Articles | Volume 13, issue 5
https://doi.org/10.5194/gmd-13-2487-2020
https://doi.org/10.5194/gmd-13-2487-2020
Methods for assessment of models
 | 
29 May 2020
Methods for assessment of models |  | 29 May 2020

Correcting a bias in a climate model with an augmented emulator

Doug McNeall, Jonny Williams, Richard Betts, Ben Booth, Peter Challenor, Peter Good, and Andy Wiltshire

Related authors

Constraining the carbon cycle in JULES-ES-1.0
Douglas McNeall, Eddy Robertson, and Andy Wiltshire
Geosci. Model Dev., 17, 1059–1089, https://doi.org/10.5194/gmd-17-1059-2024,https://doi.org/10.5194/gmd-17-1059-2024, 2024
Short summary
The impact of structural error on parameter constraint in a climate model
Doug McNeall, Jonny Williams, Ben Booth, Richard Betts, Peter Challenor, Andy Wiltshire, and David Sexton
Earth Syst. Dynam., 7, 917–935, https://doi.org/10.5194/esd-7-917-2016,https://doi.org/10.5194/esd-7-917-2016, 2016
Short summary
The mechanisms of North Atlantic CO2 uptake in a large Earth System Model ensemble
P. R. Halloran, B. B. B. Booth, C. D. Jones, F. H. Lambert, D. J. McNeall, I. J. Totterdell, and C. Völker
Biogeosciences, 12, 4497–4508, https://doi.org/10.5194/bg-12-4497-2015,https://doi.org/10.5194/bg-12-4497-2015, 2015
Short summary
The potential of an observational data set for calibration of a computationally expensive computer model
D. J. McNeall, P. G. Challenor, J. R. Gattiker, and E. J. Stone
Geosci. Model Dev., 6, 1715–1728, https://doi.org/10.5194/gmd-6-1715-2013,https://doi.org/10.5194/gmd-6-1715-2013, 2013
The impact of climate mitigation on projections of future drought
I. H. Taylor, E. Burke, L. McColl, P. D. Falloon, G. R. Harris, and D. McNeall
Hydrol. Earth Syst. Sci., 17, 2339–2358, https://doi.org/10.5194/hess-17-2339-2013,https://doi.org/10.5194/hess-17-2339-2013, 2013

Related subject area

Climate and Earth system modeling
Evaluation of CORDEX ERA5-forced NARCliM2.0 regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025,https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Design, evaluation, and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025,https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Amending the algorithm of aerosol–radiation interactions in WRF-Chem (v4.4)
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025,https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
The very-high-resolution configuration of the EC-Earth global model for HighResMIP
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025,https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
GOSI9: UK Global Ocean and Sea Ice configurations
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025,https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary

Cited articles

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003. a
Andrianakis, I., Vernon, I. R., McCreesh, N., McKinley, T. J., Oakley, J. E., Nsubuga, R. N., Goldstein, M., and White, R. G.: Bayesian history matching of complex infectious disease models using emulation: a tutorial and a case study on HIV in Uganda, PLoS Comput. Biol., 11, e1003968, https://doi.org/10.1371/journal.pcbi.1003968, 2015. a
Arendt, P. D., Apley, D. W., and Chen, W.: Quantification of model uncertainty: Calibration, model discrepancy, and identifiability, J. Mech. Design, 134, 100908, https://doi.org/10.1115/1.4007390, 2012a. a
Arendt, P. D., Apley, D. W., Chen, W., Lamb, D., and Gorsich, D.: Improving identifiability in model calibration using multiple responses, J. Mech. Design, 134, 100909, https://doi.org/10.1115/1.4007573, 2012b. a
Betts, R. A., Boucher O., Collins M., Cox, P. M., Falloon P. D., Gedney N., Hemming D. L., Huntingford C., Jones C. D., Sexton D. M., and Webb M. J.: Projected increase in continental runoff due to plant responses to increasing carbon dioxide, Nature, 448, 1037–1041, https://doi.org/10.1038/nature06045, 2007.  a
Download
Short summary
In the climate model FAMOUS, matching the modelled Amazon rainforest to observations required different land surface parameter settings than for other forests. It was unclear if this discrepancy was due to a bias in the modelled climate or an error in the land surface component of the model. Correcting the climate of the model with a statistical model corrects the simulation of the Amazon forest, suggesting that the land surface component of the model is not the source of the discrepancy.
Share