Articles | Volume 14, issue 5
Geosci. Model Dev., 14, 2635–2657, 2021
https://doi.org/10.5194/gmd-14-2635-2021

Special issue: Model infrastructure integration and interoperability (MI3)

Geosci. Model Dev., 14, 2635–2657, 2021
https://doi.org/10.5194/gmd-14-2635-2021

Development and technical paper 12 May 2021

Development and technical paper | 12 May 2021

Developing a common, flexible and efficient framework for weakly coupled ensemble data assimilation based on C-Coupler2.0

Chao Sun et al.

Related authors

DiRong1.0: a distributed implementation for improving routing network generation in model coupling
Hao Yu, Li Liu, Chao Sun, Ruizhe Li, Xinzhu Yu, Cheng Zhang, Zhiyuan Zhang, and Bin Wang
Geosci. Model Dev., 13, 6253–6263, https://doi.org/10.5194/gmd-13-6253-2020,https://doi.org/10.5194/gmd-13-6253-2020, 2020
Short summary

Related subject area

Climate and Earth system modeling
Performance of the Adriatic Sea and Coast (AdriSC) climate component – a COAWST V3.3-based coupled atmosphere–ocean modelling suite: atmospheric dataset
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021,https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Model of Early Diagenesis in the Upper Sediment with Adaptable complexity – MEDUSA (v. 2): a time-dependent biogeochemical sediment module for Earth system models, process analysis and teaching
Guy Munhoven
Geosci. Model Dev., 14, 3603–3631, https://doi.org/10.5194/gmd-14-3603-2021,https://doi.org/10.5194/gmd-14-3603-2021, 2021
Short summary
A Markov chain method for weighting climate model ensembles
Max Kulinich, Yanan Fan, Spiridon Penev, Jason P. Evans, and Roman Olson
Geosci. Model Dev., 14, 3539–3551, https://doi.org/10.5194/gmd-14-3539-2021,https://doi.org/10.5194/gmd-14-3539-2021, 2021
Short summary
Building indoor model in PALM-4U: indoor climate, energy demand, and the interaction between buildings and the urban microclimate
Jens Pfafferott, Sascha Rißmann, Matthias Sühring, Farah Kanani-Sühring, and Björn Maronga
Geosci. Model Dev., 14, 3511–3519, https://doi.org/10.5194/gmd-14-3511-2021,https://doi.org/10.5194/gmd-14-3511-2021, 2021
Short summary
Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021,https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary

Cited articles

Andersson, E., Haseler, J., Unden, P., Courtier, P., Kelly, G., Vasiljevic, D., and Thepaut, J.: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). III: Experimental results, Q. J. Roy. Meteor. Soc., 124, 1831–1860, 1998. 
Anderson, J. and Collins, N.: Scalable implementations of ensemble filter algorithms for data assimilation, J. Atmos. Ocean Technol., 24, 1452–1463, 2007. 
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Arellano, A.: The Data Assimilation Research Testbed: A Community Facility, B. Am. Meteorol. Soc., 90, 1283–1296, 2009. 
Bishop, C. and Hodyss, D.: Adaptive ensemble covariance localization in ensemble 4D-VAR state estimation, Mon. Weather Rev., 139, 1241–1255, 2011. 
Blumberg, A. and Mellor, G.: A description of a three-dimensional coastal ocean circulation model, in: Three-Dimensional Coastal Ocean Models, edited by: Heaps, N. S., pp. 1–16, AGU, Washington, DC, 1987. 
Download
Short summary
Data assimilation (DA) provides better initial states of model runs by combining observations and models. This work focuses on the technical challenges in developing a coupled ensemble-based DA system and proposes a new DA framework DAFCC1 based on C-Coupler2. DAFCC1 enables users to conveniently integrate a DA method into a model with automatic and efficient data exchanges. A sample DA system that combines GSI/EnKF and FIO-AOW demonstrates the effectiveness of DAFCC1.