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Abstract. Data assimilation (DA) provides initial states of
model runs by combining observational information and
models. Ensemble-based DA methods that depend on the en-
semble run of a model have been widely used. In response
to the development of seamless prediction based on coupled
models or even Earth system models, coupled DA is now in
the mainstream of DA development. In this paper, we focus
on the technical challenges in developing a coupled ensem-
ble DA system, especially how to conveniently achieve effi-
cient interaction between the ensemble of the coupled model
and the DA methods. We first propose a new DA frame-
work, DAFCC1 (Data Assimilation Framework based on C-
Coupler2.0, version 1), for weakly coupled ensemble DA,
which enables users to conveniently integrate a DA method
into a model as a procedure that can be directly called by
the model ensemble. DAFCC1 automatically and efficiently
handles data exchanges between the model ensemble mem-
bers and the DA method without global communications and
does not require users to develop extra code for implement-
ing the data exchange functionality. Based on DAFCC1, we
then develop an example weakly coupled ensemble DA sys-
tem by combining an ensemble DA system and a regional
atmosphere–ocean–wave coupled model. This example DA
system and our evaluations demonstrate the correctness of
DAFCC1 in developing a weakly coupled ensemble DA sys-
tem and the effectiveness in accelerating an offline DA sys-

tem that uses disk files as the interfaces for the data exchange
functionality.

1 Introduction

Data assimilation (DA) methods, which provide initial states
of model runs by combining observational information and
models, have been widely used in weather forecasting and
climate prediction. The ensemble Kalman filter (EnKF;
Houtekamer and Mitchell, 1998; Evensen, 2003; Lorenc,
2003a; Anderson and Collins, 2007; Whitaker, 2012) is a
widely used DA method that depends on an ensemble run
of members. Other DA methods such as the nudging method
(Hoke and Anthes, 1976; Vidard et al., 2003), optimal inter-
polation (OI; Gandin, 1966), ensemble OI (EnOI; Oke et al.,
2002; Evensen, 2003), three-dimensional variational analysis
(3D-Var; Anderson et al., 1998; Courtier et al., 1998; Gau-
thier et al., 1999; Lorenc et al., 2000) and four-dimensional
variational analysis (4D-Var; Courtier et al., 1994; Kalnay,
2002; Lorenc, 2003b; Rabier et al., 2007) can be technically
viewed as a special case of ensemble-based methods with
only one member in the ensemble when we attempt to de-
sign and develop a software framework for data assimilation.
Moreover, hybrid DA methods, such as hybrid ensemble and
3D-Var (Hamill, 2000; Etherton and Bishop, 2004; Wang et
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al., 2008, 2013; Ma et al., 2014) and ensemble-based 4D-Var
schemes (Fisher, 2003; Bishop and Hodyss, 2011; Bonavita
et al., 2012, 2016; Buehner et al., 2015), also depend on the
ensemble run of members from the same model.

With the rapid development of science and technology, nu-
merical forecasting systems are evolving from only an indi-
vidual component model (such as an atmospheric model) to
coupled models that can achieve better predictability (Brown
et al., 2012; Mulholland et al., 2015), and Earth system mod-
els are being used to develop seamless predictions that span
timescales from minutes to months or even decades (Palmer
et al., 2008; Hoskins, 2013). Along with the use of coupled
models in numerical forecasting, common and flexible DA
methods for coupled models are urgently needed (Brunet et
al., 2015; Penny et al., 2017). Coupled DA technologies have
already been investigated widely, and DA systems have been
constructed (Sugiura et al., 2008; Fujii et al., 2009, 2011;
Saha et al., 2010, 2014; Sakov et al., 2012; Yang et al., 2013;
Tardif et al., 2014, 2015; Lea et al., 2015; Lu et al., 2015a, b;
Mochizuki et al., 2016; Laloyaux et al., 2016, 2018; Browne
et al., 2019; Goodliff et al., 2019; Skachko et al., 2019) in
which ensemble-based DA methods have already been ap-
plied (e.g., Zhang et al., 2005, 2007; Sluka et al., 2016).

To develop a coupled ensemble DA system, besides the
scientific challenges regarding DA methods, there are also
technical challenges to be addressed, such as how to achieve
an ensemble run of a coupled model, how to conveniently in-
tegrate the software of a coupled model and the software of
ensemble DA methods into a robust system, and how to con-
veniently achieve efficient interaction between the ensem-
ble of the coupled model and the DA methods. The exist-
ing ensemble DA frameworks supporting coupled DA such
as the Data Assimilation Research Testbed (DART; Ander-
son et al., 2009) and the Grid point Statistical Interpolation
(GSI; Shao et al., 2016) combined with EnKF (H. Liu et al.,
2018), employ disk files as the interfaces of data exchange
between the model ensemble members and the DA methods,
and iteratively switch between the run of the model ensem-
ble and DA using software-based restart functionality that
also relies on disk files. Such an implementation (called of-
fline implementation hereafter) can guarantee software inde-
pendence between the models and the DA methods, so as to
achieve flexibility and convenience in software integration;
however, the extra I/O accesses of disk files, as well as the ex-
tra initialization of software modules introduced by the data
exchange and the restarts, are time-consuming and can be
a severe performance bottleneck under finer model resolu-
tion (Heinzeller et al., 2016; Craig et al., 2017). The Parallel
Data Assimilation Framework (PDAF; Nerger et al., 2005;
Nerger and Hiller, 2013; Nerger et al., 2020) and the Em-
ploying Message Passing Interface for Researching Ensem-
bles (EMPIRE; Browne and Wilson, 2015) framework have
shown that MPI (Message Passing Interface)-based data ex-
changes between the model ensemble members and DA pro-

cedures can produce better performance for DA systems be-
cause they do not require disk files or the restart operations.

Noting that most existing couplers for Earth system mod-
eling have already achieved flexible MPI-based data ex-
changes between component models in a coupled system,
we design and develop a common, flexible and efficient
framework for coupled ensemble data assimilation, based on
the latest version of the Community Coupler (C-Coupler2.0;
L. Liu et al., 2018). Considering that existing observation
processing systems can introduce different observation fre-
quencies corresponding to different component models, we
take consideration of weakly coupled ensemble DA where
the data from different component models are assimilated in-
dependently by separate DA methods (Zhang et al., 2005,
2007; Fujii et al., 2009, 2011; Saha et al., 2010, 2014) in
this work, and further work will then target strongly coupled
ensemble DA, which generally uses a cross-domain error co-
variance matrix to account for the impact of the same obser-
vational information on different component models cooper-
atively (Tardif et al., 2014, 2015; Lu et al., 2015a, b; Sluka et
al., 2016).

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the overall design of the new DA framework
named DAFCC1 (Data Assimilation Framework based on C-
Coupler2.0, version 1). The implementation of DAFCC1 is
described in Sect. 3. Section 4 introduces the development
of an example weakly coupled ensemble DA system based
on DAFCC1. Section 5 evaluates DAFCC1. Finally, Sect. 6
contains a discussion and conclusions.

2 Overall design of the new framework

The experiences gained from PDAF and EMPIRE show that
a framework with an online implementation that handles the
data exchanges via MPI functionalities is essential for im-
proving the interaction between the model and the DA soft-
ware. There can be different strategies for the online im-
plementation. In EMPIRE, a DA method is compiled into
a stand-alone executable running on the processes distinct
from the model ensemble, and global communications with
MPI_gatherv and MPI_scatterv are used for exchanging data
between the model ensemble and the DA method. Such an
implementation can maintain the independence between the
DA software and the model but is inefficient because of inef-
ficient global communications and idle processes due to se-
quential running of the model and DA modules in the se-
quential DA systems. In PDAF, a DA method is transformed
into a native procedure that is called by the corresponding
models via the PDAF application programming interfaces
(APIs). Thus, a model and a DA method can be compiled
into the same executable, and the DA method can share the
processes of the model ensemble. The code releases of PDAF
(http://pdaf.awi.de/trac/wiki, last access: 15 April 2020) pro-
vide template implementations of data exchanges for a de-
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fault case where a DA method is running on the processes
of the first ensemble member (for example, given that there
are 10 ensemble members and each member uses 100 pro-
cesses, the DA method is running on 100 processes) and
uses the same parallel decomposition (grid domain decom-
position for parallelization) with the corresponding model.
When users want a case different from the default (e.g., a DA
method does not use the same processes with the first ensem-
ble member or uses a parallel decomposition different from
the model), users should develop new code implementations
for the corresponding data exchange functionality following
the rules of PDAF.

Most DA software consists of parallel programs that gen-
erally can be accelerated by using more processor cores.
When running an ensemble DA algorithm for a component
model in an ensemble run, all ensemble members of the com-
ponent model are synchronously waiting for the results of
the DA algorithm. Therefore, all the processor cores corre-
sponding to all ensemble members of the component model
can be used to accelerate the DA algorithm. To develop a
new framework for weakly coupled ensemble data assim-
ilation, we should improve the implementation of the data
exchange functionality in at least three aspects: (1) the new
implementation does not use global communications with
MPI_gatherv and MPI_scatterv, (2) the new implementation
enables a DA method to run on the processes of all ensem-
ble members (for example, given that there are 10 ensem-
ble members and each member uses 100 processes, the DA
method can run on 1000 processes), and (3) the new imple-
mentation does not require users to develop extra code re-
gardless of whether the DA method and corresponding model
use the same or different parallel decompositions. A DA
method requires the exchange of data with each model en-
semble member. When a DA algorithm uses a parallel de-
composition that differs from the model, the data exchange
between the DA algorithm and an ensemble member will in-
troduce a challenge of transferring fields between different
process sets with different parallel decompositions.

Fortunately, such a challenge has already been overcome
by most existing couplers (Craig et al., 2012; Valcke et al.,
2012; Liu et al., 2014; Craig et al., 2017; L. Liu et al.,
2018). Each of these couplers can transfer data between dif-
ferent process sets with different parallel decompositions
without the global communications. We therefore use the
C-Coupler2.0 (L. Liu et al., 2018), the latest version of the
Community Coupler (C-Coupler), as the foundation for de-
veloping DAFCC1. Moreover, C-Coupler2.0 has more func-
tionalities that DAFCC1 can benefit from. For example, C-
Coupler2.0 can handle data exchange of 3-D or even 4-D
fields where the source and destination fields can have dif-
ferent dimension orders (e.g., vertical plus horizontal at the
source field, and horizontal plus vertical at the destination
field). It will be convenient to combine ensemble members
of a coupled model into a single MPI program based on C-
Coupler2.0 because each ensemble member can be registered

as a component model of C-Coupler2.0. As shown in Fig. 1a,
most operations for achieving data exchanges can be gener-
ated automatically because C-Coupler2.0 can generate cou-
pling procedures between two process sets even when the
two sets are overlapping.

A significant challenge here is that C-Coupler2.0 can only
handle coupling exchanges between two component models
or within one component model but cannot handle coupling
exchanges between a DA algorithm and each model ensem-
ble member. To address this challenge, DAFCC1 automat-
ically generates a special C-Coupler2.0 component model
(hereafter called ensemble-set component model) that cov-
ers all ensemble members for running a DA algorithm. Thus,
coupling exchanges between a DA algorithm and each model
ensemble member can be transformed into the coupling ex-
changes between the ensemble-set component and each en-
semble member. Specifically, DAFCC1 introduces three new
steps, i.e., initialization, running and finalization of DA in-
stances (instances of DA algorithms), to the model flow chart
with C-Coupler2.0 (Fig. 1b). These steps enable a DA in-
stance to run on the processes of all ensemble members and
achieve automatic coupling exchanges between a DA algo-
rithm and each model ensemble member. The software ar-
chitecture of DAFCC1 based on C-Coupler2.0 is shown in
Fig. 2. It includes a set of new managers (i.e., DA algo-
rithm integration manager, ensemble component manager,
online DA procedure manager, and ensemble DA configu-
ration manager) and the new APIs corresponding to these
managers. The DA algorithm integration manager enables
the user to conveniently develop driving interfaces for a DA
algorithm based on a set of new APIs that enables the DA
algorithm to declare its input and output fields and to ob-
tain various information from the model. When a DA algo-
rithm includes multiple independent modules (such as ob-
servation operators and analysis modules), each module can
be called separately by the model. The dynamic link library
(DLL) technique is used to connect a DA algorithm pro-
gram to a model program. The DA algorithm program is
compiled into a DLL that is dynamically linked to a model
when an instance of the DA algorithm is initialized. Using
the DLL technique allows us to couple a DA algorithm and a
model without modifying and recompiling the model code,
and it provides greater independence and convenience be-
cause the original configuration and compilation systems of
the DA algorithm can generally be preserved. The ensemble
component manager governs the communicators of ensem-
ble members. The online DA procedure manager provides
several APIs that enable the ensemble members of a com-
ponent model to initialize, run and finalize a DA algorithm
instance cooperatively. The data exchanges between the en-
semble members and the DA algorithm are also handled au-
tomatically in this manager. The ensemble DA configuration
manager enables the user to flexibly choose DA algorithms
and set parameters for a DA simulation via a configuration
file.
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Figure 1. Model flow chart with C-Coupler2.0 (a) and a new model flow chart with ensemble DA based on C-Coupler2.0 (b). Black font
indicates the major steps in the original flow chart of a component model without coupling, red font indicates the major steps for achieving
coupling exchanges among component models with C-Coupler2.0, and green font indicates the new steps for achieving coupling exchanges
between a DA algorithm and a model ensemble. The gray shadow in a dashed rectangle indicates that all members in a model ensemble
cooperatively work together for the corresponding step.

Figure 2. Architecture of DAFCC1.
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With the software architecture in Fig. 2 and the detailed
implementations in Sect. 3, DAFCC1 enables a coupled en-
semble DA system to achieve the following features.

1. Each component model can use different instances of
DA algorithms online independently, and the execution
of a DA algorithm in the MPI processes of a component
model does not force other MPI processes to be idled.
For example, components 1, 2 and 4 in Fig. 3 perform
DA with different time periods (e.g., component 4 per-
forms DA more frequently than component 1 and 2),
while component 3 does not use DA algorithms.

2. Given a common DA algorithm, it can be used by dif-
ferent component models under different instances with
different configurations (e.g., the fields assimilated, the
observational information used and the frequency). In
Fig. 3, for example, components 2 and 4 use different
instances of the same DA algorithm 2 independently.

3. An instance of a DA algorithm can either use the pro-
cesses of all ensemble members of the same component
model cooperatively or use the processes of each en-
semble member separately. For example, each DA algo-
rithm instance in Fig. 3 uses the processes of all ensem-
ble members of the corresponding component model
cooperatively, except procedure 1 of DA algorithm 1
that uses the processes of each ensemble member of
component 1 separately.

4. Besides employing the DLL technique for integrating
DA algorithm programs, a configuration file is designed
for increasing the flexibility and convenience in using
a DA algorithm (see Sect. 3.4 for detailed implementa-
tion).

3 Implementation of DAFCC1

In this section, we will detail the implementation of DAFCC1
in terms of the ensemble component manager, DA algorithm
integration manager, online DA procedure manager and en-
semble DA configuration manager. Moreover, we will pro-
vide an example of how to use DAFCC1 to develop a DA
system.

3.1 Implementation of the ensemble component
manager

To achieve coupling exchanges between a DA algorithm
and each ensemble member, each ensemble member should
be used as a separate component model registered to C-
Coupler2.0 via the API CCPL_register_component (Please
refer to L. Liu et al., 2018 for more details). In C-
Coupler2.0, model names are used as the keywords to
distinguish different component models. To distinguish

different ensemble members of a model that generally
share the same code or executable, we update the API
CCPL_register_component to implicitly generate different
names of ensemble members by appending the ID of each
ensemble member to the model name (the parameter list of
the API CCPL_register_component is unchanged). The ID
of an ensemble member is given as the last argument (for-
matted as “CCPL_ensemble_{ensemble numbers}_{member
ID}”) of the corresponding executable when submitting an
MPI run (see Fig. 4 as an example), where “ensemble num-
bers” marks the number of ensemble members and “member
ID” marks the ensemble member ID of the current compo-
nent.

C-Coupler2.0 can manage hierarchical relationship among
models, where a model can have a set of child models. Given
an ensemble run of a coupled model, although all ensemble
members of all component models of the coupled model can
be organized into a single level (see Fig. 5a), we recommend
constructing two hierarchical levels (see Fig. 5b), where each
ensemble member of the coupled model is at the first level
while the component models of each ensemble member are
at the second level. This hierarchical organization retains the
original architecture of the coupled model and only requires
users to simply register the coupled model to C-Coupler2.0.

In order to enable a DA algorithm to run on the MPI
processes of all ensemble members of a component model
(Fig. 3), an ensemble-set component model that covers all
ensemble members of the component model is required for
calling the DA algorithm (for example, the green box in
Fig. 5b corresponds to an ensemble-set component model).
As the ensemble-set component model does not exist in the
original hierarchical levels in Fig. 5b, it should be generated
with extra efforts. The ensemble component manager pro-
vides the capability of automatically generating the corre-
sponding ensemble-set component model when initializing
a DA instance. The MPI communicator of the ensemble-set
component model is generated through unifying the commu-
nicators of the ensemble members of the corresponding com-
ponent model that runs the DA instance.

3.2 Implementation of the DA algorithm integration
manager

When a DA algorithm runs on the processes of a component
model, the model and the DA algorithm can be viewed as a
caller and a callee in a program, respectively. A callee gen-
erally declares a list of arguments that includes a set of input
and output variables, and a caller should match the argument
list of the callee when calling the callee (a model that calls
a DA algorithm is hereafter called the host model of the DA
algorithm ). When a caller and a callee are statically linked
together, a compiler can generally guarantee the consistency
of the argument list between them. However, it is a challenge
that compilers cannot guarantee such consistency between a
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Figure 3. Example of running a DAFCC1-based weakly coupled ensemble DA system with three ensemble members. (a) Each ensemble
member of the coupled model (yellow series) uses eight MPI processes, where component 1 (blue series) uses three MPI processes, com-
ponent 2 (green series) uses two MPI processes, component 3 (orange series) uses two MPI processes and component 4 (gray series) uses
one MPI process. (b) DA algorithm 1 and two instances of DA algorithm 2 (purple series) are used in this DA system, where DA algorithm
1 includes procedure 1 (pink series) and procedure 2 (red). (c) Execution of the DA system: the process layout of ensemble members of
component models, the process layout of DA algorithms, and the alternative execution of a DA algorithm and the corresponding component
model. Each number in the colored box in (a) and (c) indicates the process ID in the corresponding local communicator of a member of the
coupled model, a member of a component model or all members of a component model.

Figure 4. Example of the command for submitting an MPI run of three ensemble members of a coupled model that consists of Comp1
and Comp2. Comp1 can be before Comp2 at the second ensemble member, and the process numbers N1_1, N2_1 and N3_1 of Comp1 at
different ensemble members can be different.

host model and a DA algorithm that is enclosed in a DLL and
dynamically linked to the host model.

To address the above challenge, we designed and devel-
oped a new solution in DAFCC1 for passing arguments be-
tween a host model and a DA algorithm. There are three
driving subroutines for initializing, running and finalizing a
DA algorithm. These subroutines are enclosed in the same
DLL with the DA algorithm. Specifically, names of these
subroutines share the name of the DA algorithm as the pre-
fix and are distinguished by different suffixes. We tried to
make the explicit argument list of each driving subroutine as
simple as possible (e.g., the explicit argument list only in-
cludes a few integer arrays) and developed a set of APIs for
flexibly passing implicit arguments. Based on these APIs,

the DA algorithm can obtain the required information of
the host model and can also declare a set of implicit in-
put or output arguments of fields. Figure 6 shows an ex-
ample of the driving subroutines where the running and fi-
nalization driving subroutines are quite simple. The initial-
ization driving subroutine includes the original functional-
ities of the DA algorithm such as determining parallel de-
compositions, allocating memory space for variables and
other operations for initialization. Moreover, it includes ad-
ditional operations for obtaining the information of the host
model via C-Coupler2.0; registering the parallel decomposi-
tions, grids, and field instances to C-Coupler2.0; and declar-
ing a set of field instances as implicit input or output ar-
guments. Data exchanges between the host model and the
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Figure 5. Two examples of the organization of N ensemble members of a coupled model consisting of M component models. (a) Single-level
organizational architecture of all ensemble members of the component models in the coupled model. (b) Two hierarchical level organizational
architecture. All ensemble members of the coupled model are organized as the first level with all component models from each ensemble
member of the coupled model at the second level. An ensemble-set component model that covers all ensemble members of component model
1 is generated as an example for using the DA algorithm in ensemble component manager.

DA algorithm are conducted automatically and implicitly by
DAFCC1 (Sect. 3.3.2), and thus the running driving subrou-
tine DA_CCPL_RUN does not include explicit calls for data
exchanges.

The use of DAFCC1 requires some further changes to the
codes of a DA algorithm. For example, the original commu-
nicator of the DA algorithm needs to be replaced with the
communicator of the host model that can be obtained via the
corresponding C-Coupler API, and the original I/O accesses
for the model data in the DA algorithm can be turned off.

3.3 Implementation of the online DA procedure
manager

To make the same DA algorithm used by different com-
ponent models, DAFCC1 enables a component model to
use a separate instance of the same DA algorithm with the
corresponding configuration information. Corresponding
to the three driving subroutines of a DA algorithm, there
are three APIs (CCPL_ensemble_procedures_inst_init,
CCPL_ensemble_procedures_inst_run and
CCPL_ensemble_procedures_inst_finalize) that are directly
called by the code of a host model. These APIs initialize,
run and finalize a DA algorithm instance and handle the data
exchanges between the host model and the DA algorithm
instance automatically. In a general case in Fig. 1b, the
API CCPL_ensemble_procedures_inst_init is called when
initializing the ensemble DA system before starting the time
loop, the API CCPL_ensemble_procedures_inst_finalize
is called after finishing the time loop, and the API
CCPL_ensemble_procedures_inst_run is called in the time
loop, which enables different assimilation windows to share
the same DA instance without restarting the model and the
DA algorithm. When a component model initializes, runs or
finalizes a DA algorithm instance, all ensemble members of
this component model should call the corresponding API at
the same time.

3.3.1 API for initializing a DA algorithm instance

The API CCPL_ensemble_procedures_inst_init includes the
following steps for initializing a DA algorithm instance.

1. Determining the host model of the DA algorithm in-
stance according to the corresponding information in
the configuration file. If the DA algorithm instance is an
individual algorithm that operates on the data of each
ensemble member separately (e.g., Procedure 1 of DA
algorithm 1 in Fig. 3), each ensemble member will be a
host model. Otherwise (i.e., the DA algorithm instance
is an ensemble algorithm that operates on the data of
the ensemble set; e.g., Procedure 2 of DA algorithm 1
in Fig. 3), the host model will be the ensemble-set com-
ponent model that will be generated automatically by
the ensemble component manager.

2. Preparing information from the host model, such as
model grids, parallel decompositions, and field in-
stances, which can be obtained by the initialization driv-
ing subroutine of the DA algorithm via the correspond-
ing APIs.

3. Initializing the corresponding DA algorithm instance
according to the corresponding algorithm name and
DLL name specified in the corresponding configura-
tion file (Sect. 3.4), where the corresponding DLL
will be linked to the host model and the correspond-
ing initialization-driving subroutine in the DLL will be
called. This implementation enables the user to conve-
niently change the DA algorithms used in different sim-
ulations via the configuration file without modifying the
code of the model.

4. Setting up data exchange operations according to the
input or output fields of the DA algorithm instance de-
clared in the initialization driving subroutine via the cor-
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Figure 6. Example of the driving subroutines in a DA algorithm. (a) Initialization driving subroutine. (b) Running driving subroutine. (c)
Finalization driving subroutine. The name of the DA algorithm “DA” is used as the prefix of the three driving subroutines; different suffixes
are used for distinction. Black font indicates original functionalities of the DA algorithm, while red font indicates additional operations to
perform online data exchanges between the model and DA algorithm.

responding APIs. If the DA algorithm instance is spec-
ified as an individual algorithm via the ensemble DA
configuration (Sect. 3.4), the data exchange is within
each ensemble member. Otherwise, the ensemble-set
component model is involved in the data exchange. The
data exchange is divided into two levels: (i) the data ex-
change between the ensemble members and DAFCC1
and (ii) the data exchange between DAFCC1 and the
DA algorithm. The data exchange between DAFCC1
and the DA algorithm instance is simply achieved by
the import–export interfaces of C-Coupler2.0, which
flexibly rearrange the fields in the same component
model between different parallel decompositions. If
the DA algorithm instance is an ensemble algorithm,
the data exchange between the ensemble members and
DAFCC1 is also handled by the import–export inter-
faces of C-Coupler2.0, which flexibly transfer the same
fields between different component models (each en-
semble member and the ensemble set are different com-
ponent models). Otherwise, the data exchange between
the ensemble members and DAFCC1 is simplified to a
data copy. DAFCC1 will hold a separate memory space
for each model field relevant to the DA algorithm, which
enables a DA algorithm instance to use instantaneous
model results or statistical results (i.e., mean, maxi-
mum, cumulative, and minimum) in a time window, and
enables an ensemble DA algorithm instance to use ag-
gregated results or statistical results (ensemble-mean,
ensemble-anomaly, ensemble-maximum or ensemble-
minimum) from ensemble members.

Consistent with the functionalities in the above steps, the
API CCPL_ensemble_procedures_inst_init includes the fol-
lowing arguments.

– The ID of the current ensemble member that calls
this API, and the common full name of the ensemble
members. When registering a component model to C-
Coupler2.0, its ID is allocated and its unique full name
formatted as “parent_full_name@model_name” is gen-
erated, where “model_name” is the name of the com-

ponent model, and “parent_full_name” is the full name
of the parent component model (if any). Given that the
name of the component model 1 in Fig. 5 is “comp1”, in
the one-level model hierarchy in Fig. 5a, the full names
of ensemble members of the component model 1 are
“comp1_1” to “comp1_N”, and the common full name
of the ensemble members is “comp1_*” where “∗” is
a wildcard, while in the two-level model hierarchy in
Fig. 5b, the full names of ensemble members of the
component model 1 are “coupled_1@comp1” to “cou-
pled_N@comp1” and the common full name is “cou-
pled_*@comp1” (given that the name of the coupled
model is “coupled”). Such a common full name can be
used for generating the ensemble-set component model
when the DA algorithm instance is an ensemble algo-
rithm.

– The name of the DA algorithm instance, which is the
keyword of the DA algorithm instance and also specifies
the corresponding configuration information. Different
DA algorithm instances can correspond to different DA
algorithms or the same DA algorithm. For example, the
component models 2 and 4 use different instances of the
same DA algorithm in Fig. 3.

– An optional list of model grids and parallel decomposi-
tions, which enable the DA algorithm instance to obtain
the grid data and use the same parallel decompositions
as the host model.

– A list of field instances that can be used for DA. This
list should cover all input or output fields of the DA al-
gorithm.

– An optional integer array of control variables that can
be obtained by the DA algorithm instance via the corre-
sponding APIs.

– An annotation, which is a string giving a hint for locat-
ing the model code of the API call corresponding to an
error or warning, is recommended but not mandatory.
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3.3.2 API for running a DA algorithm instance

The API CCPL_ensemble_procedures_inst_run includes the
following steps for running a DA algorithm instance:

1. Executing the data exchange operations for the input
fields of the DA algorithm instance. This step auto-
matically transfers the input fields from each ensem-
ble member of the corresponding component model to
DAFCC1 and then from DAFCC1 to the DA algorithm
instance. The statistical processing regarding the time
window or the ensemble is done at the same time.

2. Executing the DA algorithm instance through calling
the running driving subroutine of the DA algorithm.

3. Executing the data exchange operations for the output
fields of the DA algorithm instance. This step auto-
matically transfers the output fields from the DA al-
gorithm instance to DAFCC1 and then from DAFCC1
to each ensemble member of the corresponding compo-
nent model.

Each DA algorithm instance has a timer specified
via the configuration information, which determines
when the DA algorithm instance is run. The API
CCPL_ensemble_procedures_inst_run for a DA algo-
rithm instance can be called at each time step, while the
above three steps will be executed only when the specified
timer is on. To store the input data such as the observational
information, a DA algorithm instance can either share the
working directory of its host model or use its own working
directory specified via the configuration information. The
API CCPL_ensemble_procedures_inst_run will change and
then recover the current directory for calling the running
driving subroutine of the DA algorithm if necessary.

3.3.3 API for finalizing a DA algorithm instance

The API CCPL_ensemble_procedures_inst_finalize is re-
sponsible for finalizing a DA algorithm instance through call-
ing the finalization driving subroutine of the DA algorithm.

3.4 Implementation of the ensemble DA configuration
manager

The configuration information of all DA algorithm in-
stances used in a coupled DA simulation is enclosed in
an XML configuration file (e.g., Fig. 7). Each DA algo-
rithm instance has a distinct XML node (e.g., the XML
node “da_instance” in Fig. 7, where the attribute “name” is
the name of the DA algorithm instance associated with the
API “CCPL_ensemble_procedures_inst_init”), which en-
ables the user to specify the following configurations.

1. The DA algorithm specified in the XML node “exter-
nal_procedures” in Fig. 7. The attribute “dll_name” in

the XML node specifies the dynamic link library, and
the attribute “procedures_name” specifies the DA algo-
rithm’s name associated with the corresponding driving
subroutines. When the user seeks to change the DA al-
gorithm used by a component model, it is only neces-
sary to modify the XML node “external_procedures” in
most cases.

2. The periodic timer specified in the XML node “pe-
riodic_timer” in Fig. 7, which enables the user to
flexibly set the periodic model time of running
the corresponding DA algorithm. Besides the at-
tribute “period_unit” and “period_count” for specify-
ing the period of the timer, the user can specify a
lag via the attribute “local_lag_count”. For example,
given a periodic timer <“period_unit”=“hours”, “pe-
riod_count”=6, “local_lag_count”=3>, its period is
6 h, and it will not be on at the 0th, 6th, and 12th hours
but instead on at the 3rd, 9th, and 15th hours due to the
“local_lag_count” of 3.

3. Statistical processing of input fields specified in the
XML node “field_instances” in Fig. 7. The attribute
“time_processing” specifies the statistical processing
in each time window determined by the periodic
timer. The attribute “ensemble_operation” specifies the
statistical processing among ensemble members. For
an individual DA algorithm, the attribute “ensem-
ble_operation” should be set to “none”. All fields can
share the default specification of statistical process-
ing, while a field can have its own statistical pro-
cessing specified in a sub node of the XML node
“field_instances”.

4. The working directory and the scripts for pre- and
post-assimilation analysis (e.g., for processing the data
files of observational information) optionally speci-
fied in the XML node “processing_control” in Fig. 7.
When the working directory is not specified, the
DA algorithm instance will use the working direc-
tory of its host model. The script specified in the
sub XML node “pre_instance_script” will be called
by the root process of the host model before the API
CCPL_ensemble_procedures_inst_run calls the DA al-
gorithm, and the script specified in the sub XML node
“post_instance_script” will be called by the root process
of the host model after the DA algorithm run finishes.

4 An example weakly coupled ensemble DA system
based on DAFCC1

To provide further information on how to use DAFCC1
and for validating and evaluating DAFCC1, we developed
an example weakly coupled ensemble DA system by com-
bining the ensemble DA system GSI/EnKF (Shao et al.,
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Figure 7. Example of the XML configuration for a DA experiment.

2016; H. Liu et al., 2018) and a regional First Institute of
Oceanography Atmosphere–Ocean–Wave (FIO-AOW) cou-
pled model (Zhao et al., 2017; Wang et al., 2018). GSI/EnKF
mainly focuses on regional numerical weather prediction
(NWP) applications coupled with the Weather Research and
Forecasting (WRF) model (Wang et al., 2014), while FIO-
AOW consists of WRF, the Princeton Ocean Model (POM;
Blumberg and Mellor 1987; Wang et al., 2010), the MArine
Science and NUmerical Modeling wave model (MASNUM;
Yang et al., 2005; Qiao et al, 2016), and all the above three
model components are coupled together by using C-Coupler
(L. Liu et al., 2014, 2018). FIO-AOW has already been used
in the research for exploring the sensitivity of typhoon simu-
lation to physical processes and improving typhoon forecast-
ing (Zhao et al, 2017; Wang et al., 2018). There are two main
steps in developing the example system.

We developed an ensemble DA sub-system of WRF by
adapting GSI/EnKF to DAFCC1. This sub-system helps val-
idate DAFCC1 and evaluate the improvement in performance
obtained by DAFCC1 (Sect. 5).

We merged the above sub-system and FIO-AOW to pro-
duce the example DA system that only computes atmo-

spheric analyses corresponding to WRF currently. This sys-
tem demonstrates the correctness of DAFCC1 in developing
a weakly coupled ensemble DA system.

4.1 An ensemble DA sub-system of WRF

4.1.1 Brief introduction to GSI/EnKF

GSI/EnKF combines a variational DA sub-system (GSI;
Shao et al., 2016) and an ensemble DA sub-system (EnKF;
H. Liu et al., 2018), which can be used as a variational, a pure
ensemble or a hybrid DA system sharing the same observa-
tion operator in the GSI codes. It provides two options for
calculating analysis increments for ensemble DA; i.e., a se-
rial ensemble square root filter (EnSRF) algorithm (Whitaker
et al., 2012) and a local ensemble Kalman filter (LETKF) al-
gorithm (Hunt et al., 2007). In this paper, we use the pure
ensemble DA system without using variational DA, where
GSI is used as the observation operator that calculates the
difference between model variables and observations on the
observation space and EnSRF is chosen for calculating atmo-
spheric analyses and updating atmosphere model variables.
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Figure 8a shows the flow chart for running the pure en-
semble DA system of the WRF model in a DA window.
It consists of the following main steps that are driven by
scripts, while the data exchanges between these main steps
are achieved via data files.

Ensemble model forecast. An ensemble run of WRF is ini-
tiated or restarted from a set of input data files and is then
stopped after producing a set of output files (called model
background files hereafter) for DA and for restarting the en-
semble run in the next DA window.

Calculating the ensemble mean of model DA variables. A
separate executable is initiated for calculating the ensemble
mean of each DA variable based on the model background
files and then outputs the ensemble mean to a new back-
ground file.

Observation operator for the ensemble mean. GSI is ini-
tiated as the observation operator for the ensemble mean. It
takes the ensemble mean file, files of various observational
data (e.g., conventional data, satellite radiance observations,
GPS radio occultations, and radar data) and multiple fixed
files (e.g., statistic files, configuration files, bias correction
files, and Community Radiative Transfer Model coefficient
files) as input and produces an observation prior (observation
innovation) file for the ensemble mean and files containing
observational intermediate information (e.g., bias correction
and thinning).

Observation operator for each ensemble member. GSI is
initiated as the observation operator for each ensemble mem-
ber. It takes the background file of the corresponding ensem-
ble member, the fixed files and the observational intermediate
information files as input and produces an observation prior
file for the corresponding ensemble member.

EnKF for calculating analysis increments. EnKF is initi-
ated for calculating analysis increments of the whole ensem-
ble. It takes the model background files, the observation prior
files and the fixed files as input, and finally updates model
background files with the analysis increments. The updated
model background files are used for restarting the ensemble
model forecast in the next DA window.

4.1.2 Adapting GSI/EnKF to DAFCC1

When adapting GSI/EnKF to DAFCC1, an ensemble-set
component model derived from the ensemble forecast of
WRF (corresponding to the first main step in Sect. 4.1.1)
is generated as the host model that drives the DA algo-
rithm instances corresponding to the remaining main steps.
As shown in Fig. 9, three DA instances corresponding to the
last three main steps in Sect. 4.1.1 (i.e., observation operator
for the ensemble mean, observation operator for each ensem-
ble member and EnKF for calculating analysis increments)
are enclosed in DLLs, without a DA algorithm instance cor-
responding to the second main step in Sect. 4.1.1. This is
because the online DA procedure manager of DAFCC1 en-
ables a DA algorithm instance to automatically obtain the

ensemble mean of model DA variables (Sect. 3.3). Although
both the third and fourth main steps correspond to the same
GSI, they are transformed into two different DA algorithm
instances because the third is an ensemble algorithm (i.e., it
operates on the data of the ensemble set) and the fourth is
an individual algorithm (i.e., it operates on the data of each
ensemble member). Moreover, we compiled the same GSI
code into two separate DLLs, each of which corresponds to
one of these two instances, to enable these two instances to
use different memory space.

For each DA algorithm instance, three driving subrou-
tines and the corresponding configuration were developed
(Fig. 9). In fact, the two instances corresponding to GSI
share the same driving subroutines but use different config-
urations (especially regarding the specification of “ensem-
ble_operation”). To enable the GSI code and EnKF code to
be used as DLL, we made the following slight modifications
to the code.

We turned off the MPI initialization and finalized and re-
placed the original MPI communicator with the MPI commu-
nicator of the host model that can be obtained via DAFCC1.

We obtained the required model information and the de-
clared input/output fields via DAFCC1, and turned off the
corresponding I/O accesses.

To drive the DA algorithm instances, the WRF code was
updated with the new subroutines for initializing, running
and finalizing all DA algorithm instances. Moreover, the
functionality of outputting model background files can be
turned off because the data exchanges between WRF and
the DA algorithm instances are automatically handled by
DAFCC1 and the WRF ensemble can be run continuously
throughout DA windows without stopping and restarting. As
a result, DAFCC1 saves sets of data files and the correspond-
ing I/O access operations, while only the observation files,
fixed files, and the files for the data exchanges among the
DA algorithm instances are reserved (compare Fig. 8b and
a).

4.2 Example ensemble DA system of FIO-AOW

FIO-AOW, which previously used C-Coupler1 (Liu et al.,
2014) for model coupling, has already been upgraded to C-
Coupler2.0 by us (Fig. 10a). As GSI/EnKF and FIO-AOW
share WRF, the development of the example ensemble DA
system of FIO-AOW in Fig. 10b can significantly benefit
from the DA system of WRF. In this ensemble DA system,
the ensemble of WRF computes atmospheric analyses based
on the ensemble DA sub-system in Sect. 4.1, while each en-
semble member of other component models is impacted by
the atmospheric analyses via model coupling. It only took
the following steps to construct the example ensemble DA
system.

Using the ensemble component manager, set up the two
hierarchical levels of models shown in Fig. 11; i.e., the first
level corresponds to all ensemble members of FIO-AOW
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Figure 8. Running processes and data scheduling for (a) original GSI/EnKF used as a pure ensemble DA system and (b) modified GSI/EnKF
based on DAFCC1. Orange rectangles in the processes panel indicate different running processes, while thick blue arrows mark data schedul-
ing based on DAFCC1. Rectangles of various colors with a curved lower edge in the file storage panel indicate different files, while arrows
of different colors indicate the scheduling of corresponding files.

Figure 9. Modifications of model code and the invoking of relationships to the DA algorithm in the example ensemble DA system.
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Figure 10. Architecture of FIO-AOW (a) and the corresponding example ensemble DA system (b). The gray shadow in the dashed rectangle
in (b) indicates that atmospheric analyses are computed by GSI/EnKF that has been coupled with the ensemble of WRF based on DAFCC1.

Figure 11. Two-hierarchical-level organizational architecture for
N ensemble members of FIO-AOW consisting of WRF, POM and
MASNUM. All ensemble members of FIO-AOW are organized as
the first level with all component models in each ensemble member
at the second level. An ensemble-set that covers all ensemble mem-
bers of the component model WRF is generated by the ensemble
component manager.

while each member includes its three component models at
the second level.

Merge the model code modifications, the DA algorithm
instances and configurations in the DA system of WRF into
the example ensemble DA system FIO-AOW.

As well as being described by the flow chart involving the
WRF and the DA algorithm instances in Fig. 8b, the example
ensemble DA system of FIO-AOW follows the process lay-
out in Fig. 12, which is essentially a real case of the process
layout in Fig. 3.

5 Validation and evaluation of DAFCC1

In this section, we evaluate the correctness of DAFCC1 in
developing a weakly coupled ensemble DA system based on
the example ensemble DA system (hereafter referred to as
the full example DA system) described in Sect. 4, and will
also validate DAFCC1 and evaluate the impact of DAFCC1

Figure 12. Example of the process layout of the example ensemble
DA system FIO-AOW. (a) Each ensemble member of FIO-AOW
(yellow series) uses seven MPI processes, where WRF (blue series)
uses three MPI processes, POM (green series) uses two MPI pro-
cesses, and MASNUM (orange series) uses two MPI processes. (b)
Two DA algorithm instances of GSI are adopted for each member
(pink series) and ensemble mean (red), respectively, following an-
other DA algorithm instance of EnKF in this DA system. (c) Pro-
cess layout of the DA system: the process layout of ensemble mem-
bers of component models and the process layout of DA algorithms.
Each number in the colored boxes in (a) and (c) indicates the pro-
cess ID in the corresponding local communicator of a member of
the coupled model, a member of a component model or all mem-
bers of a component model.

in accelerating DA based on the sub-system with WRF and
GSI/EnKF (hereafter WRF-GSI/EnKF).

5.1 Experimental setup

The example ensemble DA system used in this validation and
evaluation consists of WRF Version 4.0 (Wang et al., 2014),
GSI version 3.6 and EnKF version 1.2, and the corresponding
versions of POM and MASNUM used in FIO-AOW (Zhao
et al., 2017; Wang et al., 2018). In EnKF version 1.2 the
default settings are used; i.e., the EnSRF algorithm is used
to calculate analysis increments for ensemble DA, the infla-
tion factor is 0.9 without smoothing, and the covariance is
localized by distance correlation function with a horizontal
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Table 1. Horizontal resolutions and time steps of WRF.

Horizontal Total horizontal Time
resolution Grid points step

45 km 160× 120 180 s
30 km 240× 180 120 s
15 km 480× 360 60 s

localization radius of 400 km and vertical localization scale
coefficient of 0.4. The example ensemble DA system is run
on a supercomputer of the Beijing Super Cloud Computing
Center (BSCC) with the Lustre file system. Each computing
node on the supercomputer includes two Intel Xeon E5-2678
v3 CPUs (Intel(R) Xeon(R) CPU), with 24 processor cores in
total, and all computing nodes were connected with an Infini-
Band network. The codes were compiled by an Intel Fortran
and C++ compiler at the optimization level O2 using an In-
tel MPI library. A maximum 3200 cores are used for running
the example ensemble DA system.

The WRF-GSI/EnKF integrates over an approximate geo-
graphical area generated from a Lambertian projection of the
area 0–50◦ N, 99–160◦ E, with center point at 35◦ N, 115◦ E.
Initial fields and lateral boundary conditions (at 6 h intervals)
for the ensemble run of WRF are taken from the NCEP
Global Ensemble Forecast System (GEFS) (at 1◦× 1◦ reso-
lution) (https://www.ncdc.noaa.gov/data-access/model-data/
model-datasets/global-ensemble-forecast-system-gefs, last
access: 15 April 2020). To configure WRF, an existing
physics suite “CONUS” (https://www2.mmm.ucar.edu/
wrf/users/physics/ncar_convection_suite.php, last access:
7 May 2021) and 32 vertical sigma layers with the model
top at 50 hPa are used. A 1 d integration on 1 June 2016 is
used for running the WRF-GSI/EnKF. NCEP global GDAS
Binary Universal Form for the Representation of mete-
orological data (BUFR; https://www.emc.ncep.noaa.gov/
mmb/data_processing/NCEP_BUFR_File_Structure.htm,
last access: 15 April 2020) and Prepared BUFR
(https://www.emc.ncep.noaa.gov/mmb/data_processing/
prepbufr.doc/document.htm, last access: 15 April 2020), in-
cluding conventional observation data and satellite radiation
data, are assimilated every 6 h (i.e., at 00:00, 06:00, 12:00,
and 18:00 UTC). The air temperature (T ), specific humidity
(QVAPOR), longitude and latitude wind (UV), and column
disturbance dry air quality (MU) are the variables analyzed
in the data assimilation. The WRF-GSI/EnKF experiments
are classified into four sets, where variations of horizontal
resolution (and the corresponding time step), number of
ensemble members and process number (each process runs
on a distinct processor core) are considered (Tables 1 and 2).

All component models of the full example DA system inte-
grate over the same geographical area (0–50◦ N, 99–150◦ E)
with the same horizontal resolution of 0.5◦× 0.5◦ but differ-
ent time steps (100 s for WRF and 300 s for POM and MAS-

NUM, coupled by C-Coupler2.0 at 300 s intervals). More de-
tails of the model configurations can be found in Zhao et
al. (2017). The configuration of initial fields, lateral bound-
ary conditions and observations of WRF for the ensemble
run of the full example DA system are the same as for WRF-
GSI/EnKF. The full example DA system integrates over 3 d
(1 to 3 June 2016), while the first model day is considered as
spin-up, and DA is performed every 6 h in the last two model
days with T , UV and MU as DA variables.

5.2 Validation of DAFCC1

To validate DAFCC1, we compare the outputs of the two
versions of WRF-GSI/EnKF: the original WRF-GSI/EnKF
(hereafter offline WRF-GSI/EnKF; https://dtcenter.org/
community-code/gridpoint-statistical-interpolation-gsi/
community-gsi-version-3-6-enkf-version-1-2, last access:
15 April 2020) and the new version of WRF-GSI/EnKF with
DAFCC1 (hereafter online WRF-GSI/EnKF) introduced in
Sect. 4.1. As DAFCC1 only improves the data exchanges
between a model and the DA algorithms, the simulation
results of an existing DA system should not change when it is
adapted to use DAFCC1. We therefore employ a validation
standard that the WRF-GSI/EnKF with DAFCC1 keeps
bit-identical result with the original offline WRF-GSI/EnKF.
DAFCC1 passes the validation test with all experimental
setups in Table 2, where the binary data files output by WRF
at the end of the 1 d integration are used for the comparison.

5.3 Impact in accelerating an offline DA

WRF-GSI/EnKF is further used to evaluate the impact of
DAFCC1 in accelerating an offline DA by comparing the ex-
ecution time of the offline and online WRF-GSI/EnKF un-
der each experimental setup in Table 2. Considering that all
ensemble members of the online WRF-GSI/EnKF are inte-
grated simultaneously, we run all ensemble members of the
offline WRF-GSI/EnKF concurrently through a slight mod-
ification to the corresponding script in order to make a fair
comparison.

The impact of varying the number of ensemble members
is evaluated based on set 1 in Table 2. DAFCC1 obviously
accelerates WRF-GSI/EnKF and can achieve higher perfor-
mance speedup with more ensemble members (Fig. 13a).
This is because DAFCC1 significantly accelerates the DA
for both GSI and EnKF (Fig. 13b–d). Similarly, DAFCC1
significantly accelerates the DA and WRF-GSI/EnKF under
different process numbers (Fig. 14, corresponding to set 2 in
Table 2) and resolution (Fig. 15, corresponding to set 3 in
Table 2). Considering that more processor cores are gener-
ally required to accelerate the model run under higher reso-
lution, we also make an evaluation based on set 4 in Table 2,
where concurrent changes in resolution and process number
are made to achieve similar numbers of grid points per pro-
cess throughout the experimental setups. This evaluation also
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Table 2. Setup of four experiment sets in terms of horizontal resolution, number of ensemble members and number of processes.

Experiment Horizontal Number of Processes for each Label
set resolution ensemble members ensemble member marks

Set 1 15 km 5 160 15KM_5mem_160proc
10 15KM_10mem_160proc
15 15KM_15mem_160proc
20 15KM_20mem_160proc

Set 2 15 km 10 40 15KM_10mem_40proc
80 15KM_10mem_80proc

160 15KM_10mem_160proc
320 15KM_10mem_320proc

Set 3 45 km 10 80 45KM_10mem_80proc
30 km 30KM_10mem_80proc
15 km 15KM_10mem_80proc

Set 4 45 km 10 40 45KM_10mem_40proc
30 km 80 30KM_10mem_80proc
15 km 320 15KM_10mem_320proc

Figure 13. Execution time (colored bars) corresponding to the online and offline WRF-GSI/EnKF and the corresponding speedup (gray
line, ratio of offline execution time to online execution time) from experiment set 1 in Table 2. (a) Total run (including model run and DA
algorithms run). (b) DA algorithms (including GSI and EnKF) run. (c) GSI run. (d) EnKF run.
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Figure 14. The same as in Fig. 13 but from experiment set 2 in Table 2.

demonstrates the correctness of DAFCC1 in accelerating the
DA and WRF-GSI/EnKF (Fig. 16).

The performance speedups observed from Figs. 11–14 re-
sult mainly from the significant decrease in I/O accesses. Al-
though the online WRF-GSI/EnKF still has to access the ob-
servation prior files (Sect. 4.1.1 and Fig. 8b), most I/O ac-
cesses correspond to the model ensemble background files
and model ensemble analysis files, and these I/O accesses
have been eliminated by DAFCC1 (Table 3). Moreover, more
I/O accesses can be saved under higher-resolution or more
ensemble members.

We note that the execution time of the offline GSI in
Fig. 13c increases when using more ensemble members. This
is reasonable because more ensemble members introduce
more I/O accesses, as shown in Table 3. We also note that the
execution time of the offline and online EnKF in Figs. 13d
and 14 increases when using more ensemble members. This
is because the current parallel version of EnKF does not
achieve good scaling performance, and thus longer execu-
tion times can be observed when EnKF uses more processor
cores.

5.4 Correctness in developing a weakly coupled
ensemble DA system

We have successfully run the full example DA system with
10 ensemble members, which enables us to investigate the
model fields before and after DA. We find that changes to the
atmospheric fields resulting from DA can be observed: for
example, the bias regarding T is slightly decreased and the
bias regarding UV is more obviously decreased after using
DA, as shown in Fig. 17.

Changes to the atmospheric fields predicted based on the
initial fields updated with the atmospheric analyses can also
be observed (e.g., the fields U and V in Fig. 18). Although
only atmospheric analyses are computed currently, the model
coupling in the weakly coupled DA system makes ocean and
wave fields become impacted by the atmospheric analyses,
and therefore changes to the ocean and wave fields can be ob-
served in a prediction (e.g., the fields SST and HS in Fig. 18).
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Figure 15. The same as in Fig. 13 but from experiment set 3 in Table 2.

Table 3. I/O access statistics corresponding to WRF-GSI/EnKF.

Horizontal Number of Number of Total I/O Number of model Total I/O accesses to
resolution ensemble observation accesses to ensemble background model ensemble background

members prior files observation priors & analysis files & analysis files

15 km 5 12 0.11 GB 324 129.13 GB
15 km 10 22 0.21 GB 624 251.30 GB
15 km 15 32 0.30 GB 924 373.48 GB
15 km 20 42 0.39 GB 1224 495.65 GB
30 km 10 22 0.18 GB 624 62.86 GB
45 km 10 22 0.17 GB 624 27.96 GB

6 Conclusions and discussion

In this paper, we propose a new common, flexible and effi-
cient framework for weakly coupled ensemble data assimi-
lation based on C-Coupler2.0, DAFCC1. It provides simple

APIs and a configuration file format to enable users to con-
veniently integrate a DA method into a model as a procedure
that can be directly called by the model, while still guarantee-
ing the independence of configuration and compilation sys-
tems between the model and the DA method. The example
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Figure 16. The same as in Fig. 13 but from experiment set 4 in Table 2.

Figure 17. Total bias of assimilated variables relative to corresponding observations before and after DA for (a) T and (b) UV at each DA
time from the EnKF standard output file. The dotted lines indicate the bias of assimilated variables before DA, and the solid lines indicate the
bias of assimilated variables after DA. Blue lines are the bias in the area of 0–25◦ N, and orange lines are the bias in the area of 25–50◦ N.

Geosci. Model Dev., 14, 2635–2657, 2021 https://doi.org/10.5194/gmd-14-2635-2021



C. Sun et al.: Weakly coupled ensemble data assimilation based on C-Coupler2.0 2653

Figure 18. Simulation results of FIO-AOW (at 06:00 UTC on 3 June 2016) about the fields of meridional wind (U ; the first column) and
zonal wind (V ; the second column) produced by WRF, sea surface temperature (SST; the third column) produced by POM, and sea surface
significant wave height (HS; the fourth column) produced by MASNUM. The first row shows the results of the full example DA system
predicted since 00:00 UTC on 3 June, based on the DA experimental setup in Sect. 5.1, the second row shows the results without DA, and
the third row is the corresponding differences.

weakly coupled ensemble DA system in Sect. 4 and the eval-
uations in Sect. 5 demonstrate the correctness of DAFCC1 in
both developing a weakly coupled ensemble DA system and
accelerating an offline DA system. The development of a DA
system that only employs a single model run but not an en-
semble run can also benefit from the advantages of DAFCC1,
while the functionality of data exchanges will be automati-
cally simplified without generating ensemble-set component
models for saving extra overhead.

DAFCC1 is able to automatically handle data exchanges
between a model ensemble and a DA algorithm because
its design and implementation significantly benefit from C-
Coupler2.0, which already has the functionalities of auto-
matic coupling generation and automatic data exchanges be-
tween different component models or within the same com-
ponent model. DAFCC1 will therefore be an important func-
tionality of the next generation of C-Coupler (C-Coupler3)
that is planned to be released no later than 2022. Although
the example ensemble DA system of FIO-AOW developed
in this work only computes atmospheric analyses currently,
the future work similar to adapting GSI/EnKF to DAFCC1
can be conducted to further enable the computation of ocean

or wave analyses. Moreover, we have considered software
extendibility when designing and implementing DAFCC1,
which will enable us to conveniently achieve upgrades either
for strongly coupled ensemble DA systems or for more types
of data exchange operations in the future. As shown in Fig. 8,
the I/O accesses to the observation prior files for the data ex-
changes between DA algorithms are still retained after us-
ing DAFCC1. Although they are not currently a performance
bottleneck (Table 3), we will investigate how to avoid these
types of I/O accesses when further upgrading DAFCC1.

Regarding the evaluations in Sect. 5, we can only use at
most 3200 processor cores, which limits the maximum num-
ber of cores per ensemble member. Consequently, we use
relatively coarse resolutions of WRF and FIO-AOW. How-
ever, the results in Fig. 16 from the experiment set 4 in Ta-
ble 2 indicate that DAFCC1 will also obviously accelerate
the DA system when using a finer resolution and more pro-
cessor cores, because it will also significantly decrease I/O
accesses. DAFCC1 can tackle the technical challenges in de-
veloping or accelerating a DA system but cannot contribute
to improvements in simulation results that generally depend
on scientific settings that must be determined in the research
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environment (e.g., the DA algorithm configuration, the infla-
tion factor, localization settings, initial states of the model en-
semble run). Consequently, we did not examine the improve-
ments in simulation results resulting from the full example
DA system based on various variables in Sect. 5.4 but only
made a simple comparison of simulation results, demonstrat-
ing that the full example DA system can successfully run and
produce simulation results.

The offline implementation of a DA system that relies on
disk files and restart functionalities of models and DA algo-
rithms can be a robust strategy when it comes to massively
parallel computing where the risk of random task failures
generally increases with more processor cores being used by
a task because a failed task that corresponds to an ensemble
member can be resumed from the corresponding restart files.
The online implementation that unifies all ensemble mem-
bers into a task enables us to significantly increase the num-
ber of cores used by a task. At the same time as enlarging the
risk of random task failures, the online implementation can
decrease such risks because it can significantly reduce disk
file accesses that are generally an important source of task
failures. The robustness of an online implementation can be
further improved through developing the restart capability of
the DA system based on the restart capabilities of the model
and C-Coupler2, while users are enabled to flexibly set the
restart file writing frequency for the online implementation,
which can be lower than the corresponding frequency for an
online implementation generally determined by observation
data frequencies. Moreover, the impact of the overhead of
writing restart files in an online implementation can be fur-
ther decreased via asynchronous I/O support.

Code availability. The source code of DAFCC1 can be viewed via
https://doi.org/10.5281/zenodo.3739729 (Sun, 2020a) (please con-
tact us for authorization before using DAFCC1 for developing a sys-
tem). The original source code and scripts corresponding to WRF
and GSI/EnKF can be download from https://www2.mmm.ucar.
edu/wrf/users/download/get_source.html (last access: 7 May 2021,
Skamarock et al., 2019) and https://dtcenter.org/com-GSI/users/
downloads/index.php (last access: 15 April 2020, Shao et al., 2016),
respectively. For the source code of FIO-AOW, please contact the
authors of (Zhao et al., 2017; Wang et al., 2018). The additional
code, configurations, scripts and guidelines for developing and run-
ning the example weakly coupled ensemble DA system can also
be download from https://doi.org/10.5281/zenodo.3774710 (Sun,
2020b).
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