the Earth system in consideration of
the role of hillslope in water availability and vegetation dy-
namics under water stress conditions. We applied the model
to BCI, where sustained water stress on canopy trees has been
reported in the past.

Our domain-wide simulations using ELM and the coupled
ELM and ParFlow showed that WTD can differ significantly
from the wet lowland (shallow WTD) to the dry highland
(deep WTD) when lateral flow is introduced by coupling
ELM to ParFlow. The large difference in WTD affects soil
water availability along the topographic gradient and con-
sequently causes large spatial variability in the energy flux
partitioning and GPP compared to ELM when soil hydrol-
ogy is represented by vertical one-dimensional flow. As sum-
marized in the review paper by Fan et al. (2019) and the
references therein, this spatial variability in energy and wa-
ter associated with topography can fundamentally organize
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Figure 8. Variable importance for the explanatory variables (x axis) included in the random forest model for the simulated AGB (a) and
WTD (b) as response variables using elevation, slope, and convexity as explanatory variables and for the simulated AGB (c) using VWC as
an additional explanatory variable in the 50 ha plot. The number on top of each bar is the importance value.

the vegetation structure, energy, and biogeochemical fluxes
across the landscape under water- and energy-limiting con-
ditions.

Coupled to the subgrid vegetation dynamics model
FATES, we found higher AGB in the wet areas compared
to dry areas in the domain-wide simulations. AGB decreases
nonlinearly with increasing WTD when WTD is less than
10 m, but the relationship asymptotes beyond a WTD of
10 m. Unlike WTD, AGB increases almost linearly with in-
creasing VWC over a wide range of VWC values. When
hydraulic failure occurs under water-limiting conditions, the
biomass difference along the topographic gradient can fur-
ther increase. Consistent with the higher VWC during the
wet season compared to the dry season, mortality rates from
hydraulic failure are very low in the wet season, and model
differences become minimal. Hydraulic failure represented
by different methods can affect the mortality rate induced
by carbon starvation. For example, using the approach in
Eq. (14) to represent drought mortality rate as a linear func-
tion of soil water potential, there is essentially no carbon star-
vation for areas with WTD deeper than 10 m.

Even though soil water gradients have been identified as an
important determinant of tropical forest structure and func-
tioning (Miron et al., 2021; Terra et al., 2018), unlike for the
modeling results, we were not able to find a similar relation-
ship of the corresponding observed features with observed
AGB. More specifically, the results of our RF model based on
observations reveal that topographic attributes and soil water
availability cannot explain the spatial distribution of above-
ground biomass observed at the 50 ha plot located in the
highland of BCI, with relatively homogeneous surface con-
ditions. While the lack of relationships in the observations
may reflect the limited data coverage, it also suggests that
other factors may potentially play an important role in driv-
ing the spatial variability of the observed AGB. Furthermore,
differences in the explanatory power of the topographic at-
tributes and soil water status for the simulated AGB and the
lack thereof for the observed AGB suggest that factors that
drive the spatial variability of the observed AGB are likely
absent or not well represented by the coupled model. The wa-
ter table at the plot is close to the surface, with several springs
on the slopes (Becker et al., 1988; Harms et al., 2001), and
there was considerable and non-systematic variation in soil-
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saturated hydraulic conductivity (Kinner and Stallard, 2004)
that could generate preferential flow paths. These observed
features, which are not accounted for in our model, could
limit the ability of the coupled model to reproduce the obser-
vations, even if more systematic efforts were devoted to cal-
ibrating the model parameters, and they should be explored
in future studies. Other factors currently not accounted for
by the model include spatial biodiversity of functional traits,
toxic metals, soil nutrients, and liana (woody vine) abun-
dance, which have all been found to influence the tree AGB
at BCI (Ingwell et al., 2010; Ledo et al., 2016; Schnitzer and
Bongers, 2011; Schnitzer et al., 2005; Zemunik et al., 2018).
Also not accounted for by the model is the negative relation-
ship between the wood density and tree mortality rate at BCI
found in McDowell et al. (2018) using data from Wright et
al. (2010). Including spatially variable tree mortality based
on a negative relationship between mortality and wood den-
sity may substantially improve model representation of vege-
tation carbon, as indicated by the modeling study in Hancock
et al. (2022). Local heterogeneity of plant functional compo-
sition and soil resources should be considered in future mod-
els (Hofhansl et al., 2020).

Accurate estimation of spatial AGB and its dynamics is
important for global carbon cycle and climate mitigation.
Lateral flow that has a strong influence on the soil water gra-
dient is often missing in ecosystem modeling. Using a cou-
pled land model, a three-dimensional integrated hydrologic
model, and an ecosystem dynamics model to simulate the
carbon stock distribution at BCI, we found that the simulated
AGB is strongly influenced by topographic attributes and/or
soil water availability at a larger scale if hydraulic failure is
triggered. However, prescribing spatially homogeneous soil
properties and plant traits, the coupled model cannot ex-
plain the observed larger variability in AGB in the highland,
where WTD variations are likely very small. We also found
that drought mortality as a function of hillslope soil mois-
ture (Eq. 14) or due to plant hydrodynamics (Eq. 12) can
contribute to the large spatial variability in AGB. These two
hydraulic failure models are easily introduced into our cou-
pled model without having to empirically parameterize the
hydrology model. However, these two models have differ-
ent effects on carbon starvation mortality. Data need to be
collected to support the findings in this study, e.g., soil mois-
ture, WTD, AGB, and plant traits (e.g., wood density) across
the hydrologic gradient (from lowland to highland). It is nec-
essary to have a better quantification of the soil texture and
related hydraulic properties as the distribution of biomass is
the combined result of plant traits, soil properties, and cli-
matic and groundwater conditions (Costa et al., 2022). AGB
can be influenced by soil texture, which directly affects the
time interval between precipitation inputs and groundwater
recharge (Sousa et al., 2022) and the capillary fringe above
the water table that supplies water to the rooting zone (Costa
et al., 2022). For example, results in Sousa et al. (2022) sug-
gest a contribution of clayey texture in increasing AGB in dry

climates with a shallow water table. Spatial heterogeneity is
lacking in many forest dynamics models (Busing and Mailly,
2004).

Future modeling research should also account for spatial
heterogeneity of soil resources (i.e., water and nutrients) and
plant functional traits (e.g., mortality, growth, rooting depth)
as well as anthropogenic factors (habitat loss due to de-
forestation, degradation, and fragmentation; Miranda et al.,
2017) in the structure of plant communities. As a demonstra-
tion, only two plant functional types were considered in this
study. When water stress is considered, the negative response
of AGB with WTD simulated by the model is supported by
previous studies (e.g., Esteban et al., 2021) where species as-
sociated with deep water tables had decreased growth and
increased mortality compared to those associated with shal-
low water table depth during severe drought. However, the
two hypothetical hydraulic failure models (M2 and M3) re-
sult in a strong positive relationship between mortality with
the soil water stress, driving an unrealistic response of AGB
to increasing WTD. In reality, the resistance of trees to water
stress also depends on the severity of droughts, plant traits,
and environmental conditions (Costa et al., 2022, and ref-
erences therein). For example, previous studies found that
hydraulically vulnerable trees can delay dehydration by ac-
cessing deep water during droughts on BCI (Chitra-Tarak et
al., 2021). How plant traits and PFT composition will im-
pact these rates should be a key consideration in advanc-
ing coupled modeling in the future. The coupled ELM–PF–
FATES will be applied to other tropical forest regions where
lateral flow and groundwater dynamics may play different
roles in water available to plants to further elucidate carbon–
hydrology interactions and plant response to drought.

Using a three-dimensional model in current Earth system
models that are typically run at∼ 100 km grid resolution may
yield inaccurate results or have no significance for vegeta-
tion dynamics. A reasonable grid resolution for groundwater
flow simulation is around 1 km (Xie et al., 2020, and ref-
erences therein). Moving from 100 to 1 km resolution for
global-scale vegetation dynamics simulation coupled to a
three-dimensional integrated hydrologic model is computa-
tionally challenging, but it may be a realistic goal with ad-
vances in computation power and architecture in the future.
The model in this study provides opportunities for improv-
ing hydrological, ecological, and meteorological predictions
of Earth system models.

Code and data availability. The coupled code is available at
https://doi.org/10.5281/zenodo.6595795 (Fang et al., 2022).
The census data for the BCI plot are publicly available at
https://doi.org/10.15146/5xcp-0d46 (Condit et al., 2019).
Use of the data has been agreed upon with the principal in-
vestigators of the plot: Stephen Hubbell, Richard Condit,
and Robin Foster. Other observational data are available at
https://doi.org/10.5281/zenodo.3752127 (Fang et al., 2020).
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