Articles | Volume 13, issue 2
https://doi.org/10.5194/gmd-13-401-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-401-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ACCESS-OM2 v1.0: a global ocean–sea ice model at three resolutions
Research School of Earth Sciences, Australian National University, Canberra, Australia
ARC Centre of Excellence for Climate Extremes, Australia
Andrew McC. Hogg
Research School of Earth Sciences, Australian National University, Canberra, Australia
ARC Centre of Excellence for Climate Extremes, Australia
Nicholas Hannah
Double Precision, Sydney, Australia
Fabio Boeira Dias
ARC Centre of Excellence for Climate Extremes, Australia
CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Australia
Gary B. Brassington
Bureau of Meteorology, Melbourne, Australia
Matthew A. Chamberlain
CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
Christopher Chapman
CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
Peter Dobrohotoff
CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
Catia M. Domingues
ARC Centre of Excellence for Climate Extremes, Australia
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Australia
Earl R. Duran
Climate Change Research Centre, University of New South Wales, Sydney, Australia
Matthew H. England
ARC Centre of Excellence for Climate Extremes, Australia
Climate Change Research Centre, University of New South Wales, Sydney, Australia
Russell Fiedler
CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
Stephen M. Griffies
NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey, USA
Aidan Heerdegen
Research School of Earth Sciences, Australian National University, Canberra, Australia
ARC Centre of Excellence for Climate Extremes, Australia
Petra Heil
Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Australia
Australian Antarctic Division, Kingston, Tasmania, Australia
Ryan M. Holmes
ARC Centre of Excellence for Climate Extremes, Australia
Climate Change Research Centre, University of New South Wales, Sydney, Australia
School of Mathematics and Statistics, University of New South Wales, Sydney, Australia
Andreas Klocker
ARC Centre of Excellence for Climate Extremes, Australia
Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Australia
Simon J. Marsland
ARC Centre of Excellence for Climate Extremes, Australia
CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Australia
Adele K. Morrison
Research School of Earth Sciences, Australian National University, Canberra, Australia
ARC Centre of Excellence for Climate Extremes, Australia
James Munroe
Memorial University of Newfoundland, St John's, Canada
Maxim Nikurashin
ARC Centre of Excellence for Climate Extremes, Australia
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
Peter R. Oke
CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
Gabriela S. Pilo
ARC Centre of Excellence for Climate Extremes, Australia
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
Océane Richet
CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
Centre for Southern Hemisphere Ocean Research, Hobart, Tasmania, Australia
Abhishek Savita
ARC Centre of Excellence for Climate Extremes, Australia
CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Australia
Paul Spence
ARC Centre of Excellence for Climate Extremes, Australia
Climate Change Research Centre, University of New South Wales, Sydney, Australia
Kial D. Stewart
Research School of Earth Sciences, Australian National University, Canberra, Australia
Climate Change Research Centre, University of New South Wales, Sydney, Australia
Marshall L. Ward
NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
National Computational Infrastructure, Australian National University, Canberra, Australia
Fanghua Wu
Beijing Climate Centre, Beijing, China
Xihan Zhang
Research School of Earth Sciences, Australian National University, Canberra, Australia
ARC Centre of Excellence for Climate Extremes, Australia
Related authors
Laurie C. Menviel, Paul Spence, Andrew E. Kiss, Matthew A. Chamberlain, Hakase Hayashida, Matthew H. England, and Darryn Waugh
Biogeosciences, 20, 4413–4431, https://doi.org/10.5194/bg-20-4413-2023, https://doi.org/10.5194/bg-20-4413-2023, 2023
Short summary
Short summary
As the ocean absorbs 25% of the anthropogenic emissions of carbon, it is important to understand the impact of climate change on the flux of carbon between the ocean and the atmosphere. Here, we use a very high-resolution ocean, sea-ice, carbon cycle model to show that the capability of the Southern Ocean to uptake CO2 has decreased over the last 40 years due to a strengthening and poleward shift of the southern hemispheric westerlies. This trend is expected to continue over the coming century.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-123, https://doi.org/10.5194/gmd-2023-123, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
High resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least the same important for obtaining faithful simulations.
Hakase Hayashida, Meibing Jin, Nadja S. Steiner, Neil C. Swart, Eiji Watanabe, Russell Fiedler, Andrew McC. Hogg, Andrew E. Kiss, Richard J. Matear, and Peter G. Strutton
Geosci. Model Dev., 14, 6847–6861, https://doi.org/10.5194/gmd-14-6847-2021, https://doi.org/10.5194/gmd-14-6847-2021, 2021
Short summary
Short summary
Ice algae are tiny plants like phytoplankton but they grow within sea ice. In polar regions, both phytoplankton and ice algae are the foundation of marine ecosystems and play an important role in taking up carbon dioxide in the atmosphere. However, state-of-the-art climate models typically do not include ice algae, and therefore their role in the climate system remains unclear. This project aims to address this knowledge gap by coordinating a set of experiments using sea-ice–ocean models.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Laurie C. Menviel, Paul Spence, Andrew E. Kiss, Matthew A. Chamberlain, Hakase Hayashida, Matthew H. England, and Darryn Waugh
Biogeosciences, 20, 4413–4431, https://doi.org/10.5194/bg-20-4413-2023, https://doi.org/10.5194/bg-20-4413-2023, 2023
Short summary
Short summary
As the ocean absorbs 25% of the anthropogenic emissions of carbon, it is important to understand the impact of climate change on the flux of carbon between the ocean and the atmosphere. Here, we use a very high-resolution ocean, sea-ice, carbon cycle model to show that the capability of the Southern Ocean to uptake CO2 has decreased over the last 40 years due to a strengthening and poleward shift of the southern hemispheric westerlies. This trend is expected to continue over the coming century.
Colette Gabrielle Kerry, Moninya Roughan, Shane Keating, David Gwyther, Gary Brassington, Adil Siripitana, and Joao Marcos A. C. Souza
EGUsphere, https://doi.org/10.5194/egusphere-2023-2355, https://doi.org/10.5194/egusphere-2023-2355, 2023
Short summary
Short summary
Ocean forecasting relies on the combination of numerical models and ocean observations through data assimilation (DA). Here we assess the performance of two DA systems in a dynamic Western Boundary Current, the East Australian Current, across a common modelling and observational framework. We show that the more advanced, time-dependent method outperforms the time-independent method for forecast horizons of 5 days. This advocates the use of advanced methods for highly variable oceanic regions.
Matthew A. Chamberlain, Tilo Ziehn, and Rachel M. Law
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-146, https://doi.org/10.5194/bg-2023-146, 2023
Preprint under review for BG
Short summary
Short summary
This manuscript explores the climate processes that drive increasing global average temperatures in Zero-Emission Commitment (ZEC) simulations despite decreasing atmospheric CO2. The ACCESS-ESM1.5 shows the Southern Ocean to continue to warm locally in all ZEC simulations. In ZEC simulations that start after the emission of more than 1000 Pg of carbon, the influence of the Southern Ocean increases the global temperature.
Benoît Pasquier, Mark Holzer, Matthew A. Chamberlain, Richard J. Matear, Nathaniel L. Bindoff, and François W. Primeau
Biogeosciences, 20, 2985–3009, https://doi.org/10.5194/bg-20-2985-2023, https://doi.org/10.5194/bg-20-2985-2023, 2023
Short summary
Short summary
Modeling the ocean's carbon and oxygen cycles accurately is challenging. Parameter optimization improves the fit to observed tracers but can introduce artifacts in the biological pump. Organic-matter production and subsurface remineralization rates adjust to compensate for circulation biases, changing the pathways and timescales with which nutrients return to the surface. Circulation biases can thus strongly alter the system’s response to ecological change, even when parameters are optimized.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-123, https://doi.org/10.5194/gmd-2023-123, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
High resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least the same important for obtaining faithful simulations.
Haihan Hu, Jiechen Zhao, Petra Heil, Zhiliang Qin, Jingkai Ma, Fengming Hui, and Xiao Cheng
The Cryosphere, 17, 2231–2244, https://doi.org/10.5194/tc-17-2231-2023, https://doi.org/10.5194/tc-17-2231-2023, 2023
Short summary
Short summary
The oceanic characteristics beneath sea ice significantly affect ice growth and melting. The high-frequency and long-term observations of oceanic variables allow us to deeply investigate their diurnal and seasonal variation and evaluate their influences on sea ice evolution. The large-scale sea ice distribution and ocean circulation contributed to the seasonal variation of ocean variables, revealing the important relationship between large-scale and local phenomena.
Andrew P. Schurer, Gabriele C. Hegerl, Hugues Goosse, Massimo A. Bollasina, Matthew H. England, Michael J. Mineter, Doug M. Smith, and Simon F. B. Tett
Clim. Past, 19, 943–957, https://doi.org/10.5194/cp-19-943-2023, https://doi.org/10.5194/cp-19-943-2023, 2023
Short summary
Short summary
We adopt an existing data assimilation technique to constrain a model simulation to follow three important modes of variability, the North Atlantic Oscillation, El Niño–Southern Oscillation and the Southern Annular Mode. How it compares to the observed climate is evaluated, with improvements over simulations without data assimilation found over many regions, particularly the tropics, the North Atlantic and Europe, and discrepancies with global cooling following volcanic eruptions are reconciled.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Neil Swart, Torge Martin, Rebecca Beadling, Jia-Jia Chen, Mathew H. England, Riccardo Farneti, Stephen M. Griffies, Tore Hatterman, F. Alexander Haumann, Qian Li, John Marshall, Morven Muilwijk, Andrew G. Pauling, Ariaan Purich, Inga J. Smith, and Max Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2023-198, https://doi.org/10.5194/egusphere-2023-198, 2023
Short summary
Short summary
Current climate models typically do not include full representations icesheets. As the climate warms and the icesheets melt, they add freshwater to the ocean. This freshwater can influence climate change, for example by causing more sea-ice to form. In this paper we propose a set of experiments to test the influence of this missing meltwater from Antarctica, using multiple different climate models.
Na Li, Ruibo Lei, Petra Heil, Bin Cheng, Minghu Ding, Zhongxiang Tian, and Bingrui Li
The Cryosphere, 17, 917–937, https://doi.org/10.5194/tc-17-917-2023, https://doi.org/10.5194/tc-17-917-2023, 2023
Short summary
Short summary
The observed annual maximum landfast ice (LFI) thickness off Zhongshan (Davis) was 1.59±0.17 m (1.64±0.08 m). Larger interannual and local spatial variabilities for the seasonality of LFI were identified at Zhongshan, with the dominant influencing factors of air temperature anomaly, snow atop, local topography and wind regime, and oceanic heat flux. The variability of LFI properties across the study domain prevailed at interannual timescales, over any trend during the recent decades.
Yetang Wang, Xueying Zhang, Wentao Ning, Matthew A. Lazzara, Minghu Ding, Carleen H. Reijmer, Paul C. J. P. Smeets, Paolo Grigioni, Petra Heil, Elizabeth R. Thomas, David Mikolajczyk, Lee J. Welhouse, Linda M. Keller, Zhaosheng Zhai, Yuqi Sun, and Shugui Hou
Earth Syst. Sci. Data, 15, 411–429, https://doi.org/10.5194/essd-15-411-2023, https://doi.org/10.5194/essd-15-411-2023, 2023
Short summary
Short summary
Here we construct a new database of Antarctic automatic weather station (AWS) meteorological records, which is quality-controlled by restrictive criteria. This dataset compiled all available Antarctic AWS observations, and its resolutions are 3-hourly, daily and monthly, which is very useful for quantifying spatiotemporal variability in weather conditions. Furthermore, this compilation will be used to estimate the performance of the regional climate models or meteorological reanalysis products.
Qianjiang Xing, David Munday, Andreas Klocker, Isabel Sauermilch, and Joanne Whittaker
Clim. Past, 18, 2669–2693, https://doi.org/10.5194/cp-18-2669-2022, https://doi.org/10.5194/cp-18-2669-2022, 2022
Short summary
Short summary
A high-resolution ocean model and realistic paleo-bathymetry are applied to obtain accurate simulation results. We firstly propose that the alignment of the maximum wind stress with a deep Tasmanian Gateway and Drake Passage is a trigger for the proto-Antarctic Circumpolar Current (proto-ACC) and the cooling of the Eocene Southern Ocean. We use zonal momentum budget analysis to explore the nature of the proto-ACC and the sensitivity of its transport through gateways to doubled wind stress.
Minghu Ding, Xiaowei Zou, Qizhen Sun, Diyi Yang, Wenqian Zhang, Lingen Bian, Changgui Lu, Ian Allison, Petra Heil, and Cunde Xiao
Earth Syst. Sci. Data, 14, 5019–5035, https://doi.org/10.5194/essd-14-5019-2022, https://doi.org/10.5194/essd-14-5019-2022, 2022
Short summary
Short summary
The PANDA automatic weather station (AWS) network consists of 11 stations deployed along a transect from the coast (Zhongshan Station) to the summit of the East Antarctic Ice Sheet (Dome A). It covers the different climatic and topographic units of East Antarctica. All stations record hourly air temperature, relative humidity, air pressure, wind speed and direction at two or three heights. The PANDA AWS dataset commences from 1989 and is planned to be publicly available into the future.
Sergey Kravtsov, Ilijana Mastilovic, Andrew McC. Hogg, William K. Dewar, and Jeffrey R. Blundell
Geosci. Model Dev., 15, 7449–7469, https://doi.org/10.5194/gmd-15-7449-2022, https://doi.org/10.5194/gmd-15-7449-2022, 2022
Short summary
Short summary
Climate is a complex system whose behavior is shaped by multitudes of processes operating on widely different spatial scales and timescales. In hierarchical modeling, one goes back and forth between highly idealized process models and state-of-the-art models coupling the entire range of climate subsystems to identify specific phenomena and understand their dynamics. The present contribution highlights an intermediate climate model focussing on midlatitude ocean–atmosphere interactions.
Gustavo M. Marques, Nora Loose, Elizabeth Yankovsky, Jacob M. Steinberg, Chiung-Yin Chang, Neeraja Bhamidipati, Alistair Adcroft, Baylor Fox-Kemper, Stephen M. Griffies, Robert W. Hallberg, Malte F. Jansen, Hemant Khatri, and Laure Zanna
Geosci. Model Dev., 15, 6567–6579, https://doi.org/10.5194/gmd-15-6567-2022, https://doi.org/10.5194/gmd-15-6567-2022, 2022
Short summary
Short summary
We present an idealized ocean model configuration and a set of simulations performed using varying horizontal grid spacing. While the model domain is idealized, it resembles important geometric features of the Atlantic and Southern oceans. The simulations described here serve as a framework to effectively study mesoscale eddy dynamics, to investigate the effect of mesoscale eddies on the large-scale dynamics, and to test and evaluate eddy parameterizations.
Fengguan Gu, Qinghua Yang, Frank Kauker, Changwei Liu, Guanghua Hao, Chao-Yuan Yang, Jiping Liu, Petra Heil, Xuewei Li, and Bo Han
The Cryosphere, 16, 1873–1887, https://doi.org/10.5194/tc-16-1873-2022, https://doi.org/10.5194/tc-16-1873-2022, 2022
Short summary
Short summary
The sea ice thickness was simulated by a single-column model and compared with in situ observations obtained off Zhongshan Station in the Antarctic. It is shown that the unrealistic precipitation in the atmospheric forcing data leads to the largest bias in sea ice thickness and snow depth modeling. In addition, the increasing snow depth gradually inhibits the growth of sea ice associated with thermal blanketing by the snow.
Tian R. Tian, Alexander D. Fraser, Noriaki Kimura, Chen Zhao, and Petra Heil
The Cryosphere, 16, 1299–1314, https://doi.org/10.5194/tc-16-1299-2022, https://doi.org/10.5194/tc-16-1299-2022, 2022
Short summary
Short summary
This study presents a comprehensive validation of a satellite observational sea ice motion product in Antarctica by using drifting buoys. Two problems existing in this sea ice motion product have been noticed. After rectifying problems, we use it to investigate the impacts of satellite observational configuration and timescale on Antarctic sea ice kinematics and suggest the future improvement of satellite missions specifically designed for retrieval of sea ice motion.
Dipayan Choudhury, Laurie Menviel, Katrin J. Meissner, Nicholas K. H. Yeung, Matthew Chamberlain, and Tilo Ziehn
Clim. Past, 18, 507–523, https://doi.org/10.5194/cp-18-507-2022, https://doi.org/10.5194/cp-18-507-2022, 2022
Short summary
Short summary
We investigate the effects of a warmer climate from the Earth's paleoclimate (last interglacial) on the marine carbon cycle of the Southern Ocean using a carbon-cycle-enabled state-of-the-art climate model. We find a 150 % increase in CO2 outgassing during this period, which results from competition between higher sea surface temperatures and weaker oceanic circulation. From this we unequivocally infer that the carbon uptake by the Southern Ocean will reduce under a future warming scenario.
Joey J. Voermans, Qingxiang Liu, Aleksey Marchenko, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Takuji Waseda, Takehiko Nose, Tsubasa Kodaira, Jingkai Li, and Alexander V. Babanin
The Cryosphere, 15, 5557–5575, https://doi.org/10.5194/tc-15-5557-2021, https://doi.org/10.5194/tc-15-5557-2021, 2021
Short summary
Short summary
We have shown through field experiments that the amount of wave energy dissipated in landfast ice, sea ice attached to land, is much larger than in broken ice. By comparing our measurements against predictions of contemporary wave–ice interaction models, we determined which models can explain our observations and which cannot. Our results will improve our understanding of how waves and ice interact and how we can model such interactions to better forecast waves and ice in the polar regions.
Matthew A. Chamberlain, Peter R. Oke, Russell A. S. Fiedler, Helen M. Beggs, Gary B. Brassington, and Prasanth Divakaran
Earth Syst. Sci. Data, 13, 5663–5688, https://doi.org/10.5194/essd-13-5663-2021, https://doi.org/10.5194/essd-13-5663-2021, 2021
Short summary
Short summary
BRAN2020 is a dynamical reconstruction of the ocean, combining observations with a high-resolution global ocean model. BRAN2020 currently spans January 1993 to December 2019, assimilating in situ temperature and salinity, as well as satellite-based sea level and sea surface temperature. A new multiscale approach to data assimilation constrains the broad-scale ocean properties and turbulent mesoscale dynamics in two steps, showing closer agreement to observations than all previous versions.
Hakase Hayashida, Meibing Jin, Nadja S. Steiner, Neil C. Swart, Eiji Watanabe, Russell Fiedler, Andrew McC. Hogg, Andrew E. Kiss, Richard J. Matear, and Peter G. Strutton
Geosci. Model Dev., 14, 6847–6861, https://doi.org/10.5194/gmd-14-6847-2021, https://doi.org/10.5194/gmd-14-6847-2021, 2021
Short summary
Short summary
Ice algae are tiny plants like phytoplankton but they grow within sea ice. In polar regions, both phytoplankton and ice algae are the foundation of marine ecosystems and play an important role in taking up carbon dioxide in the atmosphere. However, state-of-the-art climate models typically do not include ice algae, and therefore their role in the climate system remains unclear. This project aims to address this knowledge gap by coordinating a set of experiments using sea-ice–ocean models.
Trevor J. McDougall, Paul M. Barker, Ryan M. Holmes, Rich Pawlowicz, Stephen M. Griffies, and Paul J. Durack
Geosci. Model Dev., 14, 6445–6466, https://doi.org/10.5194/gmd-14-6445-2021, https://doi.org/10.5194/gmd-14-6445-2021, 2021
Short summary
Short summary
We show that the way that the air–sea heat flux is treated in ocean models means that the model's temperature variable should be interpreted as being Conservative Temperature, irrespective of whether the equation of state used in an ocean model is EOS-80 or TEOS-10.
Tongwen Wu, Rucong Yu, Yixiong Lu, Weihua Jie, Yongjie Fang, Jie Zhang, Li Zhang, Xiaoge Xin, Laurent Li, Zaizhi Wang, Yiming Liu, Fang Zhang, Fanghua Wu, Min Chu, Jianglong Li, Weiping Li, Yanwu Zhang, Xueli Shi, Wenyan Zhou, Junchen Yao, Xiangwen Liu, He Zhao, Jinghui Yan, Min Wei, Wei Xue, Anning Huang, Yaocun Zhang, Yu Zhang, Qi Shu, and Aixue Hu
Geosci. Model Dev., 14, 2977–3006, https://doi.org/10.5194/gmd-14-2977-2021, https://doi.org/10.5194/gmd-14-2977-2021, 2021
Short summary
Short summary
This paper presents the high-resolution version of the Beijing Climate Center (BCC) Climate System Model, BCC-CSM2-HR, and describes its climate simulation performance including the atmospheric temperature and wind; precipitation; and the tropical climate phenomena such as TC, MJO, QBO, and ENSO. BCC-CSM2-HR is our model version contributing to the HighResMIP. We focused on its updates and differential characteristics from its predecessor, the medium-resolution version BCC-CSM2-MR.
Diana Francis, Kyle S. Mattingly, Stef Lhermitte, Marouane Temimi, and Petra Heil
The Cryosphere, 15, 2147–2165, https://doi.org/10.5194/tc-15-2147-2021, https://doi.org/10.5194/tc-15-2147-2021, 2021
Short summary
Short summary
The unexpected September 2019 calving event from the Amery Ice Shelf, the largest since 1963 and which occurred almost a decade earlier than expected, was triggered by atmospheric extremes. Explosive twin polar cyclones provided a deterministic role in this event by creating oceanward sea surface slope triggering the calving. The observed record-anomalous atmospheric conditions were promoted by blocking ridges and Antarctic-wide anomalous poleward transport of heat and moisture.
Chia-Wei Hsu, Jianjun Yin, Stephen M. Griffies, and Raphael Dussin
Geosci. Model Dev., 14, 2471–2502, https://doi.org/10.5194/gmd-14-2471-2021, https://doi.org/10.5194/gmd-14-2471-2021, 2021
Short summary
Short summary
The new surface forcing from JRA55-do (OMIP II) significantly improved the underestimated sea level trend across the entire Pacific Ocean along 10° N in the simulation forced by CORE (OMIP I). We summarize and list out the reasons for the existing sea level biases across all studied timescales as a reference for improving the sea level simulation in the future. This study on the evaluation and improvement of ocean climate models should be of broad interest to a large modeling community.
Nicholas King-Hei Yeung, Laurie Menviel, Katrin J. Meissner, Andréa S. Taschetto, Tilo Ziehn, and Matthew Chamberlain
Clim. Past, 17, 869–885, https://doi.org/10.5194/cp-17-869-2021, https://doi.org/10.5194/cp-17-869-2021, 2021
Short summary
Short summary
The Last Interglacial period (LIG) is characterised by strong orbital forcing compared to the pre-industrial period (PI). This study compares the mean climate state of the LIG to the PI as simulated by the ACCESS-ESM1.5, with a focus on the southern hemispheric monsoons, which are shown to be consistently weakened. This is associated with cooler terrestrial conditions in austral summer due to decreased insolation, and greater pressure and subsidence over land from Hadley cell strengthening.
Cameron M. O'Neill, Andrew McC. Hogg, Michael J. Ellwood, Bradley N. Opdyke, and Stephen M. Eggins
Clim. Past, 17, 171–201, https://doi.org/10.5194/cp-17-171-2021, https://doi.org/10.5194/cp-17-171-2021, 2021
Short summary
Short summary
We undertake a model–data study of the last glacial–interglacial cycle of atmospheric CO2, spanning 0–130 ka. We apply a carbon cycle box model, constrained with glacial–interglacial observations, and solve for optimal model parameter values against atmospheric and ocean proxy data. The results indicate that the last glacial drawdown in atmospheric CO2 was delivered mainly by slowing ocean circulation, lower sea surface temperatures and also increased Southern Ocean biological productivity.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Joey J. Voermans, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Aleksey Marchenko, Clarence O. Collins III, Mohammed Dabboor, Graig Sutherland, and Alexander V. Babanin
The Cryosphere, 14, 4265–4278, https://doi.org/10.5194/tc-14-4265-2020, https://doi.org/10.5194/tc-14-4265-2020, 2020
Short summary
Short summary
In this work we demonstrate the existence of an observational threshold which identifies when waves are most likely to break sea ice. This threshold is based on information from two recent field campaigns, supplemented with existing observations of sea ice break-up. We show that both field and laboratory observations tend to converge to a single quantitative threshold at which the wave-induced sea ice break-up takes place, which opens a promising avenue for operational forecasting models.
Hiroyuki Tsujino, L. Shogo Urakawa, Stephen M. Griffies, Gokhan Danabasoglu, Alistair J. Adcroft, Arthur E. Amaral, Thomas Arsouze, Mats Bentsen, Raffaele Bernardello, Claus W. Böning, Alexandra Bozec, Eric P. Chassignet, Sergey Danilov, Raphael Dussin, Eleftheria Exarchou, Pier Giuseppe Fogli, Baylor Fox-Kemper, Chuncheng Guo, Mehmet Ilicak, Doroteaciro Iovino, Who M. Kim, Nikolay Koldunov, Vladimir Lapin, Yiwen Li, Pengfei Lin, Keith Lindsay, Hailong Liu, Matthew C. Long, Yoshiki Komuro, Simon J. Marsland, Simona Masina, Aleksi Nummelin, Jan Klaus Rieck, Yohan Ruprich-Robert, Markus Scheinert, Valentina Sicardi, Dmitry Sidorenko, Tatsuo Suzuki, Hiroaki Tatebe, Qiang Wang, Stephen G. Yeager, and Zipeng Yu
Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, https://doi.org/10.5194/gmd-13-3643-2020, 2020
Short summary
Short summary
The OMIP-2 framework for global ocean–sea-ice model simulations is assessed by comparing multi-model means from 11 CMIP6-class global ocean–sea-ice models calculated separately for the OMIP-1 and OMIP-2 simulations. Many features are very similar between OMIP-1 and OMIP-2 simulations, and yet key improvements in transitioning from OMIP-1 to OMIP-2 are also identified. Thus, the present assessment justifies that future ocean–sea-ice model development and analysis studies use the OMIP-2 framework.
Vivek K. Arora, Anna Katavouta, Richard G. Williams, Chris D. Jones, Victor Brovkin, Pierre Friedlingstein, Jörg Schwinger, Laurent Bopp, Olivier Boucher, Patricia Cadule, Matthew A. Chamberlain, James R. Christian, Christine Delire, Rosie A. Fisher, Tomohiro Hajima, Tatiana Ilyina, Emilie Joetzjer, Michio Kawamiya, Charles D. Koven, John P. Krasting, Rachel M. Law, David M. Lawrence, Andrew Lenton, Keith Lindsay, Julia Pongratz, Thomas Raddatz, Roland Séférian, Kaoru Tachiiri, Jerry F. Tjiputra, Andy Wiltshire, Tongwen Wu, and Tilo Ziehn
Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, https://doi.org/10.5194/bg-17-4173-2020, 2020
Short summary
Short summary
Since the preindustrial period, land and ocean have taken up about half of the carbon emitted into the atmosphere by humans. Comparison of different earth system models with the carbon cycle allows us to assess how carbon uptake by land and ocean differs among models. This yields an estimate of uncertainty in our understanding of how land and ocean respond to increasing atmospheric CO2. This paper summarizes results from two such model intercomparison projects that use an idealized scenario.
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, https://doi.org/10.5194/bg-17-3439-2020, 2020
Short summary
Short summary
We assess 21st century projections of marine biogeochemistry in the CMIP6 Earth system models. These models represent the most up-to-date understanding of climate change. The models generally project greater surface ocean warming, acidification, subsurface deoxygenation, and euphotic nitrate reductions but lesser primary production declines than the previous generation of models. This has major implications for the impact of anthropogenic climate change on marine ecosystems.
Rui Yang, Marshall Ward, and Ben Evans
Geosci. Model Dev., 13, 1885–1902, https://doi.org/10.5194/gmd-13-1885-2020, https://doi.org/10.5194/gmd-13-1885-2020, 2020
Short summary
Short summary
Parallel I/O is implemented in the Modular Ocean Model (MOM) with optimal performance over a range of tuning parameters of model configuration, netCDF, MPI-IO and Lustre filesystem. The scalable parallel I/O performance is observed at 0.1° resolution global model, and it could achieve up to 60 times faster in write speed relative to serial single-file I/O running on 960 PEs.
Tongwen Wu, Fang Zhang, Jie Zhang, Weihua Jie, Yanwu Zhang, Fanghua Wu, Laurent Li, Jinghui Yan, Xiaohong Liu, Xiao Lu, Haiyue Tan, Lin Zhang, Jun Wang, and Aixue Hu
Geosci. Model Dev., 13, 977–1005, https://doi.org/10.5194/gmd-13-977-2020, https://doi.org/10.5194/gmd-13-977-2020, 2020
Short summary
Short summary
This paper describes the first version of the Beijing Climate Center (BCC) fully coupled Earth System Model with interactive atmospheric chemistry and aerosols (BCC-ESM1). It is one of the models at the BCC for the Coupled Model Intercomparison Project Phase 6 (CMIP6). The CMIP6 Aerosol Chemistry Model Intercomparison Project (AerChemMIP) experiment using BCC-ESM1 has been finished. The evaluations show an overall good agreement between BCC-ESM1 simulations and observations in the 20th century.
Tongwen Wu, Yixiong Lu, Yongjie Fang, Xiaoge Xin, Laurent Li, Weiping Li, Weihua Jie, Jie Zhang, Yiming Liu, Li Zhang, Fang Zhang, Yanwu Zhang, Fanghua Wu, Jianglong Li, Min Chu, Zaizhi Wang, Xueli Shi, Xiangwen Liu, Min Wei, Anning Huang, Yaocun Zhang, and Xiaohong Liu
Geosci. Model Dev., 12, 1573–1600, https://doi.org/10.5194/gmd-12-1573-2019, https://doi.org/10.5194/gmd-12-1573-2019, 2019
Short summary
Short summary
This work presents advancements of the BCC model transition from CMIP5 to CMIP6, especially in the model resolution and its physics. Compared with BCC CMIP5 models, the BCC CMIP6 model shows significant improvements in historical simulations in many aspects including tropospheric air temperature and circulation at global and regional scales in East Asia, climate variability at different timescales (QBO, MJO, and diurnal cycle of precipitation), and the long-term trend of global air temperature.
Cameron M. O'Neill, Andrew McC. Hogg, Michael J. Ellwood, Stephen M. Eggins, and Bradley N. Opdyke
Geosci. Model Dev., 12, 1541–1572, https://doi.org/10.5194/gmd-12-1541-2019, https://doi.org/10.5194/gmd-12-1541-2019, 2019
Short summary
Short summary
The [simple carbon project] model v1.0 (SCP-M) was constructed for simulations of the paleo and modern carbon cycle. In this paper we show its application to the carbon cycle transition from the Last Glacial Maximum to the Holocene period. Our model–data experiment uses SCP-M's fast run time to cover a large range of possible inputs. The results highlight the role of varying the strength of ocean circulation to account for large fluctuations in atmospheric CO2 across the two periods.
Daniel Boettger, Robin Robertson, and Gary B. Brassington
Geosci. Model Dev., 11, 3795–3805, https://doi.org/10.5194/gmd-11-3795-2018, https://doi.org/10.5194/gmd-11-3795-2018, 2018
Short summary
Short summary
This study focuses on the impact of the model vertical mixing parameterisation on the representation of the mixed layer depth (MLD) in ocean forecast models. We compare data from two recent versions of the OceanMAPS forecast system, and find that while there were large improvements in the later version of the model, the skill of each parameterisation varies with spatial location.
Kaitlin A. Naughten, Katrin J. Meissner, Benjamin K. Galton-Fenzi, Matthew H. England, Ralph Timmermann, Hartmut H. Hellmer, Tore Hattermann, and Jens B. Debernard
Geosci. Model Dev., 11, 1257–1292, https://doi.org/10.5194/gmd-11-1257-2018, https://doi.org/10.5194/gmd-11-1257-2018, 2018
Short summary
Short summary
MetROMS and FESOM are two ocean/sea-ice models which resolve Antarctic ice-shelf cavities and consider thermodynamics at the ice-shelf base. We simulate the period 1992–2016 with both models, and with two options for resolution in FESOM, and compare output from the three simulations. Ice-shelf melt rates, sub-ice-shelf circulation, continental shelf water masses, and sea-ice processes are compared and evaluated against available observations.
Mabel Costa Calim, Paulo Nobre, Peter Oke, Andreas Schiller, Leo San Pedro Siqueira, and Guilherme Pimenta Castelão
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-5, https://doi.org/10.5194/gmd-2018-5, 2018
Revised manuscript not accepted
Short summary
Short summary
A new tool inspired on tides is introduced. The Spectral Taylor Diagram designed for evaluating and monitoring models performance in frequency domain calculates the degree of correspondence between simulated and observed fields for a given frequency (or a band of frequencies). It's a powerful tool to detect co-oscillating patterns in multi scale analysis, without using filtering techniques.
Rachel M. Law, Tilo Ziehn, Richard J. Matear, Andrew Lenton, Matthew A. Chamberlain, Lauren E. Stevens, Ying-Ping Wang, Jhan Srbinovsky, Daohua Bi, Hailin Yan, and Peter F. Vohralik
Geosci. Model Dev., 10, 2567–2590, https://doi.org/10.5194/gmd-10-2567-2017, https://doi.org/10.5194/gmd-10-2567-2017, 2017
Short summary
Short summary
The paper describes a version of the Australian Community Climate and Earth System Simulator that has been enabled to simulate the carbon cycle, which is designated ACCESS-ESM1. The model performance for pre-industrial conditions is assessed and land and ocean carbon fluxes are found to be simulated realistically.
James C. Orr, Raymond G. Najjar, Olivier Aumont, Laurent Bopp, John L. Bullister, Gokhan Danabasoglu, Scott C. Doney, John P. Dunne, Jean-Claude Dutay, Heather Graven, Stephen M. Griffies, Jasmin G. John, Fortunat Joos, Ingeborg Levin, Keith Lindsay, Richard J. Matear, Galen A. McKinley, Anne Mouchet, Andreas Oschlies, Anastasia Romanou, Reiner Schlitzer, Alessandro Tagliabue, Toste Tanhua, and Andrew Yool
Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, https://doi.org/10.5194/gmd-10-2169-2017, 2017
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) is a model comparison effort under Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Its physical component is described elsewhere in this special issue. Here we describe its ocean biogeochemical component (OMIP-BGC), detailing simulation protocols and analysis diagnostics. Simulations focus on ocean carbon, other biogeochemical tracers, air-sea exchange of CO2 and related gases, and chemical tracers used to evaluate modeled circulation.
Emlyn M. Jones, Mark E. Baird, Mathieu Mongin, John Parslow, Jenny Skerratt, Jenny Lovell, Nugzar Margvelashvili, Richard J. Matear, Karen Wild-Allen, Barbara Robson, Farhan Rizwi, Peter Oke, Edward King, Thomas Schroeder, Andy Steven, and John Taylor
Biogeosciences, 13, 6441–6469, https://doi.org/10.5194/bg-13-6441-2016, https://doi.org/10.5194/bg-13-6441-2016, 2016
Short summary
Short summary
Marine biogeochemical models are often used to understand water quality, nutrient and blue-carbon dynamics at scales that range from estuaries and bays, through to the global ocean. We introduce a new methodology allowing for the assimilation of observed remote sensing reflectances, avoiding the need to use empirically derived chlorophyll-a concentrations. This method opens up the possibility to assimilate of reflectances from a variety of missions and potentially non-satellite platforms.
Jonathan M. Gregory, Nathaelle Bouttes, Stephen M. Griffies, Helmuth Haak, William J. Hurlin, Johann Jungclaus, Maxwell Kelley, Warren G. Lee, John Marshall, Anastasia Romanou, Oleg A. Saenko, Detlef Stammer, and Michael Winton
Geosci. Model Dev., 9, 3993–4017, https://doi.org/10.5194/gmd-9-3993-2016, https://doi.org/10.5194/gmd-9-3993-2016, 2016
Short summary
Short summary
As a consequence of greenhouse gas emissions, changes in ocean temperature, salinity, circulation and sea level are expected in coming decades. Among the models used for climate projections for the 21st century, there is a large spread in projections of these effects. The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) aims to investigate and explain this spread by prescribing a common set of changes in the input of heat, water and wind stress to the ocean in the participating models.
Colette Kerry, Brian Powell, Moninya Roughan, and Peter Oke
Geosci. Model Dev., 9, 3779–3801, https://doi.org/10.5194/gmd-9-3779-2016, https://doi.org/10.5194/gmd-9-3779-2016, 2016
Short summary
Short summary
Ocean circulation drives weather and climate and supports marine ecosystems, so providing accurate predictions is important. The ocean circulation is complex, 3-D and highly variable, and its prediction requires advanced numerical models combined with real-time measurements. Focusing on the dynamic East Austr. Current, we use novel mathematical techniques to combine an ocean model with measurements to better estimate the circulation. This is an important step towards improving ocean forecasts.
Peter R. Oke, Roger Proctor, Uwe Rosebrock, Richard Brinkman, Madeleine L. Cahill, Ian Coghlan, Prasanth Divakaran, Justin Freeman, Charitha Pattiaratchi, Moninya Roughan, Paul A. Sandery, Amandine Schaeffer, and Sarath Wijeratne
Geosci. Model Dev., 9, 3297–3307, https://doi.org/10.5194/gmd-9-3297-2016, https://doi.org/10.5194/gmd-9-3297-2016, 2016
Short summary
Short summary
The Marine Virtual Laboratory (MARVL) is designed to help ocean modellers hit the ground running. Usually, setting up an ocean model involves a handful of technical steps that time and effort. MARVL provides a user-friendly interface that allows users to choose what options they want for their model, including the region, time period, and input data sets. The user then hits "go", and MARVL does the rest – delivering a "take-away bundle" that contains all the files needed to run the model.
Stephen M. Griffies, Gokhan Danabasoglu, Paul J. Durack, Alistair J. Adcroft, V. Balaji, Claus W. Böning, Eric P. Chassignet, Enrique Curchitser, Julie Deshayes, Helge Drange, Baylor Fox-Kemper, Peter J. Gleckler, Jonathan M. Gregory, Helmuth Haak, Robert W. Hallberg, Patrick Heimbach, Helene T. Hewitt, David M. Holland, Tatiana Ilyina, Johann H. Jungclaus, Yoshiki Komuro, John P. Krasting, William G. Large, Simon J. Marsland, Simona Masina, Trevor J. McDougall, A. J. George Nurser, James C. Orr, Anna Pirani, Fangli Qiao, Ronald J. Stouffer, Karl E. Taylor, Anne Marie Treguier, Hiroyuki Tsujino, Petteri Uotila, Maria Valdivieso, Qiang Wang, Michael Winton, and Stephen G. Yeager
Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, https://doi.org/10.5194/gmd-9-3231-2016, 2016
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). This document defines OMIP and details a protocol both for simulating global ocean/sea-ice models and for analysing their output.
Willem P. Sijp and Matthew H. England
Clim. Past, 12, 543–552, https://doi.org/10.5194/cp-12-543-2016, https://doi.org/10.5194/cp-12-543-2016, 2016
Short summary
Short summary
The polar warmth of the greenhouse climates in the Earth's past represents a fundamentally different climate state to that of today, with a strongly reduced temperature difference between the Equator and the poles. It is commonly thought that this would lead to a more quiescent ocean, with much reduced ventilation of the abyss. Surprisingly, using a Cretaceous cimate model, we find that ocean overturning is not weaker under a reduced temperature gradient arising from amplified polar heat.
X. Zhang, P. R. Oke, M. Feng, M. A. Chamberlain, J. A. Church, D. Monselesan, C. Sun, R. J. Matear, A. Schiller, and R. Fiedler
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-17, https://doi.org/10.5194/gmd-2016-17, 2016
Revised manuscript not accepted
Short summary
Short summary
Eddy-resolving global ocean models are highly desired, but expensive to run, and also subject to many problems including drift. Here we modified a near-global eddy-resolving OGCM for climate studies with some novel strategies. We demonstrated that the historical experiment driven by Japanese atmospheric reanalysis product, didn't have significant drifts, and also provided an eddy-resolving simulation of the global ocean over 1979–2014. Our experiences can be helpful to other modelling groups.
G. S. Pilo, M. M. Mata, and J. L. L. Azevedo
Ocean Sci., 11, 629–641, https://doi.org/10.5194/os-11-629-2015, https://doi.org/10.5194/os-11-629-2015, 2015
Short summary
Short summary
Oceanic eddies are closed circulation features that transport water between regions, taking part in the ocean's heat and salt balance. We perform a comparative eddy census in the East Australian, Agulhas and Brazil currents. We find that eddy propagation in all systems is steered by the local mean flow and bathymetry. Also, eddies present a geographic segregation according to size. Investigating eddy propagation helps us to better understand their effect in local mixing.
L. Menviel, A. Timmermann, T. Friedrich, and M. H. England
Clim. Past, 10, 63–77, https://doi.org/10.5194/cp-10-63-2014, https://doi.org/10.5194/cp-10-63-2014, 2014
S. McGregor, A. Timmermann, M. H. England, O. Elison Timm, and A. T. Wittenberg
Clim. Past, 9, 2269–2284, https://doi.org/10.5194/cp-9-2269-2013, https://doi.org/10.5194/cp-9-2269-2013, 2013
P. R. Oke, D. A. Griffin, A. Schiller, R. J. Matear, R. Fiedler, J. Mansbridge, A. Lenton, M. Cahill, M. A. Chamberlain, and K. Ridgway
Geosci. Model Dev., 6, 591–615, https://doi.org/10.5194/gmd-6-591-2013, https://doi.org/10.5194/gmd-6-591-2013, 2013
Related subject area
Climate and Earth system modeling
A sub-grid parameterization scheme for topographic vertical motion in CAM5-SE
Technology to aid the analysis of large-volume multi-institute climate model output at a central analysis facility (PRIMAVERA Data Management Tool V2.10)
A diffusion-based kernel density estimator (diffKDE, version 1) with optimal bandwidth approximation for the analysis of data in geoscience and ecological research
Monte Carlo drift correction – quantifying the drift uncertainty of global climate models
Improvements in the Canadian Earth System Model (CanESM) through systematic model analysis: CanESM5.0 and CanESM5.1
Earth System Model Aerosol–Cloud Diagnostics (ESMAC Diags) package, version 2: assessing aerosols, clouds, and aerosol–cloud interactions via field campaign and long-term observations
CIOFC1.0: a common parallel input/output framework based on C-Coupler2.0
Overcoming computational challenges to realize meter- to submeter-scale resolution in cloud simulations using the super-droplet method
Introducing a new floodplain scheme in ORCHIDEE (version 7885): validation and evaluation over the Pantanal wetlands
URock 2023a: an open-source GIS-based wind model for complex urban settings
DASH: a MATLAB toolbox for paleoclimate data assimilation
Comparing the Performance of Julia on CPUs versus GPUs and Julia-MPI versus Fortran-MPI: a case study with MPAS-Ocean (Version 7.1)
All aboard! Earth system investigations with the CH2O-CHOO TRAIN v1.0
The Canadian Atmospheric Model version 5 (CanAM5.0.3)
The Teddy tool v1.1: temporal disaggregation of daily climate model data for climate impact analysis
Assimilation of the AMSU-A radiances using the CESM (v2.1.0) and the DART (v9.11.13)–RTTOV (v12.3)
Modernizing the open-source community Noah with multi-parameterization options (Noah-MP) land surface model (version 5.0) with enhanced modularity, interoperability, and applicability
Simulated stable water isotopes during the mid-Holocene and pre-industrial periods using AWI-ESM-2.1-wiso
Truly Conserving with Conservative Remapping Methods
Rainbows and climate change: a tutorial on climate model diagnostics and parameterization
ModE-Sim – a medium-sized atmospheric general circulation model (AGCM) ensemble to study climate variability during the modern era (1420 to 2009)
MESMAR v1: a new regional coupled climate model for downscaling, predictability, and data assimilation studies in the Mediterranean region
Climate model Selection by Independence, Performance, and Spread (ClimSIPS v1.0.1) for regional applications
IceTFT v1.0.0: interpretable long-term prediction of Arctic sea ice extent with deep learning
Earth system modeling on Modular Supercomputing Architectures: coupled atmosphere-ocean simulations with ICON 2.6.6-rc
The KNMI Large Ensemble Time Slice (KNMI–LENTIS)
ENSO statistics, teleconnections, and atmosphere–ocean coupling in the Taiwan Earth System Model version 1
Using probabilistic machine learning to better model temporal patterns in parameterizations: a case study with the Lorenz 96 model
The Regional Aerosol Model Intercomparison Project (RAMIP)
DSCIM-Coastal v1.1: an open-source modeling platform for global impacts of sea level rise
TIMBER v0.1: a conceptual framework for emulating temperature responses to tree cover change
Recalibration of a three-dimensional water quality model with a newly developed autocalibration toolkit (EFDC-ACT v1.0.0): how much improvement will be achieved with a wider hydrological variability?
Description and evaluation of the JULES-ES set-up for ISIMIP2b
Simplified Kalman smoother and ensemble Kalman smoother for improving reanalyses
Understanding Changes in Cloud Simulations from E3SM Version 1 to Version 2
Modelling the terrestrial nitrogen and phosphorus cycle in the UVic ESCM
Modeling river water temperature with limiting forcing data: Air2stream v1.0.0, machine learning and multiple regression
WRF (v4.0)-SUEWS (v2018c) Coupled System: Development, Evaluation and Application
A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)
Resolving the mesoscale at reduced computational cost with FESOM 2.5: efficient modeling approaches applied to the Southern Ocean
Modeling and evaluating the effects of irrigation on land-atmosphere interaction in South-West Europe with the regional climate model REMO2020-iMOVE using a newly developed parameterization
The fully coupled regionally refined model of E3SM version 2: overview of the atmosphere, land, and river results
The mixed-layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies
A new simplified parameterization of secondary organic aerosol in the Community Earth System Model Version 2 (CESM2; CAM6.3)
Deep learning for stochastic precipitation generation – deep SPG v1.0
Developing spring wheat in the Noah-MP land surface model (v4.4) for growing season dynamics and responses to temperature stress
Deep Learning Model based on Multi-scale Feature Fusion for Precipitation Nowcasting
Robust 4D climate-optimal flight planning in structured airspace using parallelized simulation on GPUs: ROOST V1.0
High resolution downscaling of CMIP6 Earth System and Global Climate Models using deep learning for Iberia
The Earth system model CLIMBER-X v1.0 – Part 2: The global carbon cycle
Yaqi Wang, Lanning Wang, Juan Feng, Zhenya Song, Qizhong Wu, and Huaqiong Cheng
Geosci. Model Dev., 16, 6857–6873, https://doi.org/10.5194/gmd-16-6857-2023, https://doi.org/10.5194/gmd-16-6857-2023, 2023
Short summary
Short summary
In this study, to noticeably improve precipitation simulation in steep mountains, we propose a sub-grid parameterization scheme for the topographic vertical motion in CAM5-SE to revise the original vertical velocity by adding the topographic vertical motion. The dynamic lifting effect of topography is extended from the lowest layer to multiple layers, thus improving the positive deviations of precipitation simulation in high-altitude regions and negative deviations in low-altitude regions.
Jon Seddon, Ag Stephens, Matthew S. Mizielinski, Pier Luigi Vidale, and Malcolm J. Roberts
Geosci. Model Dev., 16, 6689–6700, https://doi.org/10.5194/gmd-16-6689-2023, https://doi.org/10.5194/gmd-16-6689-2023, 2023
Short summary
Short summary
The PRIMAVERA project aimed to develop a new generation of advanced global climate models. The large volume of data generated was uploaded to a central analysis facility (CAF) and was analysed by 100 PRIMAVERA scientists there. We describe how the PRIMAVERA project used the CAF's facilities to enable users to analyse this large dataset. We believe that similar, multi-institute, big-data projects could also use a CAF to efficiently share, organise and analyse large volumes of data.
Maria-Theresia Pelz, Markus Schartau, Christopher J. Somes, Vanessa Lampe, and Thomas Slawig
Geosci. Model Dev., 16, 6609–6634, https://doi.org/10.5194/gmd-16-6609-2023, https://doi.org/10.5194/gmd-16-6609-2023, 2023
Short summary
Short summary
Kernel density estimators (KDE) approximate the probability density of a data set without the assumption of an underlying distribution. We used the solution of the diffusion equation, and a new approximation of the optimal smoothing parameter build on two pilot estimation steps, to construct such a KDE best suited for typical characteristics of geoscientific data. The resulting KDE is insensitive to noise and well resolves multimodal data structures as well as boundary-close data.
Benjamin S. Grandey, Zhi Yang Koh, Dhrubajyoti Samanta, Benjamin P. Horton, Justin Dauwels, and Lock Yue Chew
Geosci. Model Dev., 16, 6593–6608, https://doi.org/10.5194/gmd-16-6593-2023, https://doi.org/10.5194/gmd-16-6593-2023, 2023
Short summary
Short summary
Global climate models are susceptible to spurious trends known as drift. Fortunately, drift can be corrected when analysing data produced by models. To explore the uncertainty associated with drift correction, we develop a new method: Monte Carlo drift correction. For historical simulations of thermosteric sea level rise, drift uncertainty is relatively large. When analysing data susceptible to drift, researchers should consider drift uncertainty.
Michael Sigmond, James Anstey, Vivek Arora, Ruth Digby, Nathan Gillett, Viatcheslav Kharin, William Merryfield, Catherine Reader, John Scinocca, Neil Swart, John Virgin, Carsten Abraham, Jason Cole, Nicolas Lambert, Woo-Sung Lee, Yongxiao Liang, Elizaveta Malinina, Landon Rieger, Knut von Salzen, Christian Seiler, Clint Seinen, Andrew Shao, Reinel Sospedra-Alfonso, Libo Wang, and Duo Yang
Geosci. Model Dev., 16, 6553–6591, https://doi.org/10.5194/gmd-16-6553-2023, https://doi.org/10.5194/gmd-16-6553-2023, 2023
Short summary
Short summary
We present a new activity which aims to organize the analysis of biases in the Canadian Earth System model (CanESM) in a systematic manner. Results of this “Analysis for Development” (A4D) activity includes a new CanESM version, CanESM5.1, which features substantial improvements regarding the simulation of dust and stratospheric temperatures, a second CanESM5.1 variant with reduced climate sensitivity, and insights into potential avenues to reduce various other model biases.
Shuaiqi Tang, Adam C. Varble, Jerome D. Fast, Kai Zhang, Peng Wu, Xiquan Dong, Fan Mei, Mikhail Pekour, Joseph C. Hardin, and Po-Lun Ma
Geosci. Model Dev., 16, 6355–6376, https://doi.org/10.5194/gmd-16-6355-2023, https://doi.org/10.5194/gmd-16-6355-2023, 2023
Short summary
Short summary
To assess the ability of Earth system model (ESM) predictions, we developed a tool called ESMAC Diags to understand how aerosols, clouds, and aerosol–cloud interactions are represented in ESMs. This paper describes its version 2 functionality. We compared the model predictions with measurements taken by planes, ships, satellites, and ground instruments over four regions across the world. Results show that this new tool can help identify model problems and guide future development of ESMs.
Xinzhu Yu, Li Liu, Chao Sun, Qingu Jiang, Biao Zhao, Zhiyuan Zhang, Hao Yu, and Bin Wang
Geosci. Model Dev., 16, 6285–6308, https://doi.org/10.5194/gmd-16-6285-2023, https://doi.org/10.5194/gmd-16-6285-2023, 2023
Short summary
Short summary
In this paper we propose a new common, flexible, and efficient parallel I/O framework for earth system modeling based on C-Coupler2.0. CIOFC1.0 can handle data I/O in parallel and provides a configuration file format that enables users to conveniently change the I/O configurations. It can automatically make grid and time interpolation, output data with an aperiodic time series, and accelerate data I/O when the field size is large.
Toshiki Matsushima, Seiya Nishizawa, and Shin-ichiro Shima
Geosci. Model Dev., 16, 6211–6245, https://doi.org/10.5194/gmd-16-6211-2023, https://doi.org/10.5194/gmd-16-6211-2023, 2023
Short summary
Short summary
A particle-based cloud model was developed for meter- to submeter-scale resolution in cloud simulations. Our new cloud model's computational performance is superior to a bin method and comparable to a two-moment bulk method. A highlight of this study is the 2 m resolution shallow cloud simulations over an area covering ∼10 km2. This model allows for studying turbulence and cloud physics at spatial scales that overlap with those covered by direct numerical simulations and field studies.
Anthony Schrapffer, Jan Polcher, Anna Sörensson, and Lluís Fita
Geosci. Model Dev., 16, 5755–5782, https://doi.org/10.5194/gmd-16-5755-2023, https://doi.org/10.5194/gmd-16-5755-2023, 2023
Short summary
Short summary
The present paper introduces a floodplain scheme for a high-resolution land surface model river routing. It was developed and evaluated over one of the world’s largest floodplains: the Pantanal in South America. This shows the impact of tropical floodplains on land surface conditions (soil moisture, temperature) and on land–atmosphere fluxes and highlights the potential impact of floodplains on land–atmosphere interactions and the importance of integrating this module in coupled simulations.
Jérémy Bernard, Fredrik Lindberg, and Sandro Oswald
Geosci. Model Dev., 16, 5703–5727, https://doi.org/10.5194/gmd-16-5703-2023, https://doi.org/10.5194/gmd-16-5703-2023, 2023
Short summary
Short summary
The UMEP plug-in integrated in the free QGIS software can now calculate the spatial variation of the wind speed within urban settings. This paper shows that the new wind model, URock, generally fits observations well and highlights the main needed improvements. According to this work, pedestrian wind fields and outdoor thermal comfort can now simply be estimated by any QGIS user (researchers, students, and practitioners).
Jonathan King, Jessica Tierney, Matthew Osman, Emily J. Judd, and Kevin J. Anchukaitis
Geosci. Model Dev., 16, 5653–5683, https://doi.org/10.5194/gmd-16-5653-2023, https://doi.org/10.5194/gmd-16-5653-2023, 2023
Short summary
Short summary
Paleoclimate data assimilation is a useful method that allows researchers to combine climate models with natural archives of past climates. However, it can be difficult to implement in practice. To facilitate this method, we present DASH, a MATLAB toolbox. The toolbox provides routines that implement common steps of paleoclimate data assimilation, and it can be used to implement assimilations for a wide variety of time periods, spatial regions, data networks, and analytical algorithms.
Siddhartha Bishnu, Robert R. Strauss, and Mark R. Petersen
Geosci. Model Dev., 16, 5539–5559, https://doi.org/10.5194/gmd-16-5539-2023, https://doi.org/10.5194/gmd-16-5539-2023, 2023
Short summary
Short summary
Here we test Julia, a relatively new programming language, which is designed to be simple to write, but also fast on advanced computer architectures. We found that Julia is both convenient and fast, but there is no free lunch. Our first attempt to develop an ocean model in Julia was relatively easy, but the code was slow. After several months of further development, we created a Julia code that is as fast on supercomputers as a Fortran ocean model.
Tyler Kukla, Daniel E. Ibarra, Kimberly V. Lau, and Jeremy K. C. Rugenstein
Geosci. Model Dev., 16, 5515–5538, https://doi.org/10.5194/gmd-16-5515-2023, https://doi.org/10.5194/gmd-16-5515-2023, 2023
Short summary
Short summary
The CH2O-CHOO TRAIN model can simulate how climate and the long-term carbon cycle interact across millions of years on a standard PC. While efficient, the model accounts for many factors including the location of land masses, the spatial pattern of the water cycle, and fundamental climate feedbacks. The model is a powerful tool for investigating how short-term climate processes can affect long-term changes in the Earth system.
Jason Neil Steven Cole, Knut von Salzen, Jiangnan Li, John Scinocca, David Plummer, Vivek Arora, Norman McFarlane, Michael Lazare, Murray MacKay, and Diana Verseghy
Geosci. Model Dev., 16, 5427–5448, https://doi.org/10.5194/gmd-16-5427-2023, https://doi.org/10.5194/gmd-16-5427-2023, 2023
Short summary
Short summary
The Canadian Atmospheric Model version 5 (CanAM5) is used to simulate on a global scale the climate of Earth's atmosphere, land, and lakes. We document changes to the physics in CanAM5 since the last major version of the model (CanAM4) and evaluate the climate simulated relative to observations and CanAM4. The climate simulated by CanAM5 is similar to CanAM4, but there are improvements, including better simulation of temperature and precipitation over the Amazon and better simulation of cloud.
Florian Zabel and Benjamin Poschlod
Geosci. Model Dev., 16, 5383–5399, https://doi.org/10.5194/gmd-16-5383-2023, https://doi.org/10.5194/gmd-16-5383-2023, 2023
Short summary
Short summary
Today, most climate model data are provided at daily time steps. However, more and more models from different sectors, such as energy, water, agriculture, and health, require climate information at a sub-daily temporal resolution for a more robust and reliable climate impact assessment. Here we describe and validate the Teddy tool, a new model for the temporal disaggregation of daily climate model data for climate impact analysis.
Young-Chan Noh, Yonghan Choi, Hyo-Jong Song, Kevin Raeder, Joo-Hong Kim, and Youngchae Kwon
Geosci. Model Dev., 16, 5365–5382, https://doi.org/10.5194/gmd-16-5365-2023, https://doi.org/10.5194/gmd-16-5365-2023, 2023
Short summary
Short summary
This is the first attempt to assimilate the observations of microwave temperature sounders into the global climate forecast model in which the satellite observations have not been assimilated in the past. To do this, preprocessing schemes are developed to make the satellite observations suitable to be assimilated. In the assimilation experiments, the model analysis is significantly improved by assimilating the observations of microwave temperature sounders.
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023, https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Short summary
Noah-MP is one of the most widely used open-source community land surface models in the world, designed for applications ranging from uncoupled land surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhance model modularity, interoperability, and applicability.
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023, https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Short summary
We developed a new climate model with isotopic capabilities and simulated the pre-industrial and mid-Holocene periods. Despite certain regional model biases, the modeled isotope composition is in good agreement with observations and reconstructions. Based on our analyses, the observed isotope–temperature relationship in polar regions may have a summertime bias. Using daily model outputs, we developed a novel isotope-based approach to determine the onset date of the West African summer monsoon.
Karl E. Taylor
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-177, https://doi.org/10.5194/gmd-2023-177, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Remapping gridded data in a way that preserves the conservative properties of the climate system can be essential in coupling model components and for accurate assessment of the system’s energy and mass constituents. Remapping packages capable of handling a wide variety of grids can, for common grids, calculate remapping weights that are somewhat inaccurate. Correcting for these errors, guidelines are provided to ensure conservation when the weights are used in practice.
Andrew Gettelman
Geosci. Model Dev., 16, 4937–4956, https://doi.org/10.5194/gmd-16-4937-2023, https://doi.org/10.5194/gmd-16-4937-2023, 2023
Short summary
Short summary
A representation of rainbows is developed for a climate model. The diagnostic raises many common issues. Simulated rainbows are evaluated against limited observations. The pattern of rainbows in the model matches observations and theory about when and where rainbows are most common. The diagnostic is used to assess the past and future state of rainbows. Changes to clouds from climate change are expected to increase rainbows as cloud cover decreases in a warmer world.
Ralf Hand, Eric Samakinwa, Laura Lipfert, and Stefan Brönnimann
Geosci. Model Dev., 16, 4853–4866, https://doi.org/10.5194/gmd-16-4853-2023, https://doi.org/10.5194/gmd-16-4853-2023, 2023
Short summary
Short summary
ModE-Sim is an ensemble of simulations with an atmosphere model. It uses observed sea surface temperatures, sea ice conditions, and volcanic aerosols for 1420 to 2009 as model input while accounting for uncertainties in these conditions. This generates several representations of the possible climate given these preconditions. Such a setup can be useful to understand the mechanisms that contribute to climate variability. This paper describes the setup of ModE-Sim and evaluates its performance.
Andrea Storto, Yassmin Hesham Essa, Vincenzo de Toma, Alessandro Anav, Gianmaria Sannino, Rosalia Santoleri, and Chunxue Yang
Geosci. Model Dev., 16, 4811–4833, https://doi.org/10.5194/gmd-16-4811-2023, https://doi.org/10.5194/gmd-16-4811-2023, 2023
Short summary
Short summary
Regional climate models are a fundamental tool for a very large number of applications and are being increasingly used within climate services, together with other complementary approaches. Here, we introduce a new regional coupled model, intended to be later extended to a full Earth system model, for climate investigations within the Mediterranean region, coupled data assimilation experiments, and several downscaling exercises (reanalyses and long-range predictions).
Anna L. Merrifield, Lukas Brunner, Ruth Lorenz, Vincent Humphrey, and Reto Knutti
Geosci. Model Dev., 16, 4715–4747, https://doi.org/10.5194/gmd-16-4715-2023, https://doi.org/10.5194/gmd-16-4715-2023, 2023
Short summary
Short summary
Using all Coupled Model Intercomparison Project (CMIP) models is unfeasible for many applications. We provide a subselection protocol that balances user needs for model independence, performance, and spread capturing CMIP’s projection uncertainty simultaneously. We show how sets of three to five models selected for European applications map to user priorities. An audit of model independence and its influence on equilibrium climate sensitivity uncertainty in CMIP is also presented.
Bin Mu, Xiaodan Luo, Shijin Yuan, and Xi Liang
Geosci. Model Dev., 16, 4677–4697, https://doi.org/10.5194/gmd-16-4677-2023, https://doi.org/10.5194/gmd-16-4677-2023, 2023
Short summary
Short summary
To improve the long-term forecast skill for sea ice extent (SIE), we introduce IceTFT, which directly predicts 12 months of averaged Arctic SIE. The results show that IceTFT has higher forecasting skill. We conducted a sensitivity analysis of the variables in the IceTFT model. These sensitivities can help researchers study the mechanisms of sea ice development, and they also provide useful references for the selection of variables in data assimilation or the input of deep learning models.
Abhiraj Bishnoi, Olaf Stein, Catrin I. Meyer, René Redler, Norbert Eicker, Helmuth Haak, Lars Hoffmann, Daniel Klocke, Luis Kornblueh, and Estela Suarez
EGUsphere, https://doi.org/10.5194/egusphere-2023-1476, https://doi.org/10.5194/egusphere-2023-1476, 2023
Short summary
Short summary
We enabled the weather and climate model ICON to run in a high-resolution coupled atmosphere-ocean setup on the JUWELS supercomputer, where the ocean and the model I/O runs on the CPU Cluster, while the atmosphere is running simultaneously on GPUs. Compared to a simulation performed on CPUs only, our approach reduces energy consumption by 59 % with comparable runtimes. The experiments serve as preparation for efficient computing of kilometer-scale climate models on future supercomputing systems.
Laura Muntjewerf, Richard Bintanja, Thomas Reerink, and Karin van der Wiel
Geosci. Model Dev., 16, 4581–4597, https://doi.org/10.5194/gmd-16-4581-2023, https://doi.org/10.5194/gmd-16-4581-2023, 2023
Short summary
Short summary
The KNMI Large Ensemble Time Slice (KNMI–LENTIS) is a large ensemble of global climate model simulations with EC-Earth3. It covers two climate scenarios by focusing on two time slices: the present day (2000–2009) and a future +2 K climate (2075–2084 in the SSP2-4.5 scenario). We have 1600 simulated years for the two climates with (sub-)daily output frequency. The sampled climate variability allows for robust and in-depth research into (compound) extreme events such as heat waves and droughts.
Yi-Chi Wang, Wan-Ling Tseng, Yu-Luen Chen, Shih-Yu Lee, Huang-Hsiung Hsu, and Hsin-Chien Liang
Geosci. Model Dev., 16, 4599–4616, https://doi.org/10.5194/gmd-16-4599-2023, https://doi.org/10.5194/gmd-16-4599-2023, 2023
Short summary
Short summary
This study focuses on evaluating the performance of the Taiwan Earth System Model version 1 (TaiESM1) in simulating the El Niño–Southern Oscillation (ENSO), a significant tropical climate pattern with global impacts. Our findings reveal that TaiESM1 effectively captures several characteristics of ENSO, such as its seasonal variation and remote teleconnections. Its pronounced ENSO strength bias is also thoroughly investigated, aiming to gain insights to improve climate model performance.
Raghul Parthipan, Hannah M. Christensen, J. Scott Hosking, and Damon J. Wischik
Geosci. Model Dev., 16, 4501–4519, https://doi.org/10.5194/gmd-16-4501-2023, https://doi.org/10.5194/gmd-16-4501-2023, 2023
Short summary
Short summary
How can we create better climate models? We tackle this by proposing a data-driven successor to the existing approach for capturing key temporal trends in climate models. We combine probability, allowing us to represent uncertainty, with machine learning, a technique to learn relationships from data which are undiscoverable to humans. Our model is often superior to existing baselines when tested in a simple atmospheric simulation.
Laura J. Wilcox, Robert J. Allen, Bjørn H. Samset, Massimo A. Bollasina, Paul T. Griffiths, James Keeble, Marianne T. Lund, Risto Makkonen, Joonas Merikanto, Declan O'Donnell, David J. Paynter, Geeta G. Persad, Steven T. Rumbold, Toshihiko Takemura, Kostas Tsigaridis, Sabine Undorf, and Daniel M. Westervelt
Geosci. Model Dev., 16, 4451–4479, https://doi.org/10.5194/gmd-16-4451-2023, https://doi.org/10.5194/gmd-16-4451-2023, 2023
Short summary
Short summary
Changes in anthropogenic aerosol emissions have strongly contributed to global and regional climate change. However, the size of these regional impacts and the way they arise are still uncertain. With large changes in aerosol emissions a possibility over the next few decades, it is important to better quantify the potential role of aerosol in future regional climate change. The Regional Aerosol Model Intercomparison Project will deliver experiments designed to facilitate this.
Nicholas Depsky, Ian Bolliger, Daniel Allen, Jun Ho Choi, Michael Delgado, Michael Greenstone, Ali Hamidi, Trevor Houser, Robert E. Kopp, and Solomon Hsiang
Geosci. Model Dev., 16, 4331–4366, https://doi.org/10.5194/gmd-16-4331-2023, https://doi.org/10.5194/gmd-16-4331-2023, 2023
Short summary
Short summary
This work presents a novel open-source modeling platform for evaluating future sea level rise (SLR) impacts. Using nearly 10 000 discrete coastline segments around the world, we estimate 21st-century costs for 230 SLR and socioeconomic scenarios. We find that annual end-of-century costs range from USD 100 billion under a 2 °C warming scenario with proactive adaptation to 7 trillion under a 4 °C warming scenario with minimal adaptation, illustrating the cost-effectiveness of coastal adaptation.
Shruti Nath, Lukas Gudmundsson, Jonas Schwaab, Gregory Duveiller, Steven J. De Hertog, Suqi Guo, Felix Havermann, Fei Luo, Iris Manola, Julia Pongratz, Sonia I. Seneviratne, Carl F. Schleussner, Wim Thiery, and Quentin Lejeune
Geosci. Model Dev., 16, 4283–4313, https://doi.org/10.5194/gmd-16-4283-2023, https://doi.org/10.5194/gmd-16-4283-2023, 2023
Short summary
Short summary
Tree cover changes play a significant role in climate mitigation and adaptation. Their regional impacts are key in informing national-level decisions and prioritising areas for conservation efforts. We present a first step towards exploring these regional impacts using a simple statistical device, i.e. emulator. The emulator only needs to train on climate model outputs representing the maximal impacts of aff-, re-, and deforestation, from which it explores plausible in-between outcomes itself.
Chen Zhang and Tianyu Fu
Geosci. Model Dev., 16, 4315–4329, https://doi.org/10.5194/gmd-16-4315-2023, https://doi.org/10.5194/gmd-16-4315-2023, 2023
Short summary
Short summary
A new automatic calibration toolkit was developed and implemented into the recalibration of a 3-D water quality model, with observations in a wider range of hydrological variability. Compared to the model calibrated with the original strategy, the recalibrated model performed significantly better in modeled total phosphorus, chlorophyll a, and dissolved oxygen. Our work indicates that hydrological variability in the calibration periods has a non-negligible impact on the water quality models.
Camilla Mathison, Eleanor Burke, Andrew J. Hartley, Douglas I. Kelley, Chantelle Burton, Eddy Robertson, Nicola Gedney, Karina Williams, Andy Wiltshire, Richard J. Ellis, Alistair A. Sellar, and Chris D. Jones
Geosci. Model Dev., 16, 4249–4264, https://doi.org/10.5194/gmd-16-4249-2023, https://doi.org/10.5194/gmd-16-4249-2023, 2023
Short summary
Short summary
This paper describes and evaluates a new modelling methodology to quantify the impacts of climate change on water, biomes and the carbon cycle. We have created a new configuration and set-up for the JULES-ES land surface model, driven by bias-corrected historical and future climate model output provided by the Inter-Sectoral Impacts Model Intercomparison Project (ISIMIP). This allows us to compare projections of the impacts of climate change across multiple impact models and multiple sectors.
Bo Dong, Ross Bannister, Yumeng Chen, Alison Fowler, and Keith Haines
Geosci. Model Dev., 16, 4233–4247, https://doi.org/10.5194/gmd-16-4233-2023, https://doi.org/10.5194/gmd-16-4233-2023, 2023
Short summary
Short summary
Traditional Kalman smoothers are expensive to apply in large global ocean operational forecast and reanalysis systems. We develop a cost-efficient method to overcome the technical constraints and to improve the performance of existing reanalysis products.
Yuying Zhang, Shaocheng Xie, Yi Qin, Wuyin Lin, Jean-Christophe Golaz, Xue Zheng, Po-Lun Ma, Yun Qian, Qi Tang, Christopher R. Terai, and Meng Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-1263, https://doi.org/10.5194/egusphere-2023-1263, 2023
Short summary
Short summary
We performed systematic evaluation of clouds simulated in the E3SMv2 to document model performance on clouds and understand what updates in E3SMv2 have caused the changes in clouds from E3SMv1 to E3SMv2. We find that stratocumulus clouds along the subtropical west coast of continents are dramatically improved primarily due to the re-tuning of cloud macrophysics parameters. This study offers additional insights about clouds simulated in E3SMv2 and will benefit the future E3SM developments.
Makcim L. De Sisto, Andrew H. MacDougall, Nadine Mengis, and Sophia Antoniello
Geosci. Model Dev., 16, 4113–4136, https://doi.org/10.5194/gmd-16-4113-2023, https://doi.org/10.5194/gmd-16-4113-2023, 2023
Short summary
Short summary
In this study, we developed a nitrogen and phosphorus cycle in an intermediate-complexity Earth system climate model. We found that the implementation of nutrient limitation in simulations has reduced the capacity of land to take up atmospheric carbon and has decreased the vegetation biomass, hence, improving the fidelity of the response of land to simulated atmospheric CO2 rise.
Manuel C. Almeida and Pedro S. Coelho
Geosci. Model Dev., 16, 4083–4112, https://doi.org/10.5194/gmd-16-4083-2023, https://doi.org/10.5194/gmd-16-4083-2023, 2023
Short summary
Short summary
Water temperature (WT) datasets of low-order rivers are scarce. In this study, five different models are used to predict the WT of 83 rivers. Generally, the results show that the models' hyperparameter optimization is essential and that to minimize the prediction error it is relevant to apply all the models considered in this study. Results also show that there is a logarithmic correlation among the error of the predicted river WT and the watershed time of concentration.
Ting Sun, Hamidreza Omidvar, Zhenkun Li, Ning Zhang, Wenjuan Huang, Simone Kotthaus, Helen C. Ward, Zhiwen Luo, and Sue Grimmond
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-117, https://doi.org/10.5194/gmd-2023-117, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
For the first time, we coupled a state-of-the-art urban land surface model – Surface Urban Energy and Water Scheme (SUEWS) – with the widely-used Weather Research and Forecasting (WRF) model, creating an open-source tool that may benefit multiple applications. We tested our new system at two UK sites and demonstrated its potential by examining how human activities in various areas of Greater London influence local weather conditions.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Nathan Beech, Thomas Rackow, Tido Semmler, and Thomas Jung
EGUsphere, https://doi.org/10.5194/egusphere-2023-1496, https://doi.org/10.5194/egusphere-2023-1496, 2023
Short summary
Short summary
Ocean models struggle to simulate small-scale ocean flows due to the computational cost of high-resolution simulations. Several cost-reducing strategies are applied to simulations of the Southern Ocean and evaluated with respect to observations and traditional, lower-resolution modelling methods. The high-resolution simulations effectively reproduce small-scale flows seen in satellite data and are largely consistent with traditional model simulations regarding their response to climate change.
Christina Asmus, Peter Hoffmann, Joni-Pekka Pietikäinen, Jürgen Böhner, and Diana Rechid
EGUsphere, https://doi.org/10.5194/egusphere-2023-890, https://doi.org/10.5194/egusphere-2023-890, 2023
Short summary
Short summary
Irrigation modifies the land surface and soil conditions. The caused effects can be quantified using numerical climate models. Our study introduces a new irrigation parameterization, which is simulating the effects of irrigation on land, atmosphere, and vegetation. We applied the parameterization and evaluated the results in their physical consistency. We found an improvement in the model results in the 2 m temperature representation in comparison with observational data for our study.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Duseong S. Jo, Simone Tilmes, Louisa K. Emmons, Siyuan Wang, and Francis Vitt
Geosci. Model Dev., 16, 3893–3906, https://doi.org/10.5194/gmd-16-3893-2023, https://doi.org/10.5194/gmd-16-3893-2023, 2023
Short summary
Short summary
A new simple secondary organic aerosol (SOA) scheme has been developed for the Community Atmosphere Model (CAM) based on the complex SOA scheme in CAM with detailed chemistry (CAM-chem). The CAM with the new SOA scheme shows better agreements with CAM-chem in terms of aerosol concentrations and radiative fluxes, which ensures more consistent results between different compsets in the Community Earth System Model. The new SOA scheme also has technical advantages for future developments.
Leroy J. Bird, Matthew G. W. Walker, Greg E. Bodeker, Isaac H. Campbell, Guangzhong Liu, Swapna Josmi Sam, Jared Lewis, and Suzanne M. Rosier
Geosci. Model Dev., 16, 3785–3808, https://doi.org/10.5194/gmd-16-3785-2023, https://doi.org/10.5194/gmd-16-3785-2023, 2023
Short summary
Short summary
Deriving the statistics of expected future changes in extreme precipitation is challenging due to these events being rare. Regional climate models (RCMs) are computationally prohibitive for generating ensembles capable of capturing large numbers of extreme precipitation events with statistical robustness. Stochastic precipitation generators (SPGs) provide an alternative to RCMs. We describe a novel single-site SPG that learns the statistics of precipitation using a machine-learning approach.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Jinkai Tan, Qiqiao Huang, and Sheng Chen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-109, https://doi.org/10.5194/gmd-2023-109, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
1. This study present a deep learning architecture MFF to improve the forecast skills of precipitations especially for heavy precipitations. 2. MFF uses multi-scale receptive fields so that the movement features of precipitation systems are well captured. 3. MFF uses the mechanism of discrete probability to reduce uncertainties and forecast errors, so that heavy precipitations are produced.
Abolfazl Simorgh, Manuel Soler, Daniel González-Arribas, Florian Linke, Benjamin Lührs, Maximilian M. Meuser, Simone Dietmüller, Sigrun Matthes, Hiroshi Yamashita, Feijia Yin, Federica Castino, Volker Grewe, and Sabine Baumann
Geosci. Model Dev., 16, 3723–3748, https://doi.org/10.5194/gmd-16-3723-2023, https://doi.org/10.5194/gmd-16-3723-2023, 2023
Short summary
Short summary
This paper addresses the robust climate optimal trajectory planning problem under uncertain meteorological conditions within the structured airspace. Based on the optimization methodology, a Python library has been developed, which can be accessed using the following DOI: https://doi.org/10.5281/zenodo.7121862. The developed tool is capable of providing robust trajectories taking into account all probable realizations of meteorological conditions provided by an EPS computationally very fast.
Pedro M. M. Soares, Frederico Johannsen, Daniela C. A. Lima, Gil Lemos, Virgílio Bento, and Angelina Bushenkova
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-136, https://doi.org/10.5194/gmd-2023-136, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
This study uses deep learning (DL) to downscale global climate models for the Iberian Peninsula. Four DL architectures were evaluated and trained using historical climate data, and then used to downscale future projections from the global models. These show agreement with the original models and reveal a warming of 2 ºC to 6 ºC, along with decreasing precipitation in western Iberia after 2040. This approach offers key regional climate change information for adaptation strategies in the region.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Cited articles
Adcroft, A. and Campin, J.-M.: Rescaled height coordinates for accurate
representation of free-surface flows in ocean circulation models, Ocean
Modell., 7, 269–284, 2004. a
Annamalai, H., Liu, P., and Xie, S. P.: Southwest Indian Ocean SST
variability: Its local effect and remote influence on Asian monsoons,
J. Climate, 18, 4150–4167, https://doi.org/10.1175/JCLI3533.1, 2005. a
Ansorge, I. J., Froneman, P. W., and Durgadoo, J. V.: The Marine Ecosystem of
the Sub-Antarctic, Prince Edward Islands, in: Marine Ecosystems, edited by:
Cruzado, A., chap. 3, IntechOpen, Rijeka, https://doi.org/10.5772/36676, 2012. a
Bamber, J., van den Broeke, M., Ettema, J., Lenaerts, J., and Rignot, E.:
Recent large increases in freshwater fluxes from Greenland into the North
Atlantic, Geophys. Res. Lett., 39, L19501,
https://doi.org/10.1029/2012gl052552, 2012. a
Barnier, B., Blaker, A., Biastoch, A., Böning, C., Coward, A., Deshayes,
J., Hirshi, J., Le Sommer, J., Madec, G., Maze, G., Molines, J., New, A.,
Penduff, T., Scheinert, M., Talandier, C., and Treguier, A.-M.: DRAKKAR:
developing high resolution ocean components for European Earth system
models, CLIVAR Exch., 19, 18–21, 2014. a
Beckmann, A. and Döscher, R.: A Method for Improved Representation of Dense
Water Spreading over Topography in Geopotential-Coordinate Models, J.
Phys. Oceanogr., 27, 581–591,
https://doi.org/10.1175/1520-0485(1997)027<0581:amfiro>2.0.co;2,
1997. a
Behera, K. S., Luo, J.-J., Masson, S., Delecluse, P., Gualdi, S., Navarra, A.,
and Toshio, Y.: Paramount Impact of the Indian Ocean Dipole on the East
African Short Rains : A CGCM Study, J. Climate, 18, 4514–4530,
2005. a
Bentley, J. L.: Multidimensional Binary Search Trees Used for Associative
Searching, Commun. ACM, 18, 509–517, https://doi.org/10.1145/361002.361007, 1975. a
Bi, D. and Marsland, S.: Australian Climate Ocean Model (AusCOM) users guide,
CAWCR Technical Report 27, The Centre for Australian Weather and Climate
Research,
available at: http://www.cawcr.gov.au/technical-reports/CTR_027.pdf (last access: 21 January 2020), 2010. a
Bi, D., Dix, M., Marsland, S. J., O'Farrell, S., Rashid, H. A., Uotila, P.,
Hirst, A. C., Kowalczyk, E., Golebiewski, M., Sullivan, A., Yan, H., Hannah,
N., Franklin, C., Sun, Z., Vohralik, P., Watterson, I., Zhou, X., Fiedler,
R., Collier, M., Ma2, Y., Noonan, J., Stevens, L., Uhe, P., Zhu, H.,
Griffies, S. M., Hill, R., Harris, C., and Puri, K.: The ACCESS coupled
model: description, control climate and evaluation, Aust. Met. Ocean. J.,
63, 61–64, 2013a. a
Bintanja, R., van Oldenborgh, G., and Katsman, C.: The effect of increased
fresh water from Antarctic ice shelves on future trends in Antarctic sea
ice, Ann. Glaciol., 56, 120–126, https://doi.org/10.3189/2015aog69a001, 2015. a
Bishop, S. P., Gent, P. R., Bryan, F. O., Thompson, A. F., Long, M. C., and
Abernathey, R.: Southern Ocean Overturning Compensation in an
Eddy-Resolving Climate Simulation, J. Phys. Oceanogr., 46,
1575–1592, https://doi.org/10.1175/JPO-D-15-0177.1, 2016. a
Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic model of
sea ice, J. Geophys. Res.-Oceans, 104, 15669–15677,
https://doi.org/10.1029/1999jc900100, 1999. a
Campin, J.-M. and Goosse, H.: Parameterization of density-driven downsloping
flow for a coarse-resolution ocean model in z-coordinate, Tellus A: Dynam.
Meteorol. Oceanogr., 51, 412–430,
https://doi.org/10.3402/tellusa.v51i3.13468, 1999. a
Chambers, D. P.: Using kinetic energy measurements from altimetry to detect
shifts in the positions of fronts in the Southern Ocean, Ocean Sci., 14,
105–116, https://doi.org/10.5194/os-14-105-2018, 2018. a
Chassignet, W. and Marshall, D.: Gulf Stream separation in numerical ocean
models, Geophys. Monogr. Ser., 177, 39–61, 2008. a
Colella, P. and Woodward, P. R.: The Piecewise Parabolic Method (PPM) for
gas-dynamical simulations, J. Comput. Phys., 54, 174–201,
https://doi.org/10.1016/0021-9991(84)90143-8, 1984. a
Colin de Verdière, A. and Ollitrault, M.: A Direct Determination of the
World Ocean Barotropic Circulation, J. Phys. Oceanogr., 46,
255–273, https://doi.org/10.1175/jpo-d-15-0046.1, 2016. a, b
COSIMA: COSIMA Model Output Collection, available at: https://doi.org/10.4225/41/5a2dc8543105a (last access: 21 January 2020), 2019.
Craig, A. P., Mickelson, S. A., Hunke, E. C., and Bailey, D. A.: Improved
parallel performance of the CICE model in CESM1, Int. J. High Perform.
Comput. Appl., 29, 154–165, https://doi.org/10.1177/1094342014548771, 2015. a, b
Danabasoglu, G., Yeager, S. G., Bailey, D., Behrens, E., Bentsen, M., Bi, D., Biastoch, A., Böning, C., Bozec, A., Canuto, V. M., Cassou, C., Chassignet, E., Coward, A. C., Danilov, S., Diansky, N., Drange, H., Farneti, R., Fernandez, E., Fogli, P. G., Forget, G., Fujii, Y., Griffies, S. M., Gusev, A., Heimbach, P., Howard, A., Jung, T., Kelley, M., Large, W. G., Leboissetier, A., Lu, J., Madec, G., Marsland, S. J., Masina, S., Navarra, A., Nurser, A. G., Pirani, A., Salas y Mélia, D., Samuels, B. L., Scheinert, M., Sidorenko, D., Treguier, A.-M., Tsujino, H., Uotila, P., Valcke, S., Voldoire, A., and Wang, Q.: North Atlantic Simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part 1: Mean States, Ocean Modell., 73, 76–107, https://doi.org/10.1016/j.ocemod.2013.10.005, 2014. a, b, c, d
Delworth, T. L., Rosati, A., Anderson, W., Adcroft, A. J., Balaji, V., Benson,
R., Dixon, K., Griffies, S. M., Lee, H.-C., Pacanowski, R. C., Vecchi, G. A., Wittenberg, A. T., Zeng, F., and Zhang, R.:
Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution
Coupled Climate Model, J. Climate, 25, 2755–2781,
https://doi.org/10.1175/jcli-d-11-00316.1, 2012. a
de Miranda, A. P., Barnier, B., and Dewar, W. K.: On the dynamics of the
Zapiola Anticyclone, J. Geophys. Res.-Oceans, 104,
21137–21149, https://doi.org/10.1029/1999JC900042, 1999. a
de Ruijter, W. P. M., Ridderinkhof, H., Lutjeharms, J. R. E., Schouten,
M. W., and Veth, C.: Observations of the flow in the Mozambique Channel,
Geophys. Res. Lett., 29, 1502, https://doi.org/10.1029/2001GL013714, 2002. a
Dencausse, G., Arhan, M., and Speich, S.: Routes of Agulhas rings in the
southeastern Cape Basin, Deep Sea Res. Part I,
57, 1406–1421, https://doi.org/10.1016/j.dsr.2010.07.008, 2010. a
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M., Ligtenberg,
S. R. M., van den Broeke, M. R., and Moholdt, G.: Calving fluxes and basal
melt rates of Antarctic ice shelves, Nature, 502, 89–92,
https://doi.org/10.1038/nature12567, 2013. a, b
Dewar, W. K.: Topography and barotropic transport control by bottom friction,
J. Mar. Res., 56, 295–328, https://doi.org/10.1357/002224098321822320, 1998. a
Donohue, K. A., Tracey, K. L., Watts, D. R., Chidichimo, M. P., and Chereskin, T. K.: Mean Antarctic Circumpolar Current transport measured in Drake Passage, Geophys. Res. Lett., 43, 11760–11767,
https://doi.org/10.1002/2016GL070319, 2016. a, b
Döscher, R. and Beckmann, A.: Effects of a Bottom Boundary Layer
Parameterization in a Coarse-Resolution Model of the North Atlantic Ocean,
J. Atmos. Ocean. Technol., 17, 698–707,
https://doi.org/10.1175/1520-0426(2000)017<0698:eoabbl>2.0.co;2,
2000. a
Downes, S. M., Farneti, R., Uotila, P., Griffies, S. M., Marsland, S. J., Bailey, D., Behrens, E., Bentsen, M., Bi, D., Biastoch, A., Böning, C., Bozec, A., Canuto, V. M., Chassignet, E., Danabasoglu, G., Danilov, S., Diansky, N., Drange, H., Fogli, P. G., Gusev, A., Howard, A., Ilicak, M., Jung, T., Kelley, M., Large, W. G., Leboissetier, A., Long, M., Lu, J., Masina, S., Mishra, A., Navarra, A., Nurser, A. G., Patara, L., Samuels, B. L., Sidorenko, D., Spence, P., Tsujino, H., Wang, Q., and Yeager, S. G.: An
assessment of Southern Ocean water masses and sea ice during 1988-2007 in a
suite of interannual CORE-II simulations, Ocean Modell., 94, 67–94,
https://doi.org/10.1016/j.ocemod.2015.07.022, 2015. a
Dufour, C. O., Morrison, A. K., Griffies, S. M., Frenger, I., Zanowski, H., and
Winton, M.: Preconditioning of the Weddell Sea Polynya by the Ocean
Mesoscale and Dense Water Overflows, J. Clim., 30, 7719–7737,
https://doi.org/10.1175/jcli-d-16-0586.1, 2017. a
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O.,
Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L.,
Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L.,
Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L.,
Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J.,
Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,
Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J.,
Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D.,
Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate
change projections using the IPSL-CM5 Earth System Model: from CMIP3 to
CMIP5, Clim. Dynam., 40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1,
2013. a
Dukowicz, J. K. and Baumgardner, J. R.: Incremental Remapping as a
Transport/Advection Algorithm, J. Comput. Phys., 160,
318–335, https://doi.org/10.1006/jcph.2000.6465, 2000. a
Farneti, R., Downes, S. M., Griffies, S. M., Marsland, S. J., Behrens, E.,
Bentsen, M., Bi, D., Biastoch, A., Böning, C., Bozec, A., Canuto,
V. M., Chassignet, E., Danabasoglu, G., Danilov, S., Diansky, N., Drange, H.,
Fogli, P. G., Gusev, A., Hallberg, R. W., Howard, A., Ilicak, M., Jung, T.,
Kelley, M., Large, W. G., Leboissetier, A., Long, M., Lu, J., Masina, S.,
Mishra, A., Navarra, A., George Nurser, A. J., Patara, L., Samuels, B. L.,
Sidorenko, D., Tsujino, H., Uotila, P., Wang, Q., and Yeager, S. G.: An
assessment of Antarctic Circumpolar Current and Southern Ocean meridional
overturning circulation during 1958-2007 in a suite of interannual CORE-II
simulations, Ocean Modell., 93, 84–120,
https://doi.org/10.1016/j.ocemod.2015.07.009, 2015. a
Ferrari, R., Griffies, S. M., Nurser, A. G., and Vallis, G. K.: A
boundary-value problem for the parameterized mesoscale eddy transport, Ocean
Modell., 32, 143–156, https://doi.org/10.1016/j.ocemod.2010.01.004, 2010. a
Fetterer, F., Knowles, K., Meier, W., Savoie, M., and Windnagel, A. K.: Sea Ice
Index, Version 3, Tech. rep., NSIDC: National Snow and Ice Data Center,
Boulder, Colorado, USA, https://doi.org/10.7265/N5K072F8, 2017, updated daily. a
Fox-Kemper, B., Ferrari, R., and Hallberg, R.: Parameterization of mixed layer
eddies. Part I: Theory and diagnosis, J. Phys. Oceanogr., 38, 1145–1165,
https://doi.org/10.1175/2007JPO3792.1, 2008. a
Fu, L. L.: Pathways of eddies in the South Atlantic Ocean revealed from
satellite altimeter observations, Geophys. Res. Lett., 33, 1–5,
https://doi.org/10.1029/2006GL026245, 2006. a
Ganachaud, A. and Wunsch, C.: Large-Scale Ocean Heat and Freshwater Transports
during the World Ocean Circulation Experiment, J. Climate, 16,
696–705, https://doi.org/10.1175/1520-0442(2003)016<0696:LSOHAF>2.0.CO;2, 2003. a, b
GEBCO: The GEBCO_2014 Grid, available at: https://www.gebco.net/ (last access: 21 January 2020), 2014. a
Gent, P. R. and McWilliams, J. C.: Isopycnal Mixing in Ocean Circulation
Models, J. Phys. Oceanogr., 20, 150–155,
https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2, 1990. a, b
Griffies, S. and Hallberg, R.: Biharmonic friction with a Smagorinsky-like
viscosity for use in large-scale eddy-permitting ocean models, Mon.
Weather Rev., 128, 2935–2946, 2000. a
Griffies, S. M.: The Gent-McWilliams Skew Flux, J. Phys. Oceanogr., 28,
831–841, https://doi.org/10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2, 1998. a
Griffies, S. M., Gnanadesikan, A., Pacanowski, R. C., Larichev, V. D.,
Dukowicz, J. K., and Smith, R. D.: Isoneutral Diffusion in a z-Coordinate
Ocean Model, J. Phys. Oceanogr., 28, 805–830,
https://doi.org/10.1175/1520-0485(1998)028<0805:IDIAZC>2.0.CO;2, 1998. a, b
Griffies, S. M., Gnanadesikan, A., Dixon, K. W., Dunne, J. P., Gerdes, R.,
Harrison, M. J., Rosati, A., Russell, J. L., Samuels, B. L., Spelman, M. J.,
Winton, W., and Zhang, R.: Formulation of an ocean model for global climate
simulations, Ocean Sci., 1, 45–79, https://doi.org/10.5194/os-1-45-2005, 2005. a, b, c
Griffies, S. M., Biastoch, A., Böning, C. W., Bryan, F., Danabasoglu, G.,
Chassignet, E., England, M. H., Gerdes, R., Haak, H., Hallberg, R. W.,
Hazeleger, W., Jungclaus, J., Large, W. G., Madec, G., Pirani, A., Samuels,
B. L., Scheinert, M., Sen Gupta, A., Severijns, C. A., Simmons, H. L.,
Treguier, A. M., Winton, M., Yeager, S., and Yin, J.: Coordinated Ocean-ice
Reference Experiments (COREs), Ocean Modell., 26, 1–46,
https://doi.org/10.1016/j.ocemod.2008.08.007, 2009. a, b, c, d, e, f
Griffies, S. M., Yin, J., Durack, P. J., Goddard, P., Bates, S. C., Behrens,
E., Bentsen, M., Bi, D., Biastoch, A., Böning, C. W., Bozec, A.,
Chassignet, E., Danabasoglu, G., Danilov, S., Domingues, C. M., Drange, H.,
Farneti, R., Fernandez, E., Greatbatch, R. J., Holland, D. M., Ilicak, M.,
Large, W. G., Lorbacher, K., Lu, J., Marsland, S. J., Mishra, A., Nurser,
A. G., Salas y Mélia, D., Palter, J. B., Samuels, B. L., Schröter, J.,
Schwarzkopf, F. U., Sidorenko, D., Treguier, A. M., Tseng, Y.-H., Tsujino,
H., Uotila, P., Valcke, S., Voldoire, A., Wang, Q., Winton, M., and Zhang,
X.: An assessment of global and regional sea level for years 1993–2007 in a
suite of interannual CORE-II simulations, Ocean Modell., 78, 35–89,
https://doi.org/10.1016/j.ocemod.2014.03.004, 2014. a, b
Griffies, S. M., Winton, M., Anderson, W. G., Benson, R., Delworth, T. L.,
Dufour, C. O., Dunne, J. P., Goddard, P., Morrison, A. K., Rosati, A.,
Wittenberg, A. T., Yin, J., and Zhang, R.: Impacts on Ocean Heat from
Transient Mesoscale Eddies in a Hierarchy of Climate Models, J.
Climate, 28, 952–977, 2015. a, b, c, d, e, f, g
Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Balaji, V., Böning, C. W., Chassignet, E. P., Curchitser, E., Deshayes, J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M., Haak, H., Hallberg, R. W., Heimbach, P., Hewitt, H. T., Holland, D. M., Ilyina, T., Jungclaus, J. H., Komuro, Y., Krasting, J. P., Large, W. G., Marsland, S. J., Masina, S., McDougall, T. J., Nurser, A. J. G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J., Taylor, K. E., Treguier, A. M., Tsujino, H., Uotila, P., Valdivieso, M., Wang, Q., Winton, M., and Yeager, S. G.: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project, Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, 2016. a
Haidvogel, D., McWilliams, J., and Gent, P.: Boundary current separation in a
quasigeostrophic, eddy-resolving ocean circulation model, J. Phys. Oceanogr.,
22, 882–902, 1992. a
Hallberg, R.: Using a resolution function to regulate parameterizations of
oceanic mesoscale eddy effects, Ocean Modell., 72, 92–103,
https://doi.org/10.1016/j.ocemod.2013.08.007, 2013. a, b
Hallberg, R.: Numerical instabilities of the ice/ocean coupled system, CLIVAR
Exchanges, 65, 38–42,
available at: http://www.clivar.org/sites/default/files/documents/exchanges65_0.pdf (last access: 21 January 2020),
2014. a
Han, W., Meehl, G. A., Stammer, D., Hu, A., Hamlington, B., Kenigson, J.,
Palanisamy, H., and Thompson, P.: Spatial Patterns of Sea Level Variability
Associated with Natural Internal Climate Modes, Surv. Geophys., 38,
217–250, https://doi.org/10.1007/s10712-016-9386-y, 2017. a
Hannah, N., Kiss, A. E., Heerdegen, A., Ward, M. L., Fiedler, R., Hogg, A. M., Griffies, S. M., and Holmes, R. M.: The ACCESS-OM2 global ocean – sea ice coupled model (version 1.0),
Zenodo, https://doi.org/10.5281/zenodo.2653246, 2019. a
Hermes, J. C. and Reason, C. J. C.: Annual cycle of the South Indian Ocean
(Seychelles-Chagos) thermocline ridge in a regional ocean model, J.
Geophys. Res.-Oceans, 113, 1–10, https://doi.org/10.1029/2007JC004363, 2008. a
Heuzé, C., Heywood, K. J., Stevens, D. P., and Ridley, J. K.: Southern
Ocean bottom water characteristics in CMIP5 models, Geophys. Res.
Lett., 40, 1409–1414, https://doi.org/10.1002/grl.50287, 2013. a
Heuzé, C., Heywood, K. J., Stevens, D. P., and Ridley, J.: Changes in
Global Ocean Bottom Properties and Volume Transports in CMIP5 Models under
Climate Change Scenarios, J. Climate, 28, 2917–2944,
https://doi.org/10.1175/JCLI-D-14-00381.1, 2015a. a
Heuzé, C., Ridley, J. K., Calvert, D., Stevens, D. P., and Heywood, K. J.: Increasing vertical mixing to reduce Southern Ocean deep convection in NEMO3.4, Geosci. Model Dev., 8, 3119–3130, https://doi.org/10.5194/gmd-8-3119-2015, 2015b. a
Hewitt, H. T., Roberts, M. J., Hyder, P., Graham, T., Rae, J., Belcher, S. E., Bourdallé-Badie, R., Copsey, D., Coward, A., Guiavarch, C., Harris, C., Hill, R., Hirschi, J. J.-M., Madec, G., Mizielinski, M. S., Neininger, E., New, A. L., Rioual, J.-C., Sinha, B., Storkey, D., Shelly, A., Thorpe, L., and Wood, R. A.: The impact of resolving the Rossby radius at mid-latitudes in the ocean: results from a high-resolution version of the Met Office GC2 coupled model, Geosci. Model Dev., 9, 3655–3670, https://doi.org/10.5194/gmd-9-3655-2016, 2016. a, b
Hibler, W. D.: A Dynamic Thermodynamic Sea Ice Model, J. Phys.
Oceanogr., 9, 815–846,
https://doi.org/10.1175/1520-0485(1979)009<0815:adtsim>2.0.co;2, 1979. a
Hobbs, W., Palmer, M. D., and Monselesan, D.: An energy conservation analysis
of ocean drift in the CMIP5 global coupled models, J. Climate, 29,
1639–1653, https://doi.org/10.1175/JCLI-D-15-0477.1, 2016. a
Hogg, A. McC., Meredith, M. P., Chambers, D. P., Abrahamsen, E. P., Hughes,
C. W., and Morrison, A. K.: Recent trends in the Southern Ocean eddy field,
J. Geophys. Res., 120, 257–267, https://doi.org/10.1002/2014JC010470, 2015. a
Holland, P. R. and Kwok, R.: Wind-driven trends in Antarctic sea-ice drift,
Nat. Geosci., 5, 872–875, https://doi.org/10.1038/ngeo1627, 2012. a
Holmes, R. M., Zika, J. D., and England, M. H.: Diathermal Heat Transport in a Global Ocean Model, J. Phys. Oceanogr., 49, 141–161,
https://doi.org/10.1175/jpo-d-18-0098.1, 2019. a
Huang, B., Banzon, V. F., Freeman, E., Lawrimore, J., Liu, W., Peterson, T. C.,
Smith, T. M., Thorne, P. W., Woodruff, S. D., and Zhang, H.-M.: Extended
Reconstructed Sea Surface Temperature (ERSST), Version 4 [Annual and Global
Average], https://doi.org/10.7289/V5KD1VVF, 2019. a
Hunke, E. C.: Viscous–Plastic Sea Ice Dynamics with the EVP Model:
Linearization Issues, J. Comput. Phys., 170, 18–38,
https://doi.org/10.1006/jcph.2001.6710, 2001. a
Hunke, E. C.: Thickness sensitivities in the CICE sea ice model, Ocean
Modell., 34, 137–149, https://doi.org/10.1016/j.ocemod.2010.05.004, 2010. a
Hunke, E. C. and Dukowicz, J. K.: An Elastic–Viscous–Plastic Model for Sea
Ice Dynamics, J. Phys. Oceanogr., 27, 1849–1867,
https://doi.org/10.1175/1520-0485(1997)027<1849:aevpmf>2.0.co;2,
1997. a
Hunke, E. C. and Dukowicz, J. K.: The Elastic–Viscous–Plastic Sea Ice
Dynamics Model in General Orthogonal Curvilinear Coordinates on a
Sphere – Incorporation of Metric Terms, Mon. Weather Rev., 130,
1848–1865, https://doi.org/10.1175/1520-0493(2002)130<1848:tevpsi>2.0.co;2,
2002. a, b
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S.:
CICE: the Los Alamos Sea Ice Model Documentation and Software User's
Manual Version 5.1, Tech. Rep. LA-CC-06-012, Los Alamos National Laboratory,
Los Alamos NM 87545,
available at: http://oceans11.lanl.gov/trac/CICE/attachment/wiki/WikiStart/cicedoc.pdf?format=raw (last access: 21 January 2020),
2015. a
Hutchings, J. K., Heil, P., and Hibler, W. D.: Modeling Linear Kinematic
Features in Sea Ice, Mon. Weather Rev., 133, 3481–3497,
https://doi.org/10.1175/mwr3045.1,
2005. a
Hutter, N., Losch, M., and Menemenlis, D.: Scaling Properties of Arctic Sea
Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in
Satellite Observations, J. Geophys. Res.-Oceans, 123,
672–687, https://doi.org/10.1002/2017jc013119, 2018. a
Hyder, P., Edwards, J. M., Allan, R. P., Hewitt, H. T., Bracegirdle, T. J.,
Gregory, J. M., Wood, R. A., Meijers, A. J. S., Mulcahy, J., Field, P.,
Furtado, K., Bodas-Salcedo, A., Williams, K. D., Copsey, D., Josey, S. A.,
Liu, C., Roberts, C. D., Sanchez, C., Ridley, J., Thorpe, L., Hardiman,
S. C., Mayer, M., Berry, D. I., and Belcher, S. E.: Critical Southern Ocean
climate model biases traced to atmospheric model cloud errors, Nat.
Commun., 9, 3625, https://doi.org/10.1038/s41467-018-05634-2, 2018. a, b, c
Ivanova, N., Pedersen, L. T., Tonboe, R. T., Kern, S., Heygster, G., Lavergne, T., Sørensen, A., Saldo, R., Dybkjær, G., Brucker, L., and Shokr, M.: Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations, The Cryosphere, 9, 1797–1817, https://doi.org/10.5194/tc-9-1797-2015, 2015. a
Izumo, T., Montégut, C. B., Luo, J.-J., Behera, S. K., Masson, S., and
Yamagata, T.: The Role of the Western Arabian Sea Upwelling in Indian
Monsoon Rainfall Variability, J. Climate, 21, 5603–5623,
https://doi.org/10.1175/2008JCLI2158.1, 2008. a
Jackett, D. R., McDougall, T. J., Feistel, R., Wright, D. G., and Griffies,
S. M.: Algorithms for Density, Potential Temperature, Conservative
Temperature, and the Freezing Temperature of Seawater, J. Atmos.
Ocean. Technol., 23, 1709–1728, https://doi.org/10.1175/jtech1946.1, 2006. a
Jochum, M.: Impact of latitudinal variations in vertical diffusivity on climate
simulations, J. Geophys. Res.-Oceans, 114, C01010,
https://doi.org/10.1029/2008JC005030, 2009. a
Johns, W. E., Lee, T. N., Zhang, D., Zantopp, R., Liu, C.-T., and Yang, Y.: The
Kuroshio East of Taiwan: Moored Transport Observations from the WOCE
PCM-1 Array, J. Phys. Oceanogr., 31, 1031–1053,
https://doi.org/10.1175/1520-0485(2001)031<1031:tkeotm>2.0.co;2,
2001. a
Johnson, G. C., Sloyan, B. M., Kessler, W. S., and McTaggart, K. E.: Direct
measurements of upper ocean currents and water properties across the tropical
Pacific during the 1990s, Prog. Oceanogr., 52, 31–61,
https://doi.org/10.1016/s0079-6611(02)00021-6, 2002. a, b
Kawabe, M.: Variations of Current Path, Velocity, and Volume Transport of
the Kuroshio in Relation with the Large Meander, J. Phys.
Oceanogr., 25, 3103–3117,
https://doi.org/10.1175/1520-0485(1995)025<3103:VOCPVA>2.0.CO;2, 1995. a
Khoei, A. R. and Gharehbaghi, S. A.: The Superconvergence Patch Recovery
Technique and Data Transfer Operators in 3D Plasticity Problems, Finite Elem.
Anal. Des., 43, 630–648, https://doi.org/10.1016/j.finel.2007.01.002, 2007. a
Kimmritz, M., Danilov, S., and Losch, M.: On the convergence of the modified
elastic–viscous–plastic method for solving the sea ice momentum equation,
J. Comput. Phys., 296, 90–100,
https://doi.org/10.1016/j.jcp.2015.04.051, 2015. a
Kimmritz, M., Losch, M., and Danilov, S.: A comparison of viscous-plastic sea
ice solvers with and without replacement pressure, Ocean Modell., 115,
59–69, https://doi.org/10.1016/j.ocemod.2017.05.006, 2017. a
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., and Al., E.: The JRA-55
Reanalysis: General Specifications and Basic Characteristics, J.
Meteorol. Soc. Japan. Ser. II, 93, 5–48,
https://doi.org/10.2151/jmsj.2015-001, 2015. a
Kritsikis, E., Aechtner, M., Meurdesoif, Y., and Dubos, T.: Conservative interpolation between general spherical meshes, Geosci. Model Dev., 10, 425–431, https://doi.org/10.5194/gmd-10-425-2017, 2017. a
Large, W. G. and Yeager, S.: Diurnal to decadal global forcing for ocean and
sea-ice models: The data sets and flux climatologies, Technical Note
NCAR/TN-460+STR, NCAR, https://doi.org/10.5065/D6KK98Q6, 2004. a, b, c
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air-sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009. a, b
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A
review and a model with a nonlocal boundary layer parameterization, Rev.
Geophys., 32, 363–403, https://doi.org/10.1029/94RG01872, 1994. a
Large, W. G., Danabasoglu, G., McWilliams, J. C., Gent, P. R., and Bryan,
F. O.: Equatorial Circulation of a Global Ocean Climate Model with
Anisotropic Horizontal Viscosity, J. Phys. Oceanogr., 31,
518–536, https://doi.org/10.1175/1520-0485(2001)031<0518:ECOAGO>2.0.CO;2, 2001. a
Laurindo, L. C., Mariano, A. J., and Lumpkin, R.: An improved near-surface
velocity climatology for the global ocean from drifter observations, Deep Sea
Res. Part I, 124, 73–92,
https://doi.org/10.1016/j.dsr.2017.04.009, 2017. a
Lee, H.-C., Rosati, A., and Spelman, M. J.: Barotropic tidal mixing effects in a coupled climate model: Oceanic conditions in the Northern Atlantic, Ocean Modell., 11, 464–477, https://doi.org/10.1016/j.ocemod.2005.03.003, 2006. a
Lemieux, J.-F., Knoll, D. A., Tremblay, B., Holland, D. M., and Losch, M.: A
comparison of the Jacobian-free Newton–Krylov method and the EVP model
for solving the sea ice momentum equation with a viscous-plastic formulation:
A serial algorithm study, J. Comput. Phys., 231, 5926–5944,
https://doi.org/10.1016/j.jcp.2012.05.024, 2012. a
Lemieux, J.-F., Beaudoin, C., Dupont, F., Roy, F., Smith, G. C., Shlyaeva, A.,
Buehner, M., Caya, A., Chen, J., Carrieres, T., Pogson, L., DeRepentigny, P., Plante, A., Pestieau, P., Pellerin, P., Ritchie, H., Garric, G., and Ferry N.: The Regional Ice
Prediction System (RIPS): verification of forecast sea ice concentration,
Q. J. Roy. Meteorol. Soc., 142, 632–643,
https://doi.org/10.1002/qj.2526, 2015. a
Li, Y. and Han, W.: Decadal Sea Level Variations in the Indian Ocean
Investigated with HYCOM: Roles of Climate Modes, Ocean Internal
Variability, and Stochastic Wind Forcing, J. Climate, 28, 9143–9165,
https://doi.org/10.1175/JCLI-D-15-0252.1, 2015. a
Lipscomb, W. H. and Hunke, E. C.: Modeling Sea Ice Transport Using Incremental
Remapping, Mon. Weather Rev., 132, 1341–1354,
https://doi.org/10.1175/1520-0493(2004)132<1341:msitui>2.0.co;2,
2004. a
Lipscomb, W. H., Hunke, E. C., Maslowski, W., and Jakacki, J.: Ridging,
strength, and stability in high-resolution sea ice models, J.
Geophys. Res., 112, C03S91, https://doi.org/10.1029/2005jc003355, 2007. a
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E.,
Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R.,
Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Volume 1: Temperature,
NOAA Atlas NESDIS 73, 2013. a
Losch, M. and Danilov, S.: On solving the momentum equations of dynamic sea ice
models with implicit solvers and the elastic–viscous–plastic technique,
Ocean Modell., 41, 42–52, https://doi.org/10.1016/j.ocemod.2011.10.002, 2012. a
Lumpkin, R. and Speer, K.: Global Ocean Meridional Overturning, J.
Phys. Oceanogr., 37, 2550–2562, 2007. a
Manizza, M., Le Quéré, C., Watson, A. J., and Buitenhuis, E. T.:
Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in
a global model, Geophys. Res. Lett., 32, L05603, https://doi.org/10.1029/2004gl020778, 2005. a
Marshall, J. and Speer, K.: Closure of the meridional overturning circulation
through Southern Ocean upwelling, Nat. Geosci., 5, 171–180, 2012. a
McCarthy, G., Smeed, D., Johns, W., Frajka-Williams, E., Moat, B., Rayner, D.,
Baringer, M., Meinen, C., Collins, J., and Bryden, H.: Measuring the
Atlantic Meridional Overturning Circulation at 26∘ N, Prog.
Oceanogr., 130, 91–111, https://doi.org/10.1016/j.pocean.2014.10.006, 2015. a, b
McDougall, T. J. and McIntosh, P. C.: The Temporal-Residual-Mean Velocity.
Part II: Isopycnal Interpretation and the Tracer and Momentum Equations,
J. Phys. Oceanogr., 31, 1222–1246,
https://doi.org/10.1175/1520-0485(2001)031<1222:ttrmvp>2.0.co;2,
2001. a
Meier, W., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., and Stroeve, J.:
NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration,
Version 3, Tech. rep., NSIDC: National Snow and Ice Data Center, Boulder,
Colorado USA, https://doi.org/10.7265/N59P2ZTG, 2017. a
Meier, W. N., Peng, G., Scott, D. J., and Savoie, M. H.: Verification of a new
NOAA/NSIDC passive microwave sea-ice concentration climate record, Polar
Res., 33, 21004, https://doi.org/10.3402/polar.v33.21004, 2014. a
Meinen, C. S., Baringer, M. O., and Garcia, R. F.: Florida Current transport
variability: An analysis of annual and longer-period signals, Deep Sea
Res. Part I, 57, 835–846,
https://doi.org/10.1016/j.dsr.2010.04.001, 2010. a
Mu, D., Yan, H., and Feng, W.: Assessment of sea level variability
derived by EOF reconstruction, Geophys. J. Int., 214,
79–87, https://doi.org/10.1093/gji/ggy126, 2018. a
Murray, R. J.: Explicit Generation of Orthogonal Grids for Ocean Models,
J. Comput. Phys., 126, 251–273,
https://doi.org/10.1006/jcph.1996.0136, 1996. a
Oke, P. R., Griffin, D. A., Schiller, A., Matear, R. J., Fiedler, R., Mansbridge, J., Lenton, A., Cahill, M., Chamberlain, M. A., and Ridgway, K.: Evaluation of a near-global eddy-resolving ocean model, Geosci. Model Dev., 6, 591–615, https://doi.org/10.5194/gmd-6-591-2013, 2013. a
Pacanowski, R. C. and Gnanadesikan, A.: Transient Response in a Z-Level Ocean
Model That Resolves Topography with Partial Cells, Monthly Weather Review,
126, 3248–3270, https://doi.org/10.1175/1520-0493(1998)126<3248:triazl>2.0.co;2,
1998. a, b
Peng, G., Meier, W. N., Scott, D. J., and Savoie, M. H.: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring, Earth Syst. Sci. Data, 5, 311–318, https://doi.org/10.5194/essd-5-311-2013, 2013. a
Potemra, J. T. and Lukas, R.: Seasonal to interannual modes of sea level
variability in the western Pacific and eastern Indian oceans, Geophys.
Res. Lett., 26, 365–368, https://doi.org/10.1029/1998GL900280, 1999. a
Pringle, D. J., Eicken, H., Trodahl, H. J., and Backstrom, L. G. E.: Thermal
conductivity of landfast Antarctic and Arctic sea ice, J.
Geophys. Res., 112, C04017, https://doi.org/10.1029/2006jc003641, 2007. a
Redi, M. H.: Oceanic Isopycnal Mixing by Coordinate Rotation, J. Phys.
Oceanogr., 12, 1154–1158,
https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2, 1982. a, b
Renault, L., Molemaker, M. J., McWilliams, J. C., Shchepetkin, A. F.,
Lemarié, F., Chelton, D., Illig, S., and Hall, A.: Modulation of Wind
Work by Oceanic Current Interaction with the Atmosphere, J. Phys.
Oceanogr., 46, 1685–1704, https://doi.org/10.1175/JPO-D-15-0232.1, 2016. a, b
Ridgway, K. R. and Dunn, J. R.: Mesoscale structure of the mean East
Australian Current System and its relationship with topography,
Prog. Oceanogr., 56, 189–222,
https://doi.org/10.1016/S0079-6611(03)00004-1, 2003. a
Rio, M. H., Guinehut, S., and Larnicol, G.: New CNES-CLS09 global mean
dynamic topography computed from the combination of GRACE data, altimetry,
and in situ measurements, J. Geophys. Res.-Oceans, 116, C07018,
https://doi.org/10.1029/2010JC006505, 2011. a
Rossby, T.: The North Atlantic Current and surrounding waters: At the
crossroads, Rev. Geophys., 34, 463–481, 1996. a
Sallée, J. B., Shuckburgh, E., Bruneau, N., Meijers, A. J., Bracegirdle,
T. J., and Wang, Z.: Assessment of Southern Ocean mixed-layer depths in
CMIP5 models: Historical bias and forcing response, J. Geophys. Res.-Ocean.,
118, 1845–1862, https://doi.org/10.1002/jgrc.20157, 2013. a
Schlosser, E., Haumann, F. A., and Raphael, M. N.: Atmospheric influences on the anomalous 2016 Antarctic sea ice decay, The Cryosphere, 12, 1103–1119, https://doi.org/10.5194/tc-12-1103-2018, 2018. a
Schmidt, M.: A benchmark for the parallel code used in FMS and MOM-4, Ocean
Modell., 17, 49–67, https://doi.org/10.1016/j.ocemod.2006.11.002, 2007. a
Sen Gupta, A., Muir, L. C., Brown, J. N., Phipps, S. J., Durack, P. J.,
Monselesan, D., and Wijffels, S. E.: Climate Drift in the CMIP3 Models,
J. Climate, 25, 4621–4640, https://doi.org/10.1175/JCLI-D-11-00312.1,
2013. a, b
Shirasawa, K. and Ingram, R. G.: Currents and turbulent fluxes under the
first-year sea ice in Resolute Passage, Northwest Territories, Canada,
J. Mar. Syst., 11, 21–32, https://doi.org/10.1016/s0924-7963(96)00024-3, 1997. a
Simmons, H. L., Jayne, S. R., Laurent, L. C. S., and Weaver, A. J.: Tidally
driven mixing in a numerical model of the ocean general circulation, Ocean
Model., 6, 245–263, https://doi.org/10.1016/S1463-5003(03)00011-8, 2004. a
Sloyan, B. M. and Rintoul, S. R.: The Southern Ocean limb of the global deep
overturning circulation, J. Phys. Oceanogr., 31, 143–173, 2001. a
Sloyan, B. M., Ridgway, K. R., and Cowley, R.: The East Australian Current
and property transport at 27 S from 2012 to 2013, J. Phys.
Oceanogr., 46, 993–1008, 2016. a
Sprintall, J., Wijffels, S. E., Molcard, R., and Jaya, I.: Direct estimates of
the Indonesian Throughflow entering the Indian Ocean: 2004–2006, J.
Geophys. Res., 114, C07001, https://doi.org/10.1029/2008JC005257, 2009. a, b
Stacey, M. W., Pond, S., and Nowak, Z. P.: A Numerical Model of the Circulation
in Knight Inlet, British Columbia, Canada, J. Phys.
Oceanogr., 25, 1037–1062, 1995. a
Stewart, K., Hogg, A. McC., Griffies, S., Heerdegen, A., Ward, M., Spence, P., and
England, M.: Vertical resolution of baroclinic modes in global ocean models,
Ocean Modell., 113, 50–65, https://doi.org/10.1016/j.ocemod.2017.03.012, 2017. a, b
Stewart, K. D., Kim, W., Urakawa, S., Hogg, A. McC., Yeager, S., Tsujino, H.,
Nakano, H., Kiss, A. E., and Danabasoglu, G.: JRA55-based Repeat Year
Forcing datasets for driving ocean-sea-ice models, Ocean Modell., 147, 101557, https://doi.org/10.1016/j.ocemod.2019.101557, 2020. a, b
Storkey, D., Blaker, A. T., Mathiot, P., Megann, A., Aksenov, Y., Blockley, E. W., Calvert, D., Graham, T., Hewitt, H. T., Hyder, P., Kuhlbrodt, T., Rae, J. G. L., and Sinha, B.: UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions, Geosci. Model Dev., 11, 3187–3213, https://doi.org/10.5194/gmd-11-3187-2018, 2018. a, b
Stössel, A., Zhang, Z., and Vihma, T.: The effect of alternative real-time
wind forcing on Southern Ocean sea ice simulations, J. Geophys.
Res., 116, C11021, https://doi.org/10.1029/2011jc007328, 2011. a
Stroeve, J. and Notz, D.: Changing state of Arctic sea ice across all
seasons, Environ. Res. Lett., 13, 103001,
https://doi.org/10.1088/1748-9326/aade56, 2018. a
Stroeve, J. C., Markus, T., Boisvert, L., Miller, J., and Barrett, A.: Changes
in Arctic melt season and implications for sea ice loss, Geophys.
Res. Lett., 41, 1216–1225, https://doi.org/10.1002/2013gl058951, 2014. a
Suresh, A. and Huynh, H.: Accurate Monotonicity-Preserving Schemes with
Runge-Kutta Time Stepping, J. Comput. Phys., 136, 83–99,
https://doi.org/10.1006/jcph.1997.5745, 1997. a
Suzuki, T., Yamazaki, D., Tsujino, H., Komuro, Y., Nakano, H., and Urakawa, S.:
A dataset of continental river discharge based on JRA-55 for use in a
global ocean circulation model, J. Oceanogr., 74, 421–429,
https://doi.org/10.1007/s10872-017-0458-5, 2018. a
Sweeney, C., Gnanadesikan, A., Griffies, S. M., Harrison, M. J., Rosati, A. J.,
and Samuels, B. L.: Impacts of Shortwave Penetration Depth on Large-Scale
Ocean Circulation and Heat Transport, J. Phys. Oceanogr., 35, 1103–1119,
https://doi.org/10.1175/JPO2740.1, 2005. a
Taboada, F. G., Stock, C. A., Griffies, S. M., Dunne, J., John, J. G., Small,
R. J., and Tsujino, H.: Surface winds from atmospheric reanalysis lead to
contrasting oceanic forcing and coastal upwelling patterns, Ocean Modell.,
133, 79–111, https://doi.org/10.1016/j.ocemod.2018.11.003, 2019. a, b
Talley, L. D.: Closure of the Global Overturning Circulation Through the
Indian, Pacific, and Southern Oceans: Schematics and Transports,
Oceanography, 26, 80–97, https://doi.org/10.5670/oceanog.2013.07, 2013. a
Taschetto, A. S., Sen Gupta, A., Hendon, H. H., Ummenhofer, C. C., and England, M. H.: The contribution of Indian Ocean sea surface temperature anomalies on Australian summer rainfall during EL Niño events, J. Climate, 24, 3734–3747, https://doi.org/10.1175/2011JCLI3885.1, 2011. a
Thompson, A. F., Stewart, A. L., and Bischoff, T.: A Multibasin Residual-Mean
Model for the Global Overturning Circulation, J. Phys.
Oceanogr., 46, 2583–2604, https://doi.org/10.1175/JPO-D-15-0204.1, 2016. a
Thorndike, A. S., Rothrock, D. A., Maykut, G. A., and Colony, R.: The thickness
distribution of sea ice, J. Geophys. Res., 80, 4501–4513,
https://doi.org/10.1029/jc080i033p04501, 1975. a
Trenberth, K. E. and Caron, J. M.: Estimates of Meridional Atmosphere and Ocean
Heat Transports, J. Climate, 14, 3433–3443,
https://doi.org/10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2, 2001. a
Tseng, Y.-H., Lin, H., Chen, H.-C., Thompson, K., Bentsen, M., W. Böning, C., Bozec, A., Cassou, C., Chassignet, E., Chow, C. H., Danabasoglu, G., Danilov, S., Farneti, R., Fogli, P. G., Fujii, Y., Griffies, S., Ilicak, M., Jung, T., Masina, S., Navarra, A., Patara, L., Samuels, B. L., Scheinert, M., Sidorenko, D., Sui, C.-H., Tsujino, H., Valcke, S., Voldoire, A., Wang, Q., and Yeager, S.: North and Equatorial Pacific Ocean
Circulation in the CORE-II Hindcast Simulations, Ocean Modell., 104, 143–170,
https://doi.org/10.1016/j.ocemod.2016.06.003, 2016. a, b
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C. W., Bozec, A., Chassignet, E. P., Curchitser, E., Dias, F. B., Durack, P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C., Kobayashi, S., Komuro, Y., Large, W. G., Sommer, J. L., Marsland, S. J., Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.:
JRA-55 based surface dataset for driving ocean – sea-ice models
(JRA55-do), Ocean Modell., 130, 79–139, https://doi.org/10.1016/j.ocemod.2018.07.002, 2018. a, b, c, d, e, f, g, h, i
Turner, A. K., Hunke, E. C., and Bitz, C. M.: Two modes of sea-ice gravity
drainage: A parameterization for large-scale modeling, J. Geophys.
Res.-Oceans, 118, 2279–2294, https://doi.org/10.1002/jgrc.20171, 2013. a
Turner, J. and Comiso, J.: Solve Antarctica's sea-ice puzzle, Nature, 547,
275–277, https://doi.org/10.1038/547275a, 2017. a
Valcke, S., Craig, T., and Coquart, L.: OASIS3-MCT User Guide: OASIS3-MCT
2.0, Cerfacs/cnrs suc ura no1875, cerfacs tr/cmgc/13/17, CERFACS/CNRS,
available at: http://www.cerfacs.fr/oa4web/oasis3-mct/oasis3mct_UserGuide.pdf (last access: 21 January 2020),
2013.
a
Valdivieso, M., Haines, K., Balmaseda, M., Chang, Y.-S., Drevillon, M., Ferry,
N., Fujii, Y., Köhl, A., Storto, A., Toyoda, T., Wang, X., Waters, J.,
Xue, Y., Yin, Y., Barnier, B., Hernandez, F., Kumar, A., Lee, T., Masina, S.,
and Andrew Peterson, K.: An assessment of air–sea heat fluxes from ocean and
coupled reanalyses, Clim. Dynam., 49, 983–1008,
https://doi.org/10.1007/s00382-015-2843-3, 2017. a
Wang, Q., Ilicak, M., Gerdes, R., Drange, H., Aksenov, Y., Bailey, D. A., Bentsen, M., Biastoch, A., Bozec, A., Böning, C., Cassou, C., Chassignet, E., Coward, A. C., Curry, B., Danabasoglu, G., Danilov, S., Fernandez, E., Fogli, P. G., Fujii, Y., Griffies, S. M., Iovino, D., Jahn, A., Jung, T., Large, W. G., Lee, C., Lique, C., Lu, J., Masina, S., Nurser, A. G., Rabe, B., Roth, C., Salas y Mélia, D., Samuels, B. L., Spence, P., Tsujino, H., Valcke, S., Voldoire, A., Wang, X., and Yeager, S. G.: An
assessment of the Arctic Ocean in a suite of interannual CORE-II
simulations. Part I: Sea ice and solid freshwater, Ocean Modell., 99,
110–132, https://doi.org/10.1016/j.ocemod.2015.12.008, 2016. a
Wenegrat, J. O., Thomas, L. N., Gula, J., and McWilliams, J. C.: Effects of the
Submesoscale on the Potential Vorticity Budget of Ocean Mode Waters, J. Phys. Oceanogr., 48, 2141–2165, https://doi.org/10.1175/jpo-d-17-0219.1,
2018. a
Xie, S. P., Annamalai, H., Schott, F. A., and McCreary, J. P.: Structure and
mechanisms of South Indian Ocean climate variability, J. Climate,
15, 864–878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2, 2002. a, b
Yokoi, T., Tozuka, T., and Yamagata, T.: Seasonal variation of the Seychelles
Dome, J. Climate, 21, 3740–3754, https://doi.org/10.1175/2008JCLI1957.1,
2008. a
Zhang, J. and Rothrock, D. A.: Modeling Global Sea Ice with a Thickness and
Enthalpy Distribution Model in Generalized Curvilinear Coordinates, Mon.
Weather Rev., 131, 845–861,
https://doi.org/10.1175/1520-0493(2003)131<0845:mgsiwa>2.0.co;2,
2003. a
Zhang, R., Delworth, T. L., Rosati, A., Anderson, W. G., Dixon, K. W., Lee,
H. C., and Zeng, F.: Sensitivity of the North Atlantic Ocean Circulation to
an abrupt change in the Nordic Sea overflow in a high resolution global
coupled climate model, J. Geophys. Res.-Oceans, 116, 1–14,
https://doi.org/10.1029/2011JC007240, 2011. a, b
Zhang, Z., Vihma, T., Stössel, A., and Uotila, P.: The role of wind forcing
from operational analyses for the model representation of Antarctic coastal
sea ice, Ocean Modell., 94, 95–111, https://doi.org/10.1016/j.ocemod.2015.07.019,
2015. a
Zweng, M., Reagan, J., Antonov, J., Locarnini, R., Mishonov, A., Boyer, T., Garcia, H., Baranova, O., Johnson, D., Seidov, D., and Biddle, M.: World Ocean
Atlas 2013, Volume 2: Salinity, NOAA Atlas NESDIS 74, 2013. a
Short summary
We describe new computer model configurations which simulate the global ocean and sea ice at three resolutions. The coarsest resolution is suitable for multi-century climate projection experiments, whereas the finest resolution is designed for more detailed studies over time spans of decades. The paper provides technical details of the model configurations and an assessment of their performance relative to observations.
We describe new computer model configurations which simulate the global ocean and sea ice at...