Articles | Volume 15, issue 17
https://doi.org/10.5194/gmd-15-6567-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-6567-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
NeverWorld2: an idealized model hierarchy to investigate ocean mesoscale eddies across resolutions
Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
Nora Loose
Department of Applied Mathematics, University of Colorado, Boulder, CO, USA
Elizabeth Yankovsky
Courant Institute, New York University, New York, NY, USA
Jacob M. Steinberg
Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Chiung-Yin Chang
Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
Neeraja Bhamidipati
Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
Alistair Adcroft
Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
Baylor Fox-Kemper
Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, USA
Stephen M. Griffies
Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
Robert W. Hallberg
Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
Malte F. Jansen
Department of the Geophysical Sciences, The University of Chicago, Chicago, IL, USA
Hemant Khatri
Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK
Laure Zanna
Courant Institute, New York University, New York, NY, USA
Related authors
Claire K. Yung, Xylar S. Asay-Davis, Alistair Adcroft, Christopher Y. S. Bull, Jan De Rydt, Michael S. Dinniman, Benjamin K. Galton-Fenzi, Daniel Goldberg, David E. Gwyther, Robert Hallberg, Matthew Harrison, Tore Hattermann, David M. Holland, Denise Holland, Paul R. Holland, James R. Jordan, Nicolas C. Jourdain, Kazuya Kusahara, Gustavo Marques, Pierre Mathiot, Dimitris Menemenlis, Adele K. Morrison, Yoshihiro Nakayama, Olga Sergienko, Robin S. Smith, Alon Stern, Ralph Timmermann, and Qin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2025-1942, https://doi.org/10.5194/egusphere-2025-1942, 2025
Short summary
Short summary
ISOMIP+ compares 12 ocean models that simulate ice-ocean interactions in a common, idealised, static ice shelf cavity setup, aiming to assess and understand inter-model variability. Models simulate similar basal melt rate patterns, ocean profiles and circulation but differ in ice-ocean boundary layer properties and spatial distributions of melting. Ice-ocean boundary layer representation is a key area for future work, as are realistic-domain ice sheet-ocean model intercomparisons.
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024, https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Short summary
A CESM–MOM6 regional configuration of the Caribbean Sea was developed in response to the rising need for high-resolution models for climate impact studies. The configuration is validated for the period 2000–2020 and improves significant errors in a low-resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon River are well captured, and the mean flows of ocean waters across multiple passages in the Caribbean Sea agree with observations.
Elizabeth J. Drenkard, Charles A. Stock, Andrew C. Ross, Yi-Cheng Teng, Theresa Cordero, Wei Cheng, Alistair Adcroft, Enrique Curchitser, Raphael Dussin, Robert Hallberg, Claudine Hauri, Katherine Hedstrom, Albert Hermann, Michael G. Jacox, Kelly A. Kearney, Rémi Pagès, Darren J. Pilcher, Mercedes Pozo Buil, Vivek Seelanki, and Niki Zadeh
Geosci. Model Dev., 18, 5245–5290, https://doi.org/10.5194/gmd-18-5245-2025, https://doi.org/10.5194/gmd-18-5245-2025, 2025
Short summary
Short summary
We made a new regional ocean model to assist fisheries and ecosystem managers in making decisions in the Northeast Pacific Ocean (NEP). We found that the model did well simulating past ocean conditions like temperature and nutrient and oxygen levels and can even reproduce metrics used by, and important to, ecosystem managers.
Inseong Chang, Young Ho Kim, Young-Gyu Park, Hyunkeun Jin, Gyundo Pak, Andrew C. Ross, and Robert Hallberg
EGUsphere, https://doi.org/10.5194/egusphere-2025-3211, https://doi.org/10.5194/egusphere-2025-3211, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This study presents a high-resolution MOM6-based regional ocean model for the Northwest Pacific. We compare two vertical coordinate systems—HYBRID (z*-isopycnal) and ZSTAR (z*)—through a 10-year hindcast. HYBRID better preserves stratification and intermediate water structure by reducing spurious mixing and improves M2 tide simulation in the Yellow Sea. The findings highlight the importance of vertical grid choices in regional modeling.
Baylor Fox-Kemper, Patricia DeRepentigny, Anne Marie Treguier, Christian Stepanek, Eleanor O’Rourke, Chloe Mackallah, Alberto Meucci, Yevgeny Aksenov, Paul J. Durack, Nicole Feldl, Vanessa Hernaman, Céline Heuzé, Doroteaciro Iovino, Gaurav Madan, André L. Marquez, François Massonnet, Jenny Mecking, Dhrubajyoti Samanta, Patrick C. Taylor, Wan-Ling Tseng, and Martin Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2025-3083, https://doi.org/10.5194/egusphere-2025-3083, 2025
Short summary
Short summary
The earth system model variables needed for studies of the ocean and sea ice are prioritized and requested.
Claire K. Yung, Xylar S. Asay-Davis, Alistair Adcroft, Christopher Y. S. Bull, Jan De Rydt, Michael S. Dinniman, Benjamin K. Galton-Fenzi, Daniel Goldberg, David E. Gwyther, Robert Hallberg, Matthew Harrison, Tore Hattermann, David M. Holland, Denise Holland, Paul R. Holland, James R. Jordan, Nicolas C. Jourdain, Kazuya Kusahara, Gustavo Marques, Pierre Mathiot, Dimitris Menemenlis, Adele K. Morrison, Yoshihiro Nakayama, Olga Sergienko, Robin S. Smith, Alon Stern, Ralph Timmermann, and Qin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2025-1942, https://doi.org/10.5194/egusphere-2025-1942, 2025
Short summary
Short summary
ISOMIP+ compares 12 ocean models that simulate ice-ocean interactions in a common, idealised, static ice shelf cavity setup, aiming to assess and understand inter-model variability. Models simulate similar basal melt rate patterns, ocean profiles and circulation but differ in ice-ocean boundary layer properties and spatial distributions of melting. Ice-ocean boundary layer representation is a key area for future work, as are realistic-domain ice sheet-ocean model intercomparisons.
Peter Van Katwyk, Baylor Fox-Kemper, Sophie Nowicki, Hélène Seroussi, and Karianne J. Bergen
EGUsphere, https://doi.org/10.5194/egusphere-2025-870, https://doi.org/10.5194/egusphere-2025-870, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We present ISEFlow, a machine learning emulator that predicts how the melting of the Antarctic and Greenland ice sheets will contribute to sea level. ISEFlow is fast and accurate, allowing scientists to explore different climate scenarios with greater confidence. ISEFlow distinguishes between high and low emissions scenarios, helping us understand how today’s choices impact future sea levels. ISEFlow supports more reliable climate predictions and helps scientists study the future of ice sheets.
Enhui Liao, Laure Resplandy, Fan Yang, Yangyang Zhao, Sam Ditkovsky, Manon Malsang, Jenna Pearson, Andrew C. Ross, Robert Hallberg, and Charles Stock
EGUsphere, https://doi.org/10.5194/egusphere-2024-3646, https://doi.org/10.5194/egusphere-2024-3646, 2025
Short summary
Short summary
We introduce a regional ocean model of the northern Indian Ocean, a region central to the livelihoods and economies of countries that comprise about one-third of the world’s population. The model successfully represents the key physical and biogeochemical features of the region and is well suited for physical and biogeochemical studies on timescales ranging from weeks to decades, in addition to supporting marine resource applications and management in the northern Indian Ocean.
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024, https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Short summary
A CESM–MOM6 regional configuration of the Caribbean Sea was developed in response to the rising need for high-resolution models for climate impact studies. The configuration is validated for the period 2000–2020 and improves significant errors in a low-resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon River are well captured, and the mean flows of ocean waters across multiple passages in the Caribbean Sea agree with observations.
Xiaoyu Fan, Baylor Fox-Kemper, Nobuhiro Suzuki, Qing Li, Patrick Marchesiello, Peter P. Sullivan, and Paul S. Hall
Geosci. Model Dev., 17, 4095–4113, https://doi.org/10.5194/gmd-17-4095-2024, https://doi.org/10.5194/gmd-17-4095-2024, 2024
Short summary
Short summary
Simulations of the oceanic turbulent boundary layer using the nonhydrostatic CROCO ROMS and NCAR-LES models are compared. CROCO and the NCAR-LES are accurate in a similar manner, but CROCO’s additional features (e.g., nesting and realism) and its compressible turbulence formulation carry additional costs.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Aurora Basinski-Ferris and Laure Zanna
Earth Syst. Dynam., 15, 323–339, https://doi.org/10.5194/esd-15-323-2024, https://doi.org/10.5194/esd-15-323-2024, 2024
Short summary
Short summary
Under anthropogenic climate change, the hydrological cycle is expected to intensify. However, it is difficult to directly measure the amplification that has occurred over the past decades. Generally, ocean salinity patterns are used to infer this change in the hydrological cycle. Here, we present a new method to do this inference based on linear response theory. We find that over the period 1975–2019, the hydrological cycle has amplified by 5.04 % ± 1.27 % per degree Celsius of surface warming.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Neil C. Swart, Torge Martin, Rebecca Beadling, Jia-Jia Chen, Christopher Danek, Matthew H. England, Riccardo Farneti, Stephen M. Griffies, Tore Hattermann, Judith Hauck, F. Alexander Haumann, André Jüling, Qian Li, John Marshall, Morven Muilwijk, Andrew G. Pauling, Ariaan Purich, Inga J. Smith, and Max Thomas
Geosci. Model Dev., 16, 7289–7309, https://doi.org/10.5194/gmd-16-7289-2023, https://doi.org/10.5194/gmd-16-7289-2023, 2023
Short summary
Short summary
Current climate models typically do not include full representation of ice sheets. As the climate warms and the ice sheets melt, they add freshwater to the ocean. This freshwater can influence climate change, for example by causing more sea ice to form. In this paper we propose a set of experiments to test the influence of this missing meltwater from Antarctica using multiple different climate models.
Andrew C. Ross, Charles A. Stock, Alistair Adcroft, Enrique Curchitser, Robert Hallberg, Matthew J. Harrison, Katherine Hedstrom, Niki Zadeh, Michael Alexander, Wenhao Chen, Elizabeth J. Drenkard, Hubert du Pontavice, Raphael Dussin, Fabian Gomez, Jasmin G. John, Dujuan Kang, Diane Lavoie, Laure Resplandy, Alizée Roobaert, Vincent Saba, Sang-Ik Shin, Samantha Siedlecki, and James Simkins
Geosci. Model Dev., 16, 6943–6985, https://doi.org/10.5194/gmd-16-6943-2023, https://doi.org/10.5194/gmd-16-6943-2023, 2023
Short summary
Short summary
We evaluate a model for northwest Atlantic Ocean dynamics and biogeochemistry that balances high resolution with computational economy by building on the new regional features in the MOM6 ocean model and COBALT biogeochemical model. We test the model's ability to simulate impactful historical variability and find that the model simulates the mean state and variability of most features well, which suggests the model can provide information to inform living-marine-resource applications.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Trevor J. McDougall, Paul M. Barker, Ryan M. Holmes, Rich Pawlowicz, Stephen M. Griffies, and Paul J. Durack
Geosci. Model Dev., 14, 6445–6466, https://doi.org/10.5194/gmd-14-6445-2021, https://doi.org/10.5194/gmd-14-6445-2021, 2021
Short summary
Short summary
We show that the way that the air–sea heat flux is treated in ocean models means that the model's temperature variable should be interpreted as being Conservative Temperature, irrespective of whether the equation of state used in an ocean model is EOS-80 or TEOS-10.
Chia-Wei Hsu, Jianjun Yin, Stephen M. Griffies, and Raphael Dussin
Geosci. Model Dev., 14, 2471–2502, https://doi.org/10.5194/gmd-14-2471-2021, https://doi.org/10.5194/gmd-14-2471-2021, 2021
Short summary
Short summary
The new surface forcing from JRA55-do (OMIP II) significantly improved the underestimated sea level trend across the entire Pacific Ocean along 10° N in the simulation forced by CORE (OMIP I). We summarize and list out the reasons for the existing sea level biases across all studied timescales as a reference for improving the sea level simulation in the future. This study on the evaluation and improvement of ocean climate models should be of broad interest to a large modeling community.
Eric P. Chassignet, Stephen G. Yeager, Baylor Fox-Kemper, Alexandra Bozec, Frederic Castruccio, Gokhan Danabasoglu, Christopher Horvat, Who M. Kim, Nikolay Koldunov, Yiwen Li, Pengfei Lin, Hailong Liu, Dmitry V. Sein, Dmitry Sidorenko, Qiang Wang, and Xiaobiao Xu
Geosci. Model Dev., 13, 4595–4637, https://doi.org/10.5194/gmd-13-4595-2020, https://doi.org/10.5194/gmd-13-4595-2020, 2020
Short summary
Short summary
This paper presents global comparisons of fundamental global climate variables from a suite of four pairs of matched low- and high-resolution ocean and sea ice simulations to assess the robustness of climate-relevant improvements in ocean simulations associated with moving from coarse (∼1°) to eddy-resolving (∼0.1°) horizontal resolutions. Despite significant improvements, greatly enhanced horizontal resolution does not deliver unambiguous bias reduction in all regions for all models.
Cited articles
Adcroft, A., Anderson, W., Balaji, V., Blanton, C., Bushuk, M., Dufour, C. O.,
Dunne, J. P., Griffies, S. M., Hallberg, R. W., Harrison, M. J., Held, I.,
Jansen, M. F., John, J., Krasting, J. P., Langenhorst, A., Legg, S., Liang,
Z., McHugh, C., Radhakrishnan, A., Reichl, B. G., Rosati, T., Samuels, B. L.,
Shao, A., Stouffer, R., Winton, M., Wittenberg, A. T., Xiang, B., Zadeh, N.,
and Zhang, R.: The GFDL Global Ocean and Sea Ice Model OM4.0:
Model Description and Simulation Features, J. Adv. Model. Earth Sy., 11, 3167–3211, https://doi.org/10.1029/2019MS001726, 2019. a, b, c, d
Anstey, J. A. and Zanna, L.: A deformation-based parametrization of ocean
mesoscale eddy reynolds stresses, Ocean Model., 112, 99–111,
https://doi.org/10.1016/j.ocemod.2017.02.004, 2017. a
Arakawa, A. and Hsu, Y.-J. G.: Energy Conserving and Potential-Enstrophy
Dissipating Schemes for the Shallow Water Equations, Mon.
Weather Rev., 118, 1960–1969,
https://doi.org/10.1175/1520-0493(1990)118<1960:ECAPED>2.0.CO;2, 1990. a
Arbic, B. K. and Flierl, G. R.: Baroclinically Unstable Geostrophic
Turbulence in the Limits of Strong and Weak Bottom Ekman
Friction: Application to Midocean Eddies, J. Phys.
Oceanogr., 34, 2257–2273,
https://doi.org/10.1175/1520-0485(2004)034<2257:BUGTIT>2.0.CO;2, 2004. a, b
Arbic, B. K., Scott, R. B., Flierl, G. R., Morten, A. J., Richman, J. G., and
Shriver, J. F.: Nonlinear Cascades of Surface Oceanic Geostrophic
Kinetic Energy in the Frequency Domain, J. Phys.
Oceanogr., 42, 1577–1600, https://doi.org/10.1175/JPO-D-11-0151.1, 2012. a
Bachman, S. D.: The GM+E closure: A framework for coupling backscatter with
the Gent and McWilliams parameterization, Ocean Model.g, 136, 85–106,
https://doi.org/10.1016/j.ocemod.2019.02.006, 2019. a
Bachman, S. D., Fox-Kemper, B., and Pearson, B.: A scale-aware subgrid model
for quasi-geostrophic turbulence, J. Geophys. Res.-Oceans,
122, 1529–1554, https://doi.org/10.1002/2016JC012265, 2017. a, b, c
Barthel, A., Hogg, A. M., Waterman, S., and Keating, S.: Jet–Topography
Interactions Affect Energy Pathways to the Deep Southern Ocean,
J. Phys. Oceanogr., 47, 1799–1816,
https://doi.org/10.1175/JPO-D-16-0220.1, 2017. a
Bhamidipati, N., Adcroft, A., Marques, G., and Abernathey, R.: ocean-eddy-cpt/NeverWorld2: NeverWorld2-description-paper (v1.1), Zenodo [code], https://doi.org/10.5281/zenodo.6993951, 2022. a
Cessi, P.: An Energy-Constrained Parameterization of Eddy Buoyancy
Flux, J. Phys. Oceanogr., 38, 1807–1819,
https://doi.org/10.1175/2007JPO3812.1, 2008. a
Chaudhuri, A. H., Ponte, R. M., Forget, G., and Heimbach, P.: A Comparison of
Atmospheric Reanalysis Surface Products over the Ocean and
Implications for Uncertainties in Air–Sea Boundary Forcing,
J. Climate, 26, 153–170, https://doi.org/10.1175/JCLI-D-12-00090.1, 2013. a
Chelton, D. B., deSzoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz, N.:
Geographical Variability of the First Baroclinic Rossby Radius of
Deformation, J. Phys. Oceanogr., 28, 433–460,
https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2, 1998. a
Danabasoglu, G., McWilliams, J. C., and Gent, P. R.: The Role of
Mesoscale Tracer Transports in the Global Ocean Circulation,
Science, 264, 1123–1126, https://doi.org/10.1126/science.264.5162.1123, 1994. a
Eden, C. and Greatbatch, R. J.: Towards a mesoscale eddy closure, Ocean
Model., 20, 223–239, https://doi.org/10.1016/j.ocemod.2007.09.002, 2008. a
Gent, P. R. and McWilliams, J. C.: Isopycnal Mixing in Ocean Circulation
Models, J. Phys. Oceanogr., 20, 150–155,
https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2, 1990. a
Gent, P. R., Willebrand, J., McDougall, T. J., and McWilliams, J. C.:
Parameterizing Eddy-Induced Tracer Transports in Ocean
Circulation Models, J. Phys. Oceanogr., 25, 463–474,
https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2, 1995. a
Griffies, S. M. and Hallberg, R. W.: Biharmonic Friction with a
Smagorinsky-Like Viscosity for Use in Large-Scale
Eddy-Permitting Ocean Models, Mon. Weather Rev., 128,
2935–2946, https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2, 2000. a, b, c
Griffies, S. M., Adcroft, A., and Hallberg, R. W.: A Primer on the Vertical
Lagrangian-Remap Method in Ocean Models Based on Finite
Volume Generalized Vertical Coordinates, J. Adv.
Model. Earth Sy., 12, e2019MS001954, https://doi.org/10.1029/2019MS001954,
2020. a
Hallberg, R.: Using a resolution function to regulate parameterizations of
oceanic mesoscale eddy effects, Ocean Model., 72, 92–103,
https://doi.org/10.1016/j.ocemod.2013.08.007, 2013. a, b, c
Hewitt, H. T., Roberts, M., Mathiot, P., Biastoch, A., Blockley, E.,
Chassignet, E. P., Fox-Kemper, B., Hyder, P., Marshall, D. P., Popova, E.,
Treguier, A.-M., Zanna, L., Yool, A., Yu, Y., Beadling, R., Bell, M.,
Kuhlbrodt, T., Arsouze, T., Bellucci, A., Castruccio, F., Gan, B.,
Putrasahan, D., Roberts, C. D., Van Roekel, L., and Zhang, Q.: Resolving and
Parameterising the Ocean Mesoscale in Earth System Models,
Current Climate Change Reports, 6, 137–152,
https://doi.org/10.1007/s40641-020-00164-w, 2020. a
Jansen, M. F. and Held, I. M.: Parameterizing subgrid-scale eddy effects using
energetically consistent backscatter, Ocean Model., 80, 36–48,
https://doi.org/10.1016/j.ocemod.2014.06.002, 2014. a
Jansen, M. F., Adcroft, A., Khani, S., and Kong, H.: Toward an Energetically
Consistent, Resolution Aware Parameterization of Ocean Mesoscale
Eddies, J. Adv. Model. Earth Sy., 11, 2844–2860,
https://doi.org/10.1029/2019MS001750, 2019. a, b
Khani, S., Jansen, M. F., and Adcroft, A.: Diagnosing subgrid mesoscale eddy
fluxes with and without topography, J. Adv. Model. Earth
Sy., 11, 3995–4015, https://doi.org/10.1029/2019MS001721, 2019. a
Kjellsson, J. and Zanna, L.: The Impact of Horizontal Resolution on Energy
Transfers in Global Ocean Models, Fluids, 2, 45, https://doi.org/10.3390/fluids2030045,
2017. a
Kong, H. and Jansen, M. F.: The impact of topography and eddy parameterization
on the simulated Southern Ocean circulation response to changes in
surface wind stress, J. Phys. Oceanogr., 1, 825–843,
https://doi.org/10.1175/JPO-D-20-0142.1, 2020. a
Loose, N., Abernathey, R., Grooms, I., Busecke, J., Guillaumin, A., Yankovsky,
E., Marques, G., Steinberg, J., Ross, A. S., Khatri, H., Bachman, S., Zanna,
L., and Martin, P.: GCM-Filters: A Python Package for
Diffusion-based Spatial Filtering of Gridded Data, J. Open
Source Softw., 7, 3947, https://doi.org/10.21105/joss.03947, 2022a. a
Loose, N., Bachman, S., GROOMS, I., and Jansen, M.: Diagnosing scale-dependent
energy cycles in a high-resolution isopycnal ocean model, Earth and
Space Science Open Archive [data set],
https://doi.org/10.1002/essoar.10511055.1, 2022b. a
Marques, G., Loose, N., Yankovsky, E., Steinberg, J., Chang, C.-Y., Bhamidipati, N., Adcroft, A., Fox-Kemper, B., Griffies, S., Hallberg, R., Jansen, M., Khatri, H., and Zanna, L.:
NeverWorld2 Dataset, NeverWorld2 [data set], https://doi.org/10.26024/f130-ev71, 2022. a
Marshall, D. P. and Adcroft, A. J.: Parameterization of ocean eddies:
Potential vorticity mixing, energetics and Arnold's first stability
theorem, Ocean Model., 32, 188–204, https://doi.org/10.1016/j.ocemod.2010.02.001,
2010. a
Marshall, D. P., Maddison, J. R., and Berloff, P. S.: A Framework for
Parameterizing Eddy Potential Vorticity Fluxes, J. Phys.
Oceanogr., 42, 539–557, https://doi.org/10.1175/JPO-D-11-048.1, 2012.
a
Marshall, J. and Radko, T.: Residual-Mean Solutions for the Antarctic
Circumpolar Current and Its Associated Overturning Circulation,
J. Phys. Oceanogr., 33, 2341–2354,
https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2, 2003. a
McClean, J. L., Bader, D. C., Bryan, F. O., Maltrud, M. E., Dennis, J. M.,
Mirin, A. A., Jones, P. W., Kim, Y. Y., Ivanova, D. P., Vertenstein, M.,
Boyle, J. S., Jacob, R. L., Norton, N., Craig, A., and Worley, P. H.: A
prototype two-decade fully-coupled fine-resolution CCSM simulation, Ocean
Model., 39, 10–30, https://doi.org/10.1016/j.ocemod.2011.02.011, 2011. a
Pearson, B., Fox-Kemper, B., Bachman, S., and Bryan, F.: Evaluation of
scale-aware subgrid mesoscale eddy models in a global eddy-rich model, Ocean
Model., 115, 42–58, https://doi.org/10.1016/j.ocemod.2017.05.007, 2017. a
Pietarila Graham, J. and Ringler, T.: A framework for the evaluation of
turbulence closures used in mesoscale ocean large-eddy simulations, Ocean
Model., 65, 25–39, https://doi.org/10.1016/j.ocemod.2013.01.004, 2013. a
Smith, K. S. and Vallis, G. K.: The Scales and Equilibration of Midocean
Eddies: Forced–Dissipative Flow, J. Phys. Oceanogr.,
32, 1699–1720, https://doi.org/10.1175/1520-0485(2002)032<1699:TSAEOM>2.0.CO;2, 2002. a, b, c
Soufflet, Y., Marchesiello, P., Lemarié, F., Jouanno, J., Capet, X., Debreu,
L., and Benshila, R.: On effective resolution in ocean models, Ocean
Model., 98, 36–50, https://doi.org/10.1016/j.ocemod.2015.12.004, 2016. a
Thompson, A. F. and Young, W. R.: Two-Layer Baroclinic Eddy Heat
Fluxes: Zonal Flows and Energy Balance, J. Atmos.
Sci., 64, 3214–3231, https://doi.org/10.1175/JAS4000.1, 2007. a, b
Treguier, A. M., Held, I. M., and Larichev, V. D.: Parameterization of
Quasigeostrophic Eddies in Primitive Equation Ocean Models,
J. Phys. Oceanogr., 27, 567–580,
https://doi.org/10.1175/1520-0485(1997)027<0567:POQEIP>2.0.CO;2, 1997. a
Uchida, T., Rokem, A., Nicholas, T., Abernathey, R., Nouguier, F., Vanderplas,
J., Martin, P., Mayer, A., Halchenko, Y., Wilson, G., Constantinou, N. C.,
Ponte, A., Squire, D., Busecke, J., Spring, A., Pak, K., and Hoyer, S.:
xgcm/xrft: v0.3.1-rc0, https://doi.org/10.5281/zenodo.5503856, 2021. a
Wolfe, C. L. and Cessi, P.: Overturning Circulation in an Eddy-Resolving
Model: The Effect of the Pole-to-Pole Temperature Gradient,
J. Phys. Oceanogr., 39, 125–142, https://doi.org/10.1175/2008JPO3991.1,
2009. a, b
Yankovsky, E., Zanna, L., and Smith, K. S.: Influences of Mesoscale Ocean
Eddies on Flow Vertical Structure in a Resolution-Based Model
Hierarchy, Earth and Space Science Open Archive, https://doi.org/10.1002/essoar.10511501.1, 2022. a
Short summary
We present an idealized ocean model configuration and a set of simulations performed using varying horizontal grid spacing. While the model domain is idealized, it resembles important geometric features of the Atlantic and Southern oceans. The simulations described here serve as a framework to effectively study mesoscale eddy dynamics, to investigate the effect of mesoscale eddies on the large-scale dynamics, and to test and evaluate eddy parameterizations.
We present an idealized ocean model configuration and a set of simulations performed using...