Articles | Volume 13, issue 11
https://doi.org/10.5194/gmd-13-5833-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-5833-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geospatial input data for the PALM model system 6.0: model requirements, data sources and processing
Deutsches Zentrum für Luft- und Raumfahrt, Earth Observation Center, Land Surface Dynamics, Oberpfaffenhofen, Germany
Cornelia Burmeister
GEO-NET Umweltconsulting GmbH, Hanover, Germany
Farah Kanani-Sühring
Institute of Meteorology and Climatology, Leibniz
University Hannover, Hanover, Germany
Harz Energie GmbH & Co. KG, Goslar, Germany
Björn Maronga
Institute of Meteorology and Climatology, Leibniz
University Hannover, Hanover, Germany
Geophysical Institute, University of Bergen, Bergen, Norway
Dirk Pavlik
GEO-NET Umweltconsulting GmbH, Hanover, Germany
Matthias Sühring
Institute of Meteorology and Climatology, Leibniz
University Hannover, Hanover, Germany
Julian Zeidler
Deutsches Zentrum für Luft- und Raumfahrt, Earth Observation Center, Land Surface Dynamics, Oberpfaffenhofen, Germany
Thomas Esch
Deutsches Zentrum für Luft- und Raumfahrt, Earth Observation Center, Land Surface Dynamics, Oberpfaffenhofen, Germany
Related authors
No articles found.
Sasu Karttunen, Matthias Sühring, Ewan O'Connor, and Leena Järvi
Geosci. Model Dev., 18, 5725–5757, https://doi.org/10.5194/gmd-18-5725-2025, https://doi.org/10.5194/gmd-18-5725-2025, 2025
Short summary
Short summary
This paper presents PALM-SLUrb, a single-layer urban canopy model for the PALM model system, designed to simulate urban–atmosphere interactions without resolving flow around individual buildings. The model is described in detail and evaluated against grid-resolved urban canopy simulations, demonstrating its ability to model urban surfaces accurately. By bridging the gap between computational efficiency and physical detail, PALM-SLUrb broadens PALM's potential for urban climate research.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Gina C. Jozef, Robert Klingel, John J. Cassano, Björn Maronga, Gijs de Boer, Sandro Dahlke, and Christopher J. Cox
Earth Syst. Sci. Data, 15, 4983–4995, https://doi.org/10.5194/essd-15-4983-2023, https://doi.org/10.5194/essd-15-4983-2023, 2023
Short summary
Short summary
Observations from the MOSAiC expedition relating to lower-atmospheric temperature, wind, stability, moisture, and surface radiation budget from radiosondes, a meteorological tower, radiation station, and ceilometer were compiled to create a dataset which describes the thermodynamic and kinematic state of the central Arctic lower atmosphere between October 2019 and September 2020. This paper describes the methods used to develop this lower-atmospheric properties dataset.
Sreenath Paleri, Luise Wanner, Matthias Sühring, Ankur Desai, and Matthias Mauder
EGUsphere, https://doi.org/10.5194/egusphere-2023-1721, https://doi.org/10.5194/egusphere-2023-1721, 2023
Preprint archived
Short summary
Short summary
We present a description and evaluation of numerical simulations of field experiment days during the CHEESEHEAD19 field campaign, conducted over a heterogeneous forested domain in Northern Wisconsin, USA. Diurnal simulations, informed and constrained by field measurements for two days during the summer and autumn were performed. The model could simulate near surface time series and profiles of atmospheric state variables and fluxes that matched relatively well with observations.
Mohamed H. Salim, Sebastian Schubert, Jaroslav Resler, Pavel Krč, Björn Maronga, Farah Kanani-Sühring, Matthias Sühring, and Christoph Schneider
Geosci. Model Dev., 15, 145–171, https://doi.org/10.5194/gmd-15-145-2022, https://doi.org/10.5194/gmd-15-145-2022, 2022
Short summary
Short summary
Radiative transfer processes are the main energy transport mechanism in urban areas which influence the surface energy budget and drive local convection. We show here the importance of each process to help modellers decide on how much detail they should include in their models to parameterize radiative transfer in urban areas. We showed how the flow field may change in response to these processes and the essential processes needed to assure acceptable quality of the numerical simulations.
Ian Boutle, Wayne Angevine, Jian-Wen Bao, Thierry Bergot, Ritthik Bhattacharya, Andreas Bott, Leo Ducongé, Richard Forbes, Tobias Goecke, Evelyn Grell, Adrian Hill, Adele L. Igel, Innocent Kudzotsa, Christine Lac, Bjorn Maronga, Sami Romakkaniemi, Juerg Schmidli, Johannes Schwenkel, Gert-Jan Steeneveld, and Benoît Vié
Atmos. Chem. Phys., 22, 319–333, https://doi.org/10.5194/acp-22-319-2022, https://doi.org/10.5194/acp-22-319-2022, 2022
Short summary
Short summary
Fog forecasting is one of the biggest problems for numerical weather prediction. By comparing many models used for fog forecasting with others used for fog research, we hoped to help guide forecast improvements. We show some key processes that, if improved, will help improve fog forecasting, such as how water is deposited on the ground. We also showed that research models were not themselves a suitable baseline for comparison, and we discuss what future observations are required to improve them.
Stefan Metzger, David Durden, Sreenath Paleri, Matthias Sühring, Brian J. Butterworth, Christopher Florian, Matthias Mauder, David M. Plummer, Luise Wanner, Ke Xu, and Ankur R. Desai
Atmos. Meas. Tech., 14, 6929–6954, https://doi.org/10.5194/amt-14-6929-2021, https://doi.org/10.5194/amt-14-6929-2021, 2021
Short summary
Short summary
The key points are the following. (i) Integrative observing system design can multiply the information gain of surface–atmosphere field measurements. (ii) Catalyzing numerical simulations and first-principles machine learning open up observing system simulation experiments to novel applications. (iii) Use cases include natural climate solutions, emission inventory validation, urban air quality, and industry leak detection.
Eckhard Kadasch, Matthias Sühring, Tobias Gronemeier, and Siegfried Raasch
Geosci. Model Dev., 14, 5435–5465, https://doi.org/10.5194/gmd-14-5435-2021, https://doi.org/10.5194/gmd-14-5435-2021, 2021
Short summary
Short summary
In this paper, we provide a technical description of a newly developed interface for coupling the PALM model system 6.0 to the weather prediction model COSMO. The interface allows users of PALM to simulate the detailed atmospheric flow for relatively small regions of tens of kilometres under specific weather conditions, for instance, periods around observation campaigns or extreme weather situations. We demonstrate the interface using a benchmark simulation.
Katrin Frieda Gehrke, Matthias Sühring, and Björn Maronga
Geosci. Model Dev., 14, 5307–5329, https://doi.org/10.5194/gmd-14-5307-2021, https://doi.org/10.5194/gmd-14-5307-2021, 2021
Jaroslav Resler, Kryštof Eben, Jan Geletič, Pavel Krč, Martin Rosecký, Matthias Sühring, Michal Belda, Vladimír Fuka, Tomáš Halenka, Peter Huszár, Jan Karlický, Nina Benešová, Jana Ďoubalová, Kateřina Honzáková, Josef Keder, Šárka Nápravníková, and Ondřej Vlček
Geosci. Model Dev., 14, 4797–4842, https://doi.org/10.5194/gmd-14-4797-2021, https://doi.org/10.5194/gmd-14-4797-2021, 2021
Short summary
Short summary
We describe validation of the PALM model v6.0 against measurements collected during two observational campaigns in Dejvice, Prague. The study focuses on the evaluation of the newly developed or improved radiative and energy balance modules in PALM related to urban modelling. In addition to the energy-related quantities, it also evaluates air flow and air quality under street canyon conditions.
Michal Belda, Jaroslav Resler, Jan Geletič, Pavel Krč, Björn Maronga, Matthias Sühring, Mona Kurppa, Farah Kanani-Sühring, Vladimír Fuka, Kryštof Eben, Nina Benešová, and Mikko Auvinen
Geosci. Model Dev., 14, 4443–4464, https://doi.org/10.5194/gmd-14-4443-2021, https://doi.org/10.5194/gmd-14-4443-2021, 2021
Short summary
Short summary
The analysis summarizes how sensitive the modelling of urban environment is to changes in physical parameters describing the city (e.g. reflectivity of surfaces) and to several heat island mitigation scenarios in a city quarter in Prague, Czech Republic. We used the large-eddy simulation modelling system PALM 6.0. Surface parameters connected to radiation show the highest sensitivity in this configuration. For heat island mitigation, urban vegetation is shown to be the most effective measure.
Jens Pfafferott, Sascha Rißmann, Matthias Sühring, Farah Kanani-Sühring, and Björn Maronga
Geosci. Model Dev., 14, 3511–3519, https://doi.org/10.5194/gmd-14-3511-2021, https://doi.org/10.5194/gmd-14-3511-2021, 2021
Short summary
Short summary
The building model is integrated via an urban surface model into the urban climate model.
There is a strong interaction between the built environment and the urban climate.
According to the building energy concept, the energy demand results in a waste heat; this is directly transferred to the urban environment.
The impact of buildings on the urban climate is defined by different physical building parameters with different technical facilities for ventilation, heating and cooling.
Tobias Gronemeier, Kerstin Surm, Frank Harms, Bernd Leitl, Björn Maronga, and Siegfried Raasch
Geosci. Model Dev., 14, 3317–3333, https://doi.org/10.5194/gmd-14-3317-2021, https://doi.org/10.5194/gmd-14-3317-2021, 2021
Short summary
Short summary
We demonstrate the capability of the PALM model system version 6.0 to simulate urban boundary layers. The studied situation includes a real-world building setup of the HafenCity area in Hamburg, Germany. We evaluate the simulation results against wind-tunnel measurements utilizing PALM's virtual measurement module. The comparison reveals an overall high agreement between simulation results and wind-tunnel measurements including mean wind speed and direction as well as turbulence statistics.
Antti Hellsten, Klaus Ketelsen, Matthias Sühring, Mikko Auvinen, Björn Maronga, Christoph Knigge, Fotios Barmpas, Georgios Tsegas, Nicolas Moussiopoulos, and Siegfried Raasch
Geosci. Model Dev., 14, 3185–3214, https://doi.org/10.5194/gmd-14-3185-2021, https://doi.org/10.5194/gmd-14-3185-2021, 2021
Short summary
Short summary
Large-eddy simulation (LES) of the urban atmospheric boundary layer involves a large separation of turbulent scales, leading to prohibitive computational costs. An online LES–LES nesting scheme is implemented into the PALM model system 6.0 to overcome this problem. Test results show that the accuracy within the high-resolution nest domains approach the non-nested high-resolution reference results. The nesting can reduce the CPU by time up to 80 % compared to the fine-resolution reference runs.
Pavel Krč, Jaroslav Resler, Matthias Sühring, Sebastian Schubert, Mohamed H. Salim, and Vladimír Fuka
Geosci. Model Dev., 14, 3095–3120, https://doi.org/10.5194/gmd-14-3095-2021, https://doi.org/10.5194/gmd-14-3095-2021, 2021
Short summary
Short summary
The adverse effects of an urban environment, e.g. heat stress and air pollution, pose a risk to health and well-being. Precise modelling of the urban climate is crucial to mitigate these effects. Conventional atmospheric models are inadequate for modelling the complex structures of the urban environment; in particular, they lack a 3-D model of radiation and its interaction with surfaces and the plant canopy. The new RTM simulates these processes within the PALM-4U urban climate model.
Basit Khan, Sabine Banzhaf, Edward C. Chan, Renate Forkel, Farah Kanani-Sühring, Klaus Ketelsen, Mona Kurppa, Björn Maronga, Matthias Mauder, Siegfried Raasch, Emmanuele Russo, Martijn Schaap, and Matthias Sühring
Geosci. Model Dev., 14, 1171–1193, https://doi.org/10.5194/gmd-14-1171-2021, https://doi.org/10.5194/gmd-14-1171-2021, 2021
Short summary
Short summary
An atmospheric chemistry model has been implemented in the microscale PALM model system 6.0. This article provides a detailed description of the model, its structure, input requirements, various features and limitations. Several pre-compiled ready-to-use chemical mechanisms are included in the chemistry model code; however, users can also easily implement other mechanisms. A case study is presented to demonstrate the application of the new chemistry model in the urban environment.
Cited articles
Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der
Bundesrepublik Deutschland: 3D-Gebäudemodelle LoD1: Produktblatt, available at:
http://www.adv-online.de/AdV-Produkte/Standards-und-Produktblaetter/Produktblaetter/binarywriterservlet?imgUid=fbe60187-4fe3-2b41-6ad4-1fd3072e13d6&uBasVariant=11111111-1111-1111-1111-111111111111 (last access: 30 August 2020),
2019a. a
Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der
Bundesrepublik Deutschland: 3D-Gebäudemodelle LoD2: Produktblatt, available at:
http://www.adv-online.de/AdV-Produkte/Standards-und-Produktblaetter/binarywriterservlet?imgUid=e9e60187-4fe3-2b41-6ad4-1fd3072e13d6&uBasVariant=11111111-1111-1111-1111-111111111111 (last access: 30 August 2020),
2019b. a
Baghdadi, N. and Zribi, M.: Optical remote sensing of land surfaces:
Techniques and methods, Remote Sensing Observations of Continential Surfaces
Set, Elsevier and ISTE Press, Oxford and London,
https://doi.org/10.1016/C2015-0-01220-5, 2016. a
Belda, M., Resler, J., Geletič, J., Krč, P., Maronga, B., Sühring, M., Kurppa, M., Kanani-Sühring, F., Fuka, V., Eben, K., Benešová, N., and Auvinen, M.: Sensitivity analysis of the PALM model system 6.0 in the urban environment, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-126, in review, 2020. a, b
Bocher, E., Petit, G., Bernard, J., and Palominos, S.: A geoprocessing
framework to compute urban indicators: The MApUCE tools chain, Urban Climate,
24, 153–174, https://doi.org/10.1016/j.uclim.2018.01.008,
2018. a, b, c
Bohrer, G., Wolosin, M., Brady, R., and Avissar, R.: A virtual canopy generator
(V-CaGe) for modelling complex heterogeneous forest canopies at high
resolution, Tellus B, 59, 566–576, https://doi.org/10.1111/j.1600-0889.2007.00253.x,
2007. a
Ching, J., Mills, G., Bechtel, B., See, L., Feddema, J., Wang, X., Ren, C.,
Brousse, O., Martilli, A., Neophytou, M., Mouzourides, P., Stewart, I.,
Hanna, A., Ng, E., Foley, M., Alexander, P., Aliaga, D., Niyogi, D.,
Shreevastava, A., Bhalachandran, P., Masson, V., Hidalgo, J., Fung, J.,
Andrade, M., Baklanov, A., Dai, W., Milcinski, G., Demuzere, M., Brunsell,
N., Pesaresi, M., Miao, S., Mu, Q., Chen, F., and Theeuwes, N.: WUDAPT: An
Urban Weather, Climate, and Environmental Modeling Infrastructure for the
Anthropocene, B. Am. Meteorol. Soc., 99, 1907–1924,
https://doi.org/10.1175/BAMS-D-16-0236.1, 2018. a, b
Esch, T., Üreyen, S., Zeidler, J., Metz–Marconcini, A., Hirner, A., Asamer,
H., Tum, M., Böttcher, M., Kuchar, S., Svaton, V., and Marconcini, M.:
Exploiting big earth data from space – first experiences with the timescan
processing chain, Big Earth Data, 2, 36–55,
https://doi.org/10.1080/20964471.2018.1433790, 2018. a
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.:
The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007. a
Fassnacht, F. E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M.,
Waser, L. T., Straub, C., and Ghosh, A.: Review of studies on tree species
classification from remotely sensed data, Remote Sens. Environ., 186,
64–87, https://doi.org/10.1016/j.rse.2016.08.013, 2016. a
FLL: Guideline for the planning, execution and upkeep of green-roof sites,
Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau eV, Bonn, 2002. a
Fröhlich, D. and Matzarakis, A.: Calculating human thermal comfort and thermal stress in the PALM model system 6.0, Geosci. Model Dev., 13, 3055–3065, https://doi.org/10.5194/gmd-13-3055-2020, 2020. a
Gehrke, K. F., Sühring, M., and Maronga, B.: Modeling of land-surface interactions in the PALM model system 6.0: Land surface model description, first evaluation, and sensitivity to model parameters, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-197, in review, 2020. a
Graser, A., Straub, M., and Dragaschnig, M.: Is OSM Good Enough for Vehicle
Routing? A Study Comparing Street Networks in Vienna, in: Progress in
Location-Based Services 2014, edited by: Gartner, G. and Huang, H., 3–17,
Springer International Publishing, Cham,
https://doi.org/10.1007/978-3-319-11879-6_1, 2015. a
Gronemeier, T. and Sühring, M.: On the effects of lateral openings on
courtyard ventilation and pollution – a large-eddy simulation study,
Atmosphere-Basel, 10, 63, https://doi.org/10.3390/atmos10020063, 2019. a
Haklay, M.: How Good is Volunteered Geographical Information? A Comparative
Study of OpenStreetMap and Ordnance Survey Datasets, Environ. Plann.
B, 37, 682–703, https://doi.org/10.1068/b35097, 2010. a
Kadasch, E., Sühring, M., Gronemeier, T., and Raasch, S.: Mesoscale nesting
interface of the PALM model system 6.0, Geosci. Model Dev. Discuss., submitted, 2020. a
Kanani-Sühring, F. and Raasch, S.: Spatial Variability of Scalar
Concentrations and Fluxes Downstream of a Clearing-to-Forest Transition: A
Large-Eddy Simulation Study, Bound.-Lay. Meteorol., 155, 1–27,
https://doi.org/10.1007/s10546-014-9986-3, 2015. a
Khan, B., Banzhaf, S., Chan, E. C., Forkel, R., Kanani-Sühring, F., Ketelsen, K., Kurppa, M., Maronga, B., Mauder, M., Raasch, S., Russo, E., Schaap, M., and Sühring, M.: Development of an atmospheric chemistry model coupled to the PALM model system 6.0: Implementation and first applications, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-286, in review, 2020. a
Khatami, R., Mountrakis, G., and Stehman, S. V.: A meta-analysis of remote
sensing research on supervised pixel-based land-cover image classification
processes: General guidelines for practitioners and future research, Remote
Sens. Environ., 177, 89–100, https://doi.org/10.1016/j.rse.2016.02.028, 2016. a
Krč, P., Resler, J., Sühring, M., Schubert, S., Salim, M. H., and Fuka, V.: Radiative Transfer Model 3.0 integrated into the PALM model system 6.0, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-168, in review, 2020. a
Kurppa, M., Hellsten, A., Auvinen, M., Raasch, S., Vesala, T., and Järvi,
L.: Ventilation and Air Quality in City Blocks Using Large-Eddy
Simulation—Urban Planning Perspective, Atmosphere-Basel., 9, 65,
https://doi.org/10.3390/atmos9020065, 2018. a
Kurppa, M., Hellsten, A., Roldin, P., Kokkola, H., Tonttila, J., Auvinen, M., Kent, C., Kumar, P., Maronga, B., and Järvi, L.: Implementation of the sectional aerosol module SALSA2.0 into the PALM model system 6.0: model development and first evaluation, Geosci. Model Dev., 12, 1403–1422, https://doi.org/10.5194/gmd-12-1403-2019, 2019. a
Lo, K. W. and Ngan, K.: Characterizing Ventilation and Exposure in Street
Canyons Using Lagrangian Particles, J. Appl. Meteorol. Climatol., 56,
1177–1194, https://doi.org/10.1175/JAMC-D-16-0168.1, 2017. a
Ma, S., Zhou, Y., Gowda, P. H., Dong, J., Zhang, G., Kakani, V. G., Wagle, P.,
Chen, L., Flynn, K. C., and Jiang, W.: Application of the water-related
spectral reflectance indices: A review, Ecol. Indic., 98, 68–79,
https://doi.org/10.1016/j.ecolind.2018.10.049, 2019. a
Markkanen, T., Rannik, Ü., Marcolla, B., Cescatt, A., and Vesala, T.:
Footprints and fetches for fluxes over forest canopies with varying structure
and density, Bound.-Lay. Meteorol., 106, 437–459, 2003. a
Maronga, B. et al.: Dataset: PALM 6.0 r3668, https://doi.org/10.25835/0041607, 2019. a
Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., Fuka, V., Gehrke, K. F., Geletič, J., Giersch, S., Gronemeier, T., Groß, G., Heldens, W., Hellsten, A., Hoffmann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ketelsen, K., Khan, B. A., Knigge, C., Knoop, H., Krč, P., Kurppa, M., Maamari, H., Matzarakis, A., Mauder, M., Pallasch, M., Pavlik, D., Pfafferott, J., Resler, J., Rissmann, S., Russo, E., Salim, M., Schrempf, M., Schwenkel, J., Seckmeyer, G., Schubert, S., Sühring, M., von Tils, R., Vollmer, L., Ward, S., Witha, B., Wurps, H., Zeidler, J., and Raasch, S.: Overview of the PALM model system 6.0, Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, 2020. a, b, c, d, e, f, g, h, i
Masson, V., Heldens, W., Bocher, E., Bonhomme, M., Bucher, B., Burmeister, C.,
de Munck, C., Esch, T., Hidalgo, J., Kanani-Sühring, F., Kwok, Y.-T.,
Lemonsu, A., Lévy, J.-P., Maronga, B., Pavlik, D., Petit, G., See, L.,
Schoetter, R., Tornay, N., Votsis, A., and Zeidler, J.: City-descriptive
input data for urban climate models: Model requirements, data sources and
challenges, Urban Climate, 31, 100536, https://doi.org/10.1016/j.uclim.2019.100536,
2020. a
Quinn, S. and Bull, F.: Understanding Threats to Crowdsourced Geographic Data
Quality Through a Study of OpenStreetMap Contributor Bans., in: Geospatial
information system use in public organizations, Routledge, New York, 2019. a
Resler, J., Krč, P., Belda, M., Juruš, P., Benešová, N., Lopata, J., Vlček, O., Damašková, D., Eben, K., Derbek, P., Maronga, B., and Kanani-Sühring, F.: PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model, Geosci. Model Dev., 10, 3635–3659, https://doi.org/10.5194/gmd-10-3635-2017, 2017. a, b, c
Resler, J., Eben, K., Geletič, J., Krč, P., Rosecký, M., Sühring, M., Belda, M., Fuka, V., Halenka, T., Huszár, P., Karlický, J., Benešová, N., Ďoubalová, J., Honzáková, K., Keder, J., Nápravníková, Š., and Vlček, O.: Validation of the PALM model system 6.0 in real urban environment; case study of Prague-Dejvice, Czech Republic, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-175, in review, 2020. a
Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Borla Tridon, D.,
Bräutigam, B., Bachmann, M., Schulze, D., Fritz, T., Huber, M., Wessel, B.,
Krieger, G., Zink, M., and Moreira, A.: Generation and performance assessment
of the global TanDEM-X digital elevation model, ISPRS J.
Photogramm., 132, 119–139,
https://doi.org/10.1016/j.isprsjprs.2017.08.008, 2017. a
Roessner, S., Segl, K., Heiden, U., and Kaufmann, H.: Automated differentiation
of urban surfaces based on airborne hyperspectral imagery, IEEE T. Geosci. Remote, 39, 1525–1532, https://doi.org/10.1109/36.934082,
2001. a
Rouse, J. W., J., Haas, R. H., Schell, J. A., and Deering, D. W.:
Monitoring Vegetation Systems in the Great Plains with Erts, vol. 351, p.
309, 1974. a
Salim, M. H., Schubert, S., Resler, J., Krč, P., Maronga, B., Kanani-Sühring, F., Sühring, M., and Schneider, C.: Importance of radiative transfer processes in urban climate models: A study based on the PALM model system 6.0, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-94, in review, 2020. a
Scherer, D., Antretter, F., Bender, S., Cortekar, J., Emeis, S., Fehrenbach,
U., Gross, G., Halbig, G., Hasse, J., Maronga, B., Raasch, S., and Scherber,
K.: Urban Climate Under Change [UC]2 A National Research Programme for
Developing a Building-Resolving Atmospheric Model for Entire City Regions,
Meteorol. Z., 28, 95–104, https://doi.org/10.1127/metz/2019/0913, 2019. a, b
Sharma, A., Woodruff, S., Budhathoki, M., Hamlet, A. F., Chen, F., and
Fernando, H. J. S.: Role of green roofs in reducing heat stress in vulnerable
urban communities–a multidisciplinary approach, Environ.
Res. Lett., 13, 094011, https://doi.org/10.1088/1748-9326/aad93c, 2018.
a
Stewart, I. and Oke, T.: Local climate zones for urban temperature studies,
B. Am. Meteorol. Soc., 93, 1879–1900,
https://doi.org/10.1175/BAMS-D-11-00019.1, 2012. a
van der Linden, S., Okujeni, A., Canters, F., Degerickx, J., Heiden, U.,
Hostert, P., Priem, F., Somers, B., and Thiel, F.: Imaging Spectroscopy of
Urban Environments, Surv. Geophys., 40, 471–488,
https://doi.org/10.1007/s10712-018-9486-y, 2019. a
Verrelst, J., Camps-Valls, G., Muñoz-Marí, J., Rivera, J. P.,
Veroustraete, F., Clevers, J. G., and Moreno, J.: Optical remote sensing and
the retrieval of terrestrial vegetation bio-geophysical properties – A
review, ISPRS J. Photogramm., 108, 273–290,
https://doi.org/10.1016/j.isprsjprs.2015.05.005, 2015. a
Wang, Q., Adiku, S., Tenhunen, J., and Granier, A.: On the relationship of NDVI
with leaf area index in a deciduous forest site, Remote Sens. Env., 94,
244–255, 2005. a
Working Committee of the Surveying Authorities of the States of the Federal
Republic of Germany: Documentation on the Modelling of Geoinformation of
Official Surveying and Mapping, available at:
http://www.adv-online.de/Publications/AFIS-ALKIS-ATKIS-Project/ (last access: 19 December 2019),
2015. a, b
Wulder, M. A., Coops, N. C., Roy, D. P., White, J. C., and Hermosilla, T.: Land
cover 2.0, Int. J. Remote Sens., 39, 4254–4284,
https://doi.org/10.1080/01431161.2018.1452075, 2018. a
Yan, W. Y., Shaker, A., and El-Ashmawy, N.: Urban land cover classification
using airborne LiDAR data: A review, Remote Sens. Environ., 158,
295–310, https://doi.org/10.1016/j.rse.2014.11.001, 2015. a
Zonato, A., Martilli, A., Di Sabatino, S., Zardi, D., and Giovannini, L.:
Evaluating the performance of a novel WUDAPT averaging technique to define
urban morphology with mesoscale models, Urban Climate, 31, 100584,
https://doi.org/10.1016/j.uclim.2020.100584, 2020. a, b
Short summary
For realistic microclimate simulations in urban areas with PALM 6.0, detailed description of surface types, buildings and vegetation is required. This paper shows how such input data sets can be derived with the example of three German cities. Various data sources are used, including remote sensing, municipal data collections and open data such as OpenStreetMap. The collection and preparation of input data sets is tedious. Future research aims therefore at semi-automated tools to support users.
For realistic microclimate simulations in urban areas with PALM 6.0, detailed description of...