Articles | Volume 14, issue 8
https://doi.org/10.5194/gmd-14-5023-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-5023-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
TempestExtremes v2.1: a community framework for feature detection, tracking, and analysis in large datasets
Department of Land, Air and Water Resources, University of California, Davis, CA, USA
Colin M. Zarzycki
Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA
Elizabeth E. McClenny
Department of Land, Air and Water Resources, University of California, Davis, CA, USA
Marielle C. Pinheiro
Department of Land, Air and Water Resources, University of California, Davis, CA, USA
Alyssa M. Stansfield
School of Marine and Atmospheric Sciences, State University of New York at Stony Brook, Stony Brook, NY, USA
Kevin A. Reed
School of Marine and Atmospheric Sciences, State University of New York at Stony Brook, Stony Brook, NY, USA
Related authors
Jishi Zhang, Jean–Christophe Golaz, Matthew Vincent Signorotti, Hsiang–He Lee, Peter Bogenschutz, Minda Monteagudo, Paul Aaron Ullrich, Robert S. Arthur, Stephen Po–Chedley, Philip Cameron–smith, and Jean–Paul Watson
EGUsphere, https://doi.org/10.5194/egusphere-2025-3947, https://doi.org/10.5194/egusphere-2025-3947, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We ran a convection-permitting model with regional mesh refinement (3.25 km and 800 m) to simulate present-day wind and solar capacity factors over California, coupling it to an energy generation model. The high-resolution models captured realistic seasonal and diurnal cycles, with wind markedly better than a 25 km model and solar outperforming a 3 km operational forecast. We highlight the critical role of resolution, modeling assumptions, and data reliability in renewable energy assessment.
Forrest M. Hoffman, Birgit Hassler, Ranjini Swaminathan, Jared Lewis, Bouwe Andela, Nathaniel Collier, Dóra Hegedűs, Jiwoo Lee, Charlotte Pascoe, Mika Pflüger, Martina Stockhause, Paul Ullrich, Min Xu, Lisa Bock, Felicity Chun, Bettina K. Gier, Douglas I. Kelley, Axel Lauer, Julien Lenhardt, Manuel Schlund, Mohanan G. Sreeush, Katja Weigel, Ed Blockley, Rebecca Beadling, Romain Beucher, Demiso D. Dugassa, Valerio Lembo, Jianhua Lu, Swen Brands, Jerry Tjiputra, Elizaveta Malinina, Brian Mederios, Enrico Scoccimarro, Jeremy Walton, Philip Kershaw, André L. Marquez, Malcolm J. Roberts, Eleanor O’Rourke, Elisabeth Dingley, Briony Turner, Helene Hewitt, and John P. Dunne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2685, https://doi.org/10.5194/egusphere-2025-2685, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
As Earth system models become more complex, rapid and comprehensive evaluation through comparison with observational data is necessary. The upcoming Assessment Fast Track for the Seventh Phase of the Coupled Model Intercomparison Project (CMIP7) will require fast analysis. This paper describes a new Rapid Evaluation Framework (REF) that was developed for the Assessment Fast Track that will be run at the Earth System Grid Federation (ESGF) to inform the community about the performance of models.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025, https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Short summary
A metrics package designed for easy analysis of atmospheric river (AR) characteristics and statistics is presented. The tool is efficient for diagnosing systematic AR bias in climate models and useful for evaluating new AR characteristics in model simulations. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the North and South Atlantic (South Pacific and Indian Ocean).
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024, https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant co-variances during precipitation events. Common statistical downscaling techniques preserve expected co-variances during convective precipitation (a stationary phenomenon). However, they dampen future intensification of frontal precipitation (a non-stationary phenomenon) captured in global climate models and dynamical downscaling. Our study quantifies a ramification of the stationarity assumption underlying statistical downscaling.
Jiwoo Lee, Peter J. Gleckler, Min-Seop Ahn, Ana Ordonez, Paul A. Ullrich, Kenneth R. Sperber, Karl E. Taylor, Yann Y. Planton, Eric Guilyardi, Paul Durack, Celine Bonfils, Mark D. Zelinka, Li-Wei Chao, Bo Dong, Charles Doutriaux, Chengzhu Zhang, Tom Vo, Jason Boutte, Michael F. Wehner, Angeline G. Pendergrass, Daehyun Kim, Zeyu Xue, Andrew T. Wittenberg, and John Krasting
Geosci. Model Dev., 17, 3919–3948, https://doi.org/10.5194/gmd-17-3919-2024, https://doi.org/10.5194/gmd-17-3919-2024, 2024
Short summary
Short summary
We introduce an open-source software, the PCMDI Metrics Package (PMP), developed for a comprehensive comparison of Earth system models (ESMs) with real-world observations. Using diverse metrics evaluating climatology, variability, and extremes simulated in thousands of simulations from the Coupled Model Intercomparison Project (CMIP), PMP aids in benchmarking model improvements across generations. PMP also enables efficient tracking of performance evolutions during ESM developments.
Justin L. Willson, Kevin A. Reed, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Mark A. Taylor, Paul A. Ullrich, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Hiroaki Miura, Tomoki Ohno, and Ryuji Yoshida
Geosci. Model Dev., 17, 2493–2507, https://doi.org/10.5194/gmd-17-2493-2024, https://doi.org/10.5194/gmd-17-2493-2024, 2024
Short summary
Short summary
Accurate simulation of tropical cyclones (TCs) is essential to understanding their behavior in a changing climate. One way this is accomplished is through model intercomparison projects, where results from multiple climate models are analyzed to provide benchmark solutions for the wider climate modeling community. This study describes and analyzes the previously developed TC test case for nine climate models in an intercomparison project, providing solutions that aid in model development.
Lele Shu, Paul Ullrich, Xianhong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li
Geosci. Model Dev., 17, 497–527, https://doi.org/10.5194/gmd-17-497-2024, https://doi.org/10.5194/gmd-17-497-2024, 2024
Short summary
Short summary
Our team developed rSHUD v2.0, a toolkit that simplifies the use of the SHUD, a model simulating water movement in the environment. We demonstrated its effectiveness in two watersheds, one in the USA and one in China. The toolkit also facilitated the creation of the Global Hydrological Data Cloud, a platform for automatic data processing and model deployment, marking a significant advancement in hydrological research.
Min-Seop Ahn, Paul A. Ullrich, Peter J. Gleckler, Jiwoo Lee, Ana C. Ordonez, and Angeline G. Pendergrass
Geosci. Model Dev., 16, 3927–3951, https://doi.org/10.5194/gmd-16-3927-2023, https://doi.org/10.5194/gmd-16-3927-2023, 2023
Short summary
Short summary
We introduce a framework for regional-scale evaluation of simulated precipitation distributions with 62 climate reference regions and 10 metrics and apply it to evaluate CMIP5 and CMIP6 models against multiple satellite-based precipitation products. The common model biases identified in this study are mainly associated with the overestimated light precipitation and underestimated heavy precipitation. These biases persist from earlier-generation models and have been slightly improved in CMIP6.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Abhishekh Kumar Srivastava, Paul Aaron Ullrich, Deeksha Rastogi, Pouya Vahmani, Andrew Jones, and Richard Grotjahn
Geosci. Model Dev., 16, 3699–3722, https://doi.org/10.5194/gmd-16-3699-2023, https://doi.org/10.5194/gmd-16-3699-2023, 2023
Short summary
Short summary
Stakeholders need high-resolution regional climate data for applications such as assessing water availability and mountain snowpack. This study examines 3 h and 24 h historical precipitation over the contiguous United States in the 12 km WRF version 4.2.1-based dynamical downscaling of the ERA5 reanalysis. WRF improves precipitation characteristics such as the annual cycle and distribution of the precipitation maxima, but it also displays regionally and seasonally varying precipitation biases.
Zeyu Xue, Paul Ullrich, and Lai-Yung Ruby Leung
Hydrol. Earth Syst. Sci., 27, 1909–1927, https://doi.org/10.5194/hess-27-1909-2023, https://doi.org/10.5194/hess-27-1909-2023, 2023
Short summary
Short summary
We examine the sensitivity and robustness of conclusions drawn from the PGW method over the NEUS by conducting multiple PGW experiments and varying the perturbation spatial scales and choice of perturbed meteorological variables to provide a guideline for this increasingly popular regional modeling method. Overall, we recommend PGW experiments be performed with perturbations to temperature or the combination of temperature and wind at the gridpoint scale, depending on the research question.
David H. Marsico and Paul A. Ullrich
Geosci. Model Dev., 16, 1537–1551, https://doi.org/10.5194/gmd-16-1537-2023, https://doi.org/10.5194/gmd-16-1537-2023, 2023
Short summary
Short summary
Climate models involve several different components, such as the atmosphere, ocean, and land models. Information needs to be exchanged, or remapped, between these models, and devising algorithms for performing this exchange is important for ensuring the accuracy of climate simulations. In this paper, we examine the efficacy of several traditional and novel approaches to remapping on the sphere and demonstrate where our approaches offer improvement.
Chengzhu Zhang, Jean-Christophe Golaz, Ryan Forsyth, Tom Vo, Shaocheng Xie, Zeshawn Shaheen, Gerald L. Potter, Xylar S. Asay-Davis, Charles S. Zender, Wuyin Lin, Chih-Chieh Chen, Chris R. Terai, Salil Mahajan, Tian Zhou, Karthik Balaguru, Qi Tang, Cheng Tao, Yuying Zhang, Todd Emmenegger, Susannah Burrows, and Paul A. Ullrich
Geosci. Model Dev., 15, 9031–9056, https://doi.org/10.5194/gmd-15-9031-2022, https://doi.org/10.5194/gmd-15-9031-2022, 2022
Short summary
Short summary
Earth system model (ESM) developers run automated analysis tools on data from candidate models to inform model development. This paper introduces a new Python package, E3SM Diags, that has been developed to support ESM development and use routinely in the development of DOE's Energy Exascale Earth System Model. This tool covers a set of essential diagnostics to evaluate the mean physical climate from simulations, as well as several process-oriented and phenomenon-based evaluation diagnostics.
Vijay S. Mahadevan, Jorge E. Guerra, Xiangmin Jiao, Paul Kuberry, Yipeng Li, Paul Ullrich, David Marsico, Robert Jacob, Pavel Bochev, and Philip Jones
Geosci. Model Dev., 15, 6601–6635, https://doi.org/10.5194/gmd-15-6601-2022, https://doi.org/10.5194/gmd-15-6601-2022, 2022
Short summary
Short summary
Coupled Earth system models require transfer of field data between multiple components with varying spatial resolutions to determine the correct climate behavior. We present the Metrics for Intercomparison of Remapping Algorithms (MIRA) protocol to evaluate the accuracy, conservation properties, monotonicity, and local feature preservation of four different remapper algorithms for various unstructured mesh problems of interest. Future extensions to more practical use cases are also discussed.
Jishi Zhang, Jean–Christophe Golaz, Matthew Vincent Signorotti, Hsiang–He Lee, Peter Bogenschutz, Minda Monteagudo, Paul Aaron Ullrich, Robert S. Arthur, Stephen Po–Chedley, Philip Cameron–smith, and Jean–Paul Watson
EGUsphere, https://doi.org/10.5194/egusphere-2025-3947, https://doi.org/10.5194/egusphere-2025-3947, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We ran a convection-permitting model with regional mesh refinement (3.25 km and 800 m) to simulate present-day wind and solar capacity factors over California, coupling it to an energy generation model. The high-resolution models captured realistic seasonal and diurnal cycles, with wind markedly better than a 25 km model and solar outperforming a 3 km operational forecast. We highlight the critical role of resolution, modeling assumptions, and data reliability in renewable energy assessment.
Forrest M. Hoffman, Birgit Hassler, Ranjini Swaminathan, Jared Lewis, Bouwe Andela, Nathaniel Collier, Dóra Hegedűs, Jiwoo Lee, Charlotte Pascoe, Mika Pflüger, Martina Stockhause, Paul Ullrich, Min Xu, Lisa Bock, Felicity Chun, Bettina K. Gier, Douglas I. Kelley, Axel Lauer, Julien Lenhardt, Manuel Schlund, Mohanan G. Sreeush, Katja Weigel, Ed Blockley, Rebecca Beadling, Romain Beucher, Demiso D. Dugassa, Valerio Lembo, Jianhua Lu, Swen Brands, Jerry Tjiputra, Elizaveta Malinina, Brian Mederios, Enrico Scoccimarro, Jeremy Walton, Philip Kershaw, André L. Marquez, Malcolm J. Roberts, Eleanor O’Rourke, Elisabeth Dingley, Briony Turner, Helene Hewitt, and John P. Dunne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2685, https://doi.org/10.5194/egusphere-2025-2685, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
As Earth system models become more complex, rapid and comprehensive evaluation through comparison with observational data is necessary. The upcoming Assessment Fast Track for the Seventh Phase of the Coupled Model Intercomparison Project (CMIP7) will require fast analysis. This paper describes a new Rapid Evaluation Framework (REF) that was developed for the Assessment Fast Track that will be run at the Earth System Grid Federation (ESGF) to inform the community about the performance of models.
Vincent Larson, Zhun Guo, Benjamin Stephens, Colin Zarzycki, Gerhard Dikta, Yun Qian, and Shaocheng Xie
EGUsphere, https://doi.org/10.5194/egusphere-2025-1593, https://doi.org/10.5194/egusphere-2025-1593, 2025
Short summary
Short summary
Global models of the atmosphere contain errors that lead to inaccurate simulations. A software tool ("QuadTune") is presented that attempts to mitigate some of the inaccuracies. It also displays diagnostic plots that provide hints about where the errors might lie in the model.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025, https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Short summary
A metrics package designed for easy analysis of atmospheric river (AR) characteristics and statistics is presented. The tool is efficient for diagnosing systematic AR bias in climate models and useful for evaluating new AR characteristics in model simulations. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the North and South Atlantic (South Pacific and Indian Ocean).
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024, https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant co-variances during precipitation events. Common statistical downscaling techniques preserve expected co-variances during convective precipitation (a stationary phenomenon). However, they dampen future intensification of frontal precipitation (a non-stationary phenomenon) captured in global climate models and dynamical downscaling. Our study quantifies a ramification of the stationarity assumption underlying statistical downscaling.
Colin M. Zarzycki, Benjamin D. Ascher, Alan M. Rhoades, and Rachel R. McCrary
Nat. Hazards Earth Syst. Sci., 24, 3315–3335, https://doi.org/10.5194/nhess-24-3315-2024, https://doi.org/10.5194/nhess-24-3315-2024, 2024
Short summary
Short summary
We developed an automated workflow to detect rain-on-snow events, which cause flooding in the northeastern United States, in climate data. Analyzing the Susquehanna River basin, this technique identified known events affecting river flow. Comparing four gridded datasets revealed variations in event frequency and severity, driven by different snowmelt and runoff estimates. This highlights the need for accurate climate data in flood management and risk prediction for these compound extremes.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Jiwoo Lee, Peter J. Gleckler, Min-Seop Ahn, Ana Ordonez, Paul A. Ullrich, Kenneth R. Sperber, Karl E. Taylor, Yann Y. Planton, Eric Guilyardi, Paul Durack, Celine Bonfils, Mark D. Zelinka, Li-Wei Chao, Bo Dong, Charles Doutriaux, Chengzhu Zhang, Tom Vo, Jason Boutte, Michael F. Wehner, Angeline G. Pendergrass, Daehyun Kim, Zeyu Xue, Andrew T. Wittenberg, and John Krasting
Geosci. Model Dev., 17, 3919–3948, https://doi.org/10.5194/gmd-17-3919-2024, https://doi.org/10.5194/gmd-17-3919-2024, 2024
Short summary
Short summary
We introduce an open-source software, the PCMDI Metrics Package (PMP), developed for a comprehensive comparison of Earth system models (ESMs) with real-world observations. Using diverse metrics evaluating climatology, variability, and extremes simulated in thousands of simulations from the Coupled Model Intercomparison Project (CMIP), PMP aids in benchmarking model improvements across generations. PMP also enables efficient tracking of performance evolutions during ESM developments.
Justin L. Willson, Kevin A. Reed, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Mark A. Taylor, Paul A. Ullrich, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Hiroaki Miura, Tomoki Ohno, and Ryuji Yoshida
Geosci. Model Dev., 17, 2493–2507, https://doi.org/10.5194/gmd-17-2493-2024, https://doi.org/10.5194/gmd-17-2493-2024, 2024
Short summary
Short summary
Accurate simulation of tropical cyclones (TCs) is essential to understanding their behavior in a changing climate. One way this is accomplished is through model intercomparison projects, where results from multiple climate models are analyzed to provide benchmark solutions for the wider climate modeling community. This study describes and analyzes the previously developed TC test case for nine climate models in an intercomparison project, providing solutions that aid in model development.
Skyler Graap and Colin M. Zarzycki
Geosci. Model Dev., 17, 1627–1650, https://doi.org/10.5194/gmd-17-1627-2024, https://doi.org/10.5194/gmd-17-1627-2024, 2024
Short summary
Short summary
A key target for improving climate models is how low, bright clouds are predicted over tropical oceans, since they have important consequences for the Earth's energy budget. A climate model has been updated to improve the physical realism of the treatment of how momentum is moved up and down in the atmosphere. By comparing this updated model to real-world observations from balloon launches, it can be shown to more accurately depict atmospheric structure in trade-wind areas close to the Equator.
Lele Shu, Paul Ullrich, Xianhong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li
Geosci. Model Dev., 17, 497–527, https://doi.org/10.5194/gmd-17-497-2024, https://doi.org/10.5194/gmd-17-497-2024, 2024
Short summary
Short summary
Our team developed rSHUD v2.0, a toolkit that simplifies the use of the SHUD, a model simulating water movement in the environment. We demonstrated its effectiveness in two watersheds, one in the USA and one in China. The toolkit also facilitated the creation of the Global Hydrological Data Cloud, a platform for automatic data processing and model deployment, marking a significant advancement in hydrological research.
Min-Seop Ahn, Paul A. Ullrich, Peter J. Gleckler, Jiwoo Lee, Ana C. Ordonez, and Angeline G. Pendergrass
Geosci. Model Dev., 16, 3927–3951, https://doi.org/10.5194/gmd-16-3927-2023, https://doi.org/10.5194/gmd-16-3927-2023, 2023
Short summary
Short summary
We introduce a framework for regional-scale evaluation of simulated precipitation distributions with 62 climate reference regions and 10 metrics and apply it to evaluate CMIP5 and CMIP6 models against multiple satellite-based precipitation products. The common model biases identified in this study are mainly associated with the overestimated light precipitation and underestimated heavy precipitation. These biases persist from earlier-generation models and have been slightly improved in CMIP6.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Abhishekh Kumar Srivastava, Paul Aaron Ullrich, Deeksha Rastogi, Pouya Vahmani, Andrew Jones, and Richard Grotjahn
Geosci. Model Dev., 16, 3699–3722, https://doi.org/10.5194/gmd-16-3699-2023, https://doi.org/10.5194/gmd-16-3699-2023, 2023
Short summary
Short summary
Stakeholders need high-resolution regional climate data for applications such as assessing water availability and mountain snowpack. This study examines 3 h and 24 h historical precipitation over the contiguous United States in the 12 km WRF version 4.2.1-based dynamical downscaling of the ERA5 reanalysis. WRF improves precipitation characteristics such as the annual cycle and distribution of the precipitation maxima, but it also displays regionally and seasonally varying precipitation biases.
Koichi Sakaguchi, L. Ruby Leung, Colin M. Zarzycki, Jihyeon Jang, Seth McGinnis, Bryce E. Harrop, William C. Skamarock, Andrew Gettelman, Chun Zhao, William J. Gutowski, Stephen Leak, and Linda Mearns
Geosci. Model Dev., 16, 3029–3081, https://doi.org/10.5194/gmd-16-3029-2023, https://doi.org/10.5194/gmd-16-3029-2023, 2023
Short summary
Short summary
We document details of the regional climate downscaling dataset produced by a global variable-resolution model. The experiment is unique in that it follows a standard protocol designed for coordinated experiments of regional models. We found negligible influence of post-processing on statistical analysis, importance of simulation quality outside of the target region, and computational challenges that our model code faced due to rapidly changing super computer systems.
Zeyu Xue, Paul Ullrich, and Lai-Yung Ruby Leung
Hydrol. Earth Syst. Sci., 27, 1909–1927, https://doi.org/10.5194/hess-27-1909-2023, https://doi.org/10.5194/hess-27-1909-2023, 2023
Short summary
Short summary
We examine the sensitivity and robustness of conclusions drawn from the PGW method over the NEUS by conducting multiple PGW experiments and varying the perturbation spatial scales and choice of perturbed meteorological variables to provide a guideline for this increasingly popular regional modeling method. Overall, we recommend PGW experiments be performed with perturbations to temperature or the combination of temperature and wind at the gridpoint scale, depending on the research question.
David H. Marsico and Paul A. Ullrich
Geosci. Model Dev., 16, 1537–1551, https://doi.org/10.5194/gmd-16-1537-2023, https://doi.org/10.5194/gmd-16-1537-2023, 2023
Short summary
Short summary
Climate models involve several different components, such as the atmosphere, ocean, and land models. Information needs to be exchanged, or remapped, between these models, and devising algorithms for performing this exchange is important for ensuring the accuracy of climate simulations. In this paper, we examine the efficacy of several traditional and novel approaches to remapping on the sphere and demonstrate where our approaches offer improvement.
Chengzhu Zhang, Jean-Christophe Golaz, Ryan Forsyth, Tom Vo, Shaocheng Xie, Zeshawn Shaheen, Gerald L. Potter, Xylar S. Asay-Davis, Charles S. Zender, Wuyin Lin, Chih-Chieh Chen, Chris R. Terai, Salil Mahajan, Tian Zhou, Karthik Balaguru, Qi Tang, Cheng Tao, Yuying Zhang, Todd Emmenegger, Susannah Burrows, and Paul A. Ullrich
Geosci. Model Dev., 15, 9031–9056, https://doi.org/10.5194/gmd-15-9031-2022, https://doi.org/10.5194/gmd-15-9031-2022, 2022
Short summary
Short summary
Earth system model (ESM) developers run automated analysis tools on data from candidate models to inform model development. This paper introduces a new Python package, E3SM Diags, that has been developed to support ESM development and use routinely in the development of DOE's Energy Exascale Earth System Model. This tool covers a set of essential diagnostics to evaluate the mean physical climate from simulations, as well as several process-oriented and phenomenon-based evaluation diagnostics.
Vijay S. Mahadevan, Jorge E. Guerra, Xiangmin Jiao, Paul Kuberry, Yipeng Li, Paul Ullrich, David Marsico, Robert Jacob, Pavel Bochev, and Philip Jones
Geosci. Model Dev., 15, 6601–6635, https://doi.org/10.5194/gmd-15-6601-2022, https://doi.org/10.5194/gmd-15-6601-2022, 2022
Short summary
Short summary
Coupled Earth system models require transfer of field data between multiple components with varying spatial resolutions to determine the correct climate behavior. We present the Metrics for Intercomparison of Remapping Algorithms (MIRA) protocol to evaluate the accuracy, conservation properties, monotonicity, and local feature preservation of four different remapper algorithms for various unstructured mesh problems of interest. Future extensions to more practical use cases are also discussed.
Cited articles
Atkinson, G. D. and Holliday, C. R.: Tropical cyclone minimum sea level
pressure/maximum sustained wind relationship for the Western North
Pacific, Mon. Weather Rev., 105, 421–427,
https://doi.org/10.1175/1520-0493(1977)105<0421:TCMSLP>2.0.CO;2, 1977. a
Balaguru, K., Leung, L. R., Van Roekel, L. P., Golaz, J.-C., Ullrich, P. A.,
Caldwell, P. M., Hagos, S. M., Harrop, B. E., and Mametjanov, A.:
Characterizing Tropical Cyclones in the Energy Exascale Earth System
Model Version 1, J. Adv. Model. Earth Sy., 12,
e2019MS002024, https://doi.org/10.1029/2019MS002024, 2020. a
Bell, G. D., Halpert, M. S., Schnell, R. C., Higgins, R. W.,
Lawrimore, J., Kousky, V. E., Tinker, R., Thiaw, W., Chelliah, M.,
and Artusa, A.: Climate Assessment for 1999, B. Am.
Meteorol. Soc., 81, S1–S50,
https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2, 2000. a
Benestad, R. and Chen, D.: The use of a calculus-based cyclone identification
method for generating storm statistics, Tellus A, 58, 473–486, 2006. a
Browning, K. A.: Conceptual Models of Precipitation Systems, Weather
Forecast., 1, 23–41, https://doi.org/10.1175/1520-0434(1986)001<0023:CMOPS>2.0.CO;2,
1986. a
Camargo, S. J., Giulivi, C. F., Sobel, A. H., Wing, A. A., Kim, D., Moon, Y.,
Strong, J. D., Del Genio, A. D., Kelley, M., Murakami, H., Reed, K.,
Scoccimarro, E., Vecchi, G., Wehner, M., Zarzycki, C., and Zhao, M.:
Characteristics of model tropical cyclone climatology and the large-scale
environment, J. Climate, 33, 4463–4487, 2020. a
Catalano, A. J., Broccoli, A. J., Kapnick, S. B., and Janoski, T. P.:
High-Impact Extratropical Cyclones along the Northeast Coast of the United
States in a Long Coupled Climate Model Simulation, J. Climate, 32,
2131–2143, https://doi.org/10.1175/JCLI-D-18-0376.1, 2019. a
Chavas, D. R. and Reed, K. A.: Dynamical aquaplanet experiments with uniform
thermal forcing: System dynamics and implications for tropical cyclone
genesis and size, J. Atmos. Sci., 76, 2257–2274, 2019. a
Chavas, D. R., Reed, K. A., and Knaff, J. A.: Physical understanding of the
tropical cyclone wind-pressure relationship, Nat. Commun., 8, 1–11,
https://doi.org/10.1038/s41467-017-01546-9, 2017. a, b
Chipilski, H. G., Wang, X., and Parsons, D. B.: Object-based algorithm for the identification and tracking of convective outflow boundaries in numerical
models, Mon. Weather Rev., 146, 4179–4200, 2018. a
Clark, A. J., Bullock, R. G., Jensen, T. L., Xue, M., and Kong, F.: Application of object-based time-domain diagnostics for tracking precipitation systems in convection-allowing models, Weather Forecast., 29, 517–542, 2014. a
Colle, B. A., Booth, J. F., and Chang, E. K. M.: A Review of Historical and
Future Changes of Extratropical Cyclones and Associated Impacts Along the
US East Coast, Curr. Clim. Change Rep., 1, 125–143,
https://doi.org/10.1007/s40641-015-0013-7, 2015. a
Dacre, H.: A review of extratropical cyclones: Observations and conceptual
models over the past 100 years, Weather, 75, 4–7, https://doi.org/10.1002/wea.3653,
2020. a
Davini, P. and D’Andrea, F.: Northern Hemisphere atmospheric blocking
representation in global climate models: Twenty years of improvements?,
J. Climate, 29, 8823–8840, 2016. a
Dean, J. and Ghemawat, S.: MapReduce: simplified data processing on large
clusters, Commun. ACM, 51, 107–113, 2008. a
Delanoy, R. L. and Troxel, S. W.: Machine Intelligent Gust Front Detection,
Lincoln Lab. J., 6, 187–212, 1993. a
Di Luca, A., Evans, J. P., Pepler, A., Alexander, L., and Argüeso, D.:
Resolution sensitivity of cyclone climatology over eastern Australia using
six reanalysis products, J. Climate, 28, 9530–9549, 2015. a
Dole, R. M. and Gordon, N. D.: Persistent anomalies of the extratropical
Northern Hemisphere wintertime circulation: Geographical distribution and
regional persistence characteristics, Mon. Weather Rev., 111,
1567–1586, 1983. a
Emanuel, K.: Increasing destructiveness of tropical cyclones over the past 30
years, Nature, 436, 686–688, 2005. a
European Centre for Medium-Range Weather Forecasts: ERA5 Reanalysis (0.25
Degree Latitude-Longitude Grid), in: Research Data Archive at the National
Center for Atmospheric Research, Computational and Information Systems
Laboratory, National Center for Atmospheric Research (NCAR),
https://doi.org/10.5065/BH6N-5N20, 2019. a, b
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Field, P. R. and Wood, R.: Precipitation and cloud structure in midlatitude
cyclones, J. Climate, 20, 233–254, https://doi.org/10.1175/JCLI3998.1, 2007. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
for Research and Applications, version 2 (MERRA-2), J. Climate, 30,
5419–5454, 2017. a
Grotjahn, R., Black, R., Leung, R., Wehner, M. F., Barlow, M., Bosilovich, M., Gershunov, A., Gutowski, W. J., Gyakum, J. R., Katz, R. W., Lee, Y.-Y., Lim, Y.-K., and Prabhat: North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods,
dynamics, modeling, and trends, Clim. Dynam., 46, 1151–1184, 2016. a
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016. a
Hart, R. E.: A cyclone phase space derived from thermal wind and thermal
asymmetry, Mon. Weather Rev., 131, 585–616, 2003. a
Hassani, H., Huang, X., and Silva, E.: Big Data and climate change, Big Data
and Cognitive Computing, 3, 12, https://doi.org/10.3390/bdcc3010012, 2019. a
Heikenfeld, M., Marinescu, P. J., Christensen, M., Watson-Parris, D., Senf, F., van den Heever, S. C., and Stier, P.: tobac 1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets, Geosci. Model Dev., 12, 4551–4570, https://doi.org/10.5194/gmd-12-4551-2019, 2019. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, 2020. a
Hodges, K., Cobb, A., and Vidale, P. L.: How well are tropical cyclones
represented in reanalysis datasets?, J. Climate, 30, 5243–5264,
https://doi.org/10.1175/JCLI-D-16-0557.1, 2017. a
Holland, G.: A revised hurricane pressure-wind model, Mon. Weather Rev.,
136, 3432–3445, https://doi.org/10.1175/2008MWR2395.1, 2008. a
Hope, P., Keay, K., Pook, M., Catto, J., Simmonds, I., Mills, G., McIntosh, P.,
Risbey, J., and Berry, G.: A comparison of automated methods of front
recognition for climate studies: A case study in southwest Western Australia,
Mon. Weather Rev., 142, 343–363, 2014. a
Huang, H., Patricola, C. M., Bercos-Hickey, E., Zhou, Y., Rhoades, A., Risser, M. D., and Collins, W. D.: Sources of Subseasonal-To-Seasonal Predictability
of Atmospheric Rivers and Precipitation in the Western United States, J. Geophys. Res.-Atmos., 126, e2020JD034053, https://doi.org/10.1029/2020JD034053, 2021. a
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu,
G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite
Precipitation Analysis (TMPA): Quasi-global, multiyear,
combined-sensor precipitation estimates at fine scales, J.
Hydrometeor., 8, 38–55, https://doi.org/10.1175/JHM560.1, 2007. a
Hurley, J. V. and Boos, W. R.: A global climatology of monsoon low-pressure
systems, Q. J. Roy. Meteor. Soc., 141,
1049–1064, 2015. a
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G.,
Arblaster, J. M., Bates, S., Danabasoglu, G., Edwards, J., Holland, M.,
Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A.,
Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The
Community Earth System Model (CESM) large ensemble project: A community
resource for studying climate change in the presence of internal climate
variability, B. Am. Meteorol. Soc., 96,
1333–1349, 2015. a, b
Khouakhi, A., Villarini, G., and Vecchi, G. A.: Contribution of tropical
cyclones to rainfall at the global scale, J. Climate, 30, 359–372,
https://doi.org/10.1175/JCLI-D-16-0298.1, 2017. a
Kiehl, J. T., Zarzycki, C. M., Shields, C. A., and Rothstein, M. V.: Simulated
changes to tropical cyclones across the Paleocene-Eocene Thermal Maximum
(PETM) boundary, Palaeogeogr. Palaeoclimatol., 572,
110421, https://doi.org/10.1016/j.palaeo.2021.110421, 2021. a
Knaff, J. A. and Zehr, R. M.: Reexamination of tropical cyclone wind–pressure relationships, Weather Forecast., 22, 71–88, https://doi.org/10.1175/WAF965.1, 2007. a
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C. J.: The International Best Track Archive for Climate Stewardship (IBTrACS) unifying tropical cyclone data, B. Am. Meteorol.
Soc., 91, 363–376, 2010. a
Li, F., Chavas, D. R., Reed, K. A., and Dawson II, D. T.: Climatology of
severe local storm environments and synoptic-scale features over North
America in ERA5 reanalysis and CAM6 simulation, J. Climate, 33,
8339–8365, https://doi.org/10.1175/JCLI-D-19-0986.1, 2020. a
Marchok, T. P.: How the NCEP tropical cyclone tracker works, in: Preprints,
25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Am.
Meteor. Soc., vol. 1, 2002. a
McClenny, E. E., Ullrich, P. A., and Grotjahn, R.: Sensitivity of atmospheric
river vapor transport and precipitation to uniform sea-surface temperature
increases, J. Geophys. Res.-Atmos., 125, e2020JD033421,
https://doi.org/10.1029/2020JD033421, 2020. a, b, c, d
Michaelis, A. C. and Lackmann, G. M.: Climatological changes in the
extratropical transition of tropical cyclones in high-resolution global
simulations, J. Climate, 32, 8733–8753, 2019. a
Michaelis, A. C. and Lackmann, G. M.: Storm-scale dynamical changes of
extratropical transition events in present-day and future high-resolution
global simulations, J. Climate, 34, 5037–5062, 2021. a
Moon, Y., Kim, D., Camargo, S. J., Wing, A. A., Sobel, A. H., Murakami, H.,
Reed, K. A., Scoccimarro, E., Vecchi, G. A., Wehner, M. F., Zarzycki, C. M.,
and Zhao, M.: Azimuthally averaged wind and thermodynamic structures of
tropical cyclones in global climate models and their sensitivity to
horizontal resolution, J. Climate, 33, 1575–1595, 2020. a
Mundhenk, B. D., Barnes, E. A., and Maloney, E. D.: All-season climatology and variability of atmospheric river frequencies over the North Pacific, J. Climate, 29, 4885–4903, 2016. a
Murakami, H.: Tropical cyclones in reanalysis data sets, Geophys. Res.
Lett., 41, 2133–2141, https://doi.org/10.1002/2014GL059519, 2014. a
Murata, A., Sasaki, H., Kawase, H., and Nosaka, M.: The development of a
resolution-independent tropical cyclone detection scheme for high-resolution
climate model simulations, J. Meteorol. Soci. Jpn.
Ser. II, 97, 519–531, 2019. a
Murray, R. J. and Simmonds, I.: A numerical scheme for tracking cyclone centres from digital data, Aust. Meteorol. Mag., 39, 155–166, 1991. a
Neu, U., Akperov, M. G., Bellenbaum, N., Benestad, R., Blender, R., Caballero, R., Cocozza, A., Dacre, H. F., Feng, Y., Fraedrich, K., Grieger, J., Gulev, S., Hanley, J., Hewson, T., Inatsu, M., Keay, K., Kew, S. F., Kindem, I., Leckebusch, G. C., Liberato, M. L. R., Lionello, P., Mokhov, I., Pinto, J. G., Raible, C. C., Reale, M., Rudeva, I., Schuster, M., Simmonds, I., Sinclair, M.,, Sprenger, M., Tilinina, N. D., Trigo, I. F., Ulbrich, S., Ulbrich, U., Wang, X. L., and Wernli, H.: IMILAST: A
community effort to intercompare extratropical cyclone detection and tracking
algorithms, B. Am. Meteorol. Soc., 94, 529–547,
2013. a, b, c
Parfitt, R., Czaja, A., and Seo, H.: A simple diagnostic for the detection of
atmospheric fronts, Geophys. Res. Lett., 44, 4351–4358, 2017. a
Patricola, C. M., O’Brien, J. P., Risser, M. D., Rhoades, A. M., O’Brien,
T. A., Ullrich, P. A., Stone, D. A., and Collins, W. D.: Maximizing ENSO as a
source of western US hydroclimate predictability, Clim. Dynam., 54,
351–372, 2020. a
Payne, A. E., Demory, M.-E., Leung, L. R., Ramos, A. M., Shields, C. A., Rutz, J. J., Siler, N., Villarini, G., Hall, A., and Ralph, F. M.: Responses and
impacts of atmospheric rivers to climate change, Nat. Rev. Earth
Environ., 1, 143–157, 2020. a
Pendergrass, A. G., Reed, K. A., and Medeiros, B.: The link between extreme
precipitation and convective organization in a warming climate: Global
radiative-convective equilibrium simulations, Geophys. Res. Lett.,
43, 11445–11452, https://doi.org/10.1002/2016GL071285, 2016. a
Powell, M. D. and Reinhold, T. A.: Tropical cyclone destructive potential by
integrated kinetic energy, B. Am. Meteorol. Soc.,
88, 513–526, 2007. a
Prat, O. P. and Nelson, B. R.: Mapping the world's tropical cyclone rainfall
contribution over land using the TRMM Multi-satellite Precipitation
Analysis, Water Resour. Res., 49, 7236–7254,
https://doi.org/10.1002/wrcr.20527, 2013. a
Prein, A. F., Liu, C., Ikeda, K., Trier, S. B., Rasmussen, R. M., Holland,
G. J., and Clark, M. P.: Increased rainfall volume from future convective
storms in the US, Nat. Clim. Change, 7, 880–884, 2017. a
Reed, K., Wehner, M. F., Stansfield, A. M., and Zarzycki, C. M.: Anthropogenic influence on hurricane Dorian’s extreme rainfall, B. Am.
Meteorol. Soc., 102, S9–S15, 2021. a
Reed, K. A., Stansfield, A., Wehner, M., and Zarzycki, C.: Forecasted
attribution of the human influence on Hurricane Florence, Sci. Adv.,
6, eaaw9253, https://doi.org/10.1126/sciadv.aaw9253, 2020. a
Rhoades, A., Jones, A., Srivastava, A., Huang, H., O'Brien, T., Patricola, C., Ullrich, P., Wehner, M., and Zhou, Y.: The shifting scales of Western US
landfalling atmospheric rivers under climate change, Geophys. Res.
Lett., 47, e2020GL089096, https://doi.org/10.1029/2020GL089096, 2020a. a, b
Rhoades, A. M., Jones, A. D., O'Brien, T. A., O'Brien, J. P., Ullrich, P. A.,
and Zarzycki, C. M.: Influences of North Pacific Ocean domain extent on the
Western US winter hydroclimatology in variable-resolution CESM, J. Geophys. Res.-Atmos., 125, e2019JD031977, https://doi.org/10.1029/2019JD031977, 2020b. a, b
Roberts, M. J., Camp, J., Seddon, J., Vidale, P. L., Hodges, K., Vannière, B., Mecking, J., Haarsma, R., Bellucci, A., Scoccimarro, E., Caron, L.-P., Chauvin, F., Terray, L., Valcke, S., Moine, M.-P., Putrasahan, D., Roberts, C., Senan, R., Zarzycki, C., Ullrich, P., Yamada, Y., Mizuta, R., Kodama, C., Fu, D., Zhang, Q., Danabasoglu, G., Rosenbloom, N., Wang, H., and Wu, L.:
Projected future changes in tropical cyclones using the CMIP6 HighResMIP
multimodel ensemble, Geophys. Res. Lett., 47, e2020GL088662, https://doi.org/10.1029/2020GL088662,
2020a. a, b
Roberts, M. J., Camp, J., Seddon, J., Vidale, P. L., Hodges, K., Vanniere, B., Mecking, J., Haarsma, R., Bellucci, A., Scoccimarro, E., Caron, L.-P.,
Chauvin, F., Terray, L., Valcke, S., Moine, M.-P., Putrasahan, D., Roberts,
C., Senan, R., Zarzycki, C., Ullrich, P., Yamada, Y., Mizuta, R., Kodama, C.,
Fu, D., Zhang, Q., Danabasoglu, G., Rosenbloom, N., Wang, H., and Wu, L.:
Impact of model resolution on tropical cyclone simulation using the
HighResMIP–PRIMAVERA multimodel ensemble, J. Climate, 33,
2557–2583, 2020b. a
Rutz, J. J., Shields, C. A., Lora, J. M., Payne, A. E., Guan, B., Ullrich, P., O’Brien, T., Leung, L. R., Ralph, F. M., Wehner, M., Brands, S., Collow,
A., Goldenson, N., Gorodetskaya, I., Griffith, H., Kashinath, K., Kawzenuk,
B., Krishnan, H., Kurlin, V., Lavers, D., Magnusdottir, G., Mahoney, K.,
McClenny, E., Muszynski, G., Nguyen, P. D., Prabhat, Qian, Y., Ramos, A. M.,
Sarangi, C., Sellars, S., Shulgina, T., Tome, R., Waliser, D., Walton, D.,
Wick, G., Wilson, A. M., and Viale, M.: The Atmospheric River Tracking
Method Intercomparison Project (ARTMIP): Quantifying uncertainties in
atmospheric river climatology, J. Geophys. Res.-Atmos.,
124, 13777–13802, 2019. a, b, c
Schemm, S., Rudeva, I., and Simmonds, I.: Extratropical fronts in the lower
troposphere–global perspectives obtained from two automated methods,
Q. J. Roy. Meteor. Soc., 141, 1686–1698, 2015. a
Schenkel, B. A. and Hart, R. E.: An examination of tropical cyclone position,
intensity, and intensity life cycle within atmospheric reanalysis datasets,
J. Climate, 25, 3453–3475, https://doi.org/10.1175/2011JCLI4208.1, 2012. a
Schenkel, B. A., Lin, N., Chavas, D., Oppenheimer, M., and Brammer, A.:
Evaluating outer tropical cyclone size in reanalysis datasets using QuikSCAT
data, J. Climate, 30, 8745–8762, 2017. a
Scherrer, S. C., Croci-Maspoli, M., Schwierz, C., and Appenzeller, C.:
Two-dimensional indices of atmospheric blocking and their statistical
relationship with winter climate patterns in the Euro-Atlantic region,
Int. J. Climatol., 26, 233–249, 2006. a
Schnase, J. L., Lee, T. J., Mattmann, C. A., Lynnes, C. S., Cinquini, L.,
Ramirez, P. M., Hart, A. F., Williams, D. N., Waliser, D., Rinsland, P.,
Webster, W. P., Duffy, D. Q., McInerney, M. A., Tamkin, G. S., Potter, G. L.,
and Carriere, L.: Big data challenges in climate science: Improving the
next-generation cyberinfrastructure, IEEE Geosci. Remote Sens. Mag., 4, 10–22, 2016. a
Schultz, D. M., Bosart, L. F., Colle, B. A., Davies, H. C., Dearden, C.,
Keyser, D., Martius, O., Roebber, P. J., Steenburgh, W. J., Volkert, H., and
Winters, A. C.: Extratropical cyclones: A century of research on
meteorology's centerpiece, Meteorol. Monogr., 59, 16.1–16.56,
https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0015.1, 2019. a
Shields, C. A., Rutz, J. J., Leung, L.-Y., Ralph, F. M., Wehner, M., Kawzenuk, B., Lora, J. M., McClenny, E., Osborne, T., Payne, A. E., Ullrich, P., Gershunov, A., Goldenson, N., Guan, B., Qian, Y., Ramos, A. M., Sarangi, C., Sellars, S., Gorodetskaya, I., Kashinath, K., Kurlin, V., Mahoney, K., Muszynski, G., Pierce, R., Subramanian, A. C., Tome, R., Waliser, D., Walton, D., Wick, G., Wilson, A., Lavers, D., Prabhat, Collow, A., Krishnan, H., Magnusdottir, G., and Nguyen, P.: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design, Geosci. Model Dev., 11, 2455–2474, https://doi.org/10.5194/gmd-11-2455-2018, 2018. a, b, c, d
Small, R. J., Msadek, R., Kwon, Y.-O., Booth, J. F., and Zarzycki, C.:
Atmosphere surface storm track response to resolved ocean mesoscale in two
sets of global climate model experiments, Clim. Dynam., 52, 2067–2089,
2019. a
Steptoe, H., Savage, N. H., Sadri, S., Salmon, K., Maalick, Z., and Webster,
S.: Tropical cyclone simulations over Bangladesh at convection permitting 4.4 km & 1.5 km resolution, Sci. Data, 8, 1–12, 2021. a
Ullrich, P. A.: TempestExtremes User Guide,
available at: https://climate.ucdavis.edu/tempestextremes.php (last access: 15 July 2021), 2020. a
Ullrich, P. A.: TempestExtremes GitHub Repository, GitHub, https://github.com/ClimateGlobalChange/tempestextremes, last access: 15 July 2021. a
Ullrich, P. A., Jablonowski, C., Kent, J., Lauritzen, P. H., Nair, R., Reed, K. A., Zarzycki, C. M., Hall, D. M., Dazlich, D., Heikes, R., Konor, C., Randall, D., Dubos, T., Meurdesoif, Y., Chen, X., Harris, L., Kühnlein, C., Lee, V., Qaddouri, A., Girard, C., Giorgetta, M., Reinert, D., Klemp, J., Park, S.-H., Skamarock, W., Miura, H., Ohno, T., Yoshida, R., Walko, R., Reinecke, A., and Viner, K.: DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models, Geosci. Model Dev., 10, 4477–4509, https://doi.org/10.5194/gmd-10-4477-2017, 2017. a
Ullrich, P. A., Pinheiro, M. C., Stachowicz, K., and Zarzycki, C. M.: ClimateGlobalChange/tempestextremes: Version 2.1, Zenodo, https://doi.org/10.5281/zenodo.4385656, 2021. a
Vishnu, S., Boos, W., Ullrich, P., and O'Brien, T.: Assessing historical
variability of South Asian monsoon lows and depressions with an optimized
tracking algorithm, J. Geophys. Res.-Atmos., 125, e2020JD032977. https://doi.org/10.1029/2020JD032977, 2020. a, b
Vitart, F., Anderson, J., and Stern, W.: Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations, J. Climate, 10, 745–760, 1997. a
Walsh, K. J. E., Camargo, S. J., Vecchi, G. A., Daloz, A. S., Elsner, J.,
Emanuel, K., Horn, M., Lim, Y.-K., Roberts, M., Patricola, C., Scoccimarro,
E., Sobel, A. H., Strazzo, S., Villarini, G., Wehner, M., Zhao, M., Kossin,
J. P., LaRow, T., Oouchi, K., Schubert, S., Wang, H., Bacmeister, J., Chang,
P., Chauvin, F., Jablonowski, C., Kumar, A., Murakami, H., Ose, T., Reed,
K. A., Saravanan, R., Yamada, Y., Zarzycki, C. M., Vidale, P. L., Jonas,
J. A., and Henderson, N.: Hurricanes and climate: The U.S. CLIVAR working
group on hurricanes, B. Am. Meteorol. Soc., 96,
997–1017, https://doi.org/10.1175/BAMS-D-13-00242.1, 2015. a
Wing, A. A., Camargo, S. J., Sobel, A. H., Kim, D., Moon, Y., Murakami, H.,
Reed, K. A., Vecchi, G. A., Wehner, M. F., Zarzycki, C., and Zhao, M.: Moist static
energy budget analysis of tropical cyclone intensification in high-resolution
climate models, J. Climate, 32, 6071–6095, 2019. a
You, Y. and Ting, M.: Observed Trends in the South Asian Monsoon Low-Pressure
Systems and Rainfall Extremes Since the Late 1970s, Geophys. Res.
Lett., 48, e2021GL092378, https://doi.org/10.1029/2021GL092378, 2021. a
Zarzycki, C. M.: Tropical cyclone intensity errors associated with lack of
two-way ocean coupling in high-resolution global simulations, J. Climate, 29, 8589–8610, 2016. a
Zarzycki, C. M., Thatcher, D. R., and Jablonowski, C.: Objective tropical
cyclone extratropical transition detection in high-resolution reanalysis and
climate model data, J. Adv. Model. Earth Sy., 9,
130–148, 2017. a
Zarzycki, C. M., Ullrich, P. A., and Reed, K. A.: Metrics for evaluating
tropical cyclones in climate data, J. Appl. Meteorol. Climatol., 60, 643–660, 2021. a
Zender, C. S.: Analysis of self-describing gridded geoscience data with
netCDF Operators (NCO), Environ. Model. Softw., 23,
1338–1342, https://doi.org/10.1016/j.envsoft.2008.03.004, 2008. a
Zhang, W., Hari, V., and Villarini, G.: Potential impacts of anthropogenic
forcing on the frequency of tropical depressions in the North Indian Ocean in
2018, J. Mar. Sci. Eng., 7, 436, https://doi.org/10.3390/jmse7120436, 2019.
a
Zhang, W., Villarini, G., Scoccimarro, E., and Napolitano, F.: Examining the
precipitation associated with Medicanes in the high-resolution ERA-5
reanalysis data, Int. J. Climatol., 41, E126–E132, 2021. a
Zhang, Z. and Colle, B. A.: Changes in Extratropical Cyclone Precipitation and
Associated Processes during the Twenty-First Century over Eastern North
America and the Western Atlantic Using a Cyclone-Relative Approach,
J. Climate, 30, 8633–8656, https://doi.org/10.1175/JCLI-D-16-0906.1, 2017. a
Zhao, M., Held, I. M., Lin, S.-J., and Vecchi, G. A.: Simulations of global
hurricane climatology, interannual variability, and response to global
warming using a 50-km resolution GCM, J. Climate, 22, 6653–6678,
2009. a
Zhou, Y., O'Brien, T. A., Ullrich, P. A., Collins, W. D., Patricola, C. M., and Rhoades, A. M.: Uncertainties in Atmospheric River Lifecycles by Detection Algorithms: Climatology and Variability, J. Geophys. Res.-Atmos., 126, e2020JD033711, https://doi.org/10.1029/2020JD033711, 2021. a
Short summary
TempestExtremes (TE) is a multifaceted framework for feature detection, tracking, and scientific analysis of regional or global Earth system datasets. Version 2.1 of TE now provides extensive support for nodal and areal features. This paper describes the algorithms that have been added to the TE framework since version 1.0 and gives several examples of how these can be combined to produce composite algorithms for evaluating and understanding atmospheric features.
TempestExtremes (TE) is a multifaceted framework for feature detection, tracking, and scientific...