Articles | Volume 14, issue 1
Geosci. Model Dev., 14, 377–389, 2021
Geosci. Model Dev., 14, 377–389, 2021
Development and technical paper
22 Jan 2021
Development and technical paper | 22 Jan 2021

A note on precision-preserving compression of scientific data

Rostislav Kouznetsov

Related authors

Characterization the properties of VOCs and submicron organic aerosol at a street canyon environment
Sanna Saarikoski, Heidi Hellén, Arnaud P. Praplan, Simon Schallhart, Petri Clusius, Jarkko V. Niemi, Anu Kousa, Toni Tykkä, Rostislav Kouznetsov, Minna Aurela, Laura Salo, Topi Rönkkö, Luis M. F. Barreira, Liisa Pirjola, and Hilkka Timonen
Atmos. Chem. Phys. Discuss.,,, 2022
Preprint under review for ACP
Short summary
Effects of temperature and salinity on sea-spray-aerosol formation simulated with a bubble-generating chamber
Svetlana Sofieva, Eija Asmi, Nina S. Atanasova, Aino E. Heikkinen, Emeline Vidal, Jonathan Duplissy, Martin Romantschuk, Rostislav Kouznetsov, Jaakko Kukkonen, Dennis H. Bamford, Antti-Pekka Hyvärinen, and Mikhail Sofiev
Atmos. Meas. Tech. Discuss.,,, 2022
Preprint under review for AMT
Short summary
The effect of accounting for public holidays on the skills of the atmospheric composition model SILAM v.5.7
Yalda Fatahi, Rostislav Kouznetsov, and Mikhail Sofiev
Geosci. Model Dev., 14, 7459–7475,,, 2021
Short summary
Estimating lockdown-induced European NO2 changes using satellite and surface observations and air quality models
Jérôme Barré, Hervé Petetin, Augustin Colette, Marc Guevara, Vincent-Henri Peuch, Laurence Rouil, Richard Engelen, Antje Inness, Johannes Flemming, Carlos Pérez García-Pando, Dene Bowdalo, Frederik Meleux, Camilla Geels, Jesper H. Christensen, Michael Gauss, Anna Benedictow, Svetlana Tsyro, Elmar Friese, Joanna Struzewska, Jacek W. Kaminski, John Douros, Renske Timmermans, Lennart Robertson, Mario Adani, Oriol Jorba, Mathieu Joly, and Rostislav Kouznetsov
Atmos. Chem. Phys., 21, 7373–7394,,, 2021
Short summary
Simulating age of air and the distribution of SF6 in the stratosphere with the SILAM model
Rostislav Kouznetsov, Mikhail Sofiev, Julius Vira, and Gabriele Stiller
Atmos. Chem. Phys., 20, 5837–5859,,, 2020
Short summary

Related subject area

Numerical methods
Assessing the robustness and scalability of the accelerated pseudo-transient method
Ludovic Räss, Ivan Utkin, Thibault Duretz, Samuel Omlin, and Yuri Y. Podladchikov
Geosci. Model Dev., 15, 5757–5786,,, 2022
Short summary
Assessment of stochastic weather forecast of precipitation near European cities, based on analogs of circulation
Meriem Krouma, Pascal Yiou, Céline Déandreis, and Soulivanh Thao
Geosci. Model Dev., 15, 4941–4958,,, 2022
Short summary
University of Warsaw Lagrangian Cloud Model (UWLCM) 2.0: adaptation of a mixed Eulerian–Lagrangian numerical model for heterogeneous computing clusters
Piotr Dziekan and Piotr Zmijewski
Geosci. Model Dev., 15, 4489–4501,,, 2022
Short summary
Prediction error growth in a more realistic atmospheric toy model with three spatiotemporal scales
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 15, 4147–4161,,, 2022
Short summary
On numerical broadening of particle-size spectra: a condensational growth study using PyMPDATA 1.0
Michael A. Olesik, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, Simon Unterstrasser, and Sylwester Arabas
Geosci. Model Dev., 15, 3879–3899,,, 2022
Short summary

Cited articles

ANSI/IEEE: IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985, pp. 1–20,, 1985. a, b
Holton, J. and Hakim, G.: An Introduction to Dynamic Meteorology, Academic Press, Elsevier Science, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 2013. a
Stackpole, J. D.: GRIB (Edition 1) The WMO Format for the Storage of Weather Product Information and the Exchange of Weather Product Messages in Gridded Binary Form, Office note 388, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center, MD, USA, 1994. a
Zender, C. S.: Bit Grooming: statistically accurate precision-preserving quantization with compression, evaluated in the netCDF Operators (NCO, v4.4.8+), Geosci. Model Dev., 9, 3199–3211,, 2016. a, b, c, d, e, f, g
Short summary
Resetting of non-significant figures (precision trimming) enables efficient data compression and helps to avoid excessive use of storage space and network bandwidth while having well-constrained distortion to the data. The paper analyses accuracy losses and artifacts caused by trimming methods and by the widely used linear packing method. The paper presents several methods with implementation, evaluation, and illustrations and includes subroutines directly usable in geoscientific models.