Articles | Volume 14, issue 5
Geosci. Model Dev., 14, 2289–2316, 2021
https://doi.org/10.5194/gmd-14-2289-2021
Geosci. Model Dev., 14, 2289–2316, 2021
https://doi.org/10.5194/gmd-14-2289-2021
Development and technical paper
03 May 2021
Development and technical paper | 03 May 2021

Extending legacy climate models by adaptive mesh refinement for single-component tracer transport: a case study with ECHAM6-HAMMOZ (ECHAM6.3-HAM2.3-MOZ1.0)

Yumeng Chen et al.

Related authors

Novel Arctic sea ice data assimilation combining ensemble Kalman filter with a Lagrangian sea ice model
Sukun Cheng, Yumeng Chen, Ali Aydoğdu, Laurent Bertino, Alberto Carrassi, Pierre Rampal, and Christopher K. R. T. Jones
EGUsphere, https://doi.org/10.5194/egusphere-2022-627,https://doi.org/10.5194/egusphere-2022-627, 2022
Short summary
Inferring the instability of a dynamical system from the skill of data assimilation exercises
Yumeng Chen, Alberto Carrassi, and Valerio Lucarini
Nonlin. Processes Geophys., 28, 633–649, https://doi.org/10.5194/npg-28-633-2021,https://doi.org/10.5194/npg-28-633-2021, 2021
Short summary

Related subject area

Numerical methods
A Bayesian data assimilation framework for lake 3D hydrodynamic models with a physics-preserving particle filtering method using SPUX-MITgcm v1
Artur Safin, Damien Bouffard, Firat Ozdemir, Cintia L. Ramón, James Runnalls, Fotis Georgatos, Camille Minaudo, and Jonas Šukys
Geosci. Model Dev., 15, 7715–7730, https://doi.org/10.5194/gmd-15-7715-2022,https://doi.org/10.5194/gmd-15-7715-2022, 2022
Short summary
A fast, single-iteration ensemble Kalman smoother for sequential data assimilation
Colin Grudzien and Marc Bocquet
Geosci. Model Dev., 15, 7641–7681, https://doi.org/10.5194/gmd-15-7641-2022,https://doi.org/10.5194/gmd-15-7641-2022, 2022
Short summary
Characterizing uncertainties of Earth system modeling with heterogeneous many-core architecture computing
Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Lixin Wu, Dexun Chen, Yang Gao, Zhiqiang Wei, Dongning Jia, and Xiaopei Lin
Geosci. Model Dev., 15, 6695–6708, https://doi.org/10.5194/gmd-15-6695-2022,https://doi.org/10.5194/gmd-15-6695-2022, 2022
Short summary
Metrics for Intercomparison of Remapping Algorithms (MIRA) protocol applied to Earth system models
Vijay S. Mahadevan, Jorge E. Guerra, Xiangmin Jiao, Paul Kuberry, Yipeng Li, Paul Ullrich, David Marsico, Robert Jacob, Pavel Bochev, and Philip Jones
Geosci. Model Dev., 15, 6601–6635, https://doi.org/10.5194/gmd-15-6601-2022,https://doi.org/10.5194/gmd-15-6601-2022, 2022
Short summary
Impact of the numerical solution approach of a plant hydrodynamic model (v0.1) on vegetation dynamics
Yilin Fang, L. Ruby Leung, Ryan Knox, Charlie Koven, and Ben Bond-Lamberty
Geosci. Model Dev., 15, 6385–6398, https://doi.org/10.5194/gmd-15-6385-2022,https://doi.org/10.5194/gmd-15-6385-2022, 2022
Short summary

Cited articles

Becker, R. and Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer., 10, 1–102, 2001. a
Behrens, J.: An adaptive semi-Lagrangian advection scheme and its parallelization, Mon. Weather Rev., 124, 2386–2395, 1996. a
Behrens, J.: Data Structures for Computational Efficiency, Springer Berlin Heidelberg, Berlin, Heidelberg, 49–69, https://doi.org/10.1007/3-540-33383-5_4, 2006a. a
Behrens, J.: Adaptive atmospheric modeling: key techniques in grid generation, data structures, and numerical operations with applications, vol. 207, Lecture Notes in Computational Science and Engineering, Springer-Verlag Berlin Heidelberg, 2006b. a
Behrens, J., Dethloff, K., Hiller, W., and Rinke, A.: Evolution of Small-Scale Filaments in an Adaptive Advection Model for Idealized Tracer Transport, Mon. Weather Rev., 128, 2976–2982, 2000. a, b
Download
Short summary
Mesh adaptivity can reduce overall model error by only refining meshes in specific areas where it us necessary in the runtime. Here we suggest a way to integrate mesh adaptivity into an existing Earth system model, ECHAM6, without having to redesign the implementation from scratch. We show that while the additional computational effort is manageable, the error can be reduced compared to a low-resolution standard model using an idealized test and relatively realistic dust transport tests.