Articles | Volume 13, issue 3
https://doi.org/10.5194/gmd-13-1685-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-1685-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
COSMO-BEP-Tree v1.0: a coupled urban climate model with explicit representation of street trees
Gianluca Mussetti
CORRESPONDING AUTHOR
Laboratory for Air Pollution/Environmental Technology, Empa, 8600 Dübendorf, Switzerland
Laboratory of Multiscale Studies in Building Physics, Empa, 8600 Dübendorf, Switzerland
Chair of Building Physics, ETH Zürich, 8093 Zürich, Switzerland
now at: Institute for Atmospheric and Climate Science, ETH Zürich, 8092 Zürich, Switzerland
Laboratory for Air Pollution/Environmental Technology, Empa, 8600 Dübendorf, Switzerland
Stephan Henne
Laboratory for Air Pollution/Environmental Technology, Empa, 8600 Dübendorf, Switzerland
Jonas Allegrini
Laboratory of Multiscale Studies in Building Physics, Empa, 8600 Dübendorf, Switzerland
Chair of Building Physics, ETH Zürich, 8093 Zürich, Switzerland
E. Scott Krayenhoff
School of Environmental Sciences, University of Guelph, Guelph ON N1G 2W1, Canada
Sebastian Schubert
Geography Department, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
Christian Feigenwinter
Research Group Meteorology, Climatology, and Remote Sensing, University of Basel, 4055 Basel, Switzerland
Roland Vogt
Research Group Meteorology, Climatology, and Remote Sensing, University of Basel, 4055 Basel, Switzerland
Andreas Wicki
Research Group Meteorology, Climatology, and Remote Sensing, University of Basel, 4055 Basel, Switzerland
Jan Carmeliet
Chair of Building Physics, ETH Zürich, 8093 Zürich, Switzerland
Related authors
No articles found.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
Robert Hanfland, Dominik Brunner, Christiane Voigt, Alina Fiehn, Anke Roiger, and Margit Pattantyús-Ábrahám
EGUsphere, https://doi.org/10.5194/egusphere-2023-245, https://doi.org/10.5194/egusphere-2023-245, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In order to simulate the 3D structure of the exhaust plume within the planetary boundary layer in agreement with real plumes, we analysed the turbulence properties of five different turbulence models to understand their abilities of mixing and compared their simulated 3D dispersion patterns with airborn in situ measurements. The deviations between simulations and observation are quantified revealing one turbulence model that agrees best under the given atmosperic conditions.
Dominik Brunner, Gerrit Kuhlmann, Stephan Henne, Erik Koene, Bastian Kern, Sebastian Wolff, Christiane Voigt, Patrick Jöckel, Christoph Kiemle, Anke Roiger, Alina Fiehn, Sven Krautwurst, Konstantin Gerilowski, Heinrich Bovensmann, Jakob Borchardt, Michal Galkowski, Christoph Gerbig, Julia Marshall, Andrzej Klonecki, Pascal Prunet, Robert Hanfland, Margit Pattantyús-Ábrahám, Andrzej Wyszogrodzki, and Andreas Fix
Atmos. Chem. Phys., 23, 2699–2728, https://doi.org/10.5194/acp-23-2699-2023, https://doi.org/10.5194/acp-23-2699-2023, 2023
Short summary
Short summary
We evaluated six atmospheric transport models for their capability to simulate the CO2 plumes from two of the largest power plants in Europe by comparing the models against aircraft observations collected during the CoMet (Carbon Dioxide and Methane Mission) campaign in 2018. The study analyzed how realistically such plumes can be simulated at different model resolutions and how well the planned European satellite mission CO2M will be able to quantify emissions from power plants.
Foteini Stavropoulou, Katarina Vinković, Bert Kers, Marcel de Vries, Steven van Heuven, Piotr Korbeń, Martina Schmidt, Julia Wietzel, Pawel Jagoda, Jaroslav M. Necki, Jakub Bartyzel, Hossein Maazallahi, Malika Menoud, Carina van der Veen, Sylvia Walter, Béla Tuzson, Jonas Ravelid, Randulph Paulo Morales, Lukas Emmenegger, Dominik Brunner, Michael Steiner, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, Hugo Denier van der Gon, Antonio Delre, Maklawe Essonanawe Edjabou, Charlotte Scheutz, Marius Corbu, Sebastian Iancu, Denisa Moaca, Alin Scarlat, Alexandru Tudor, Ioana Vizireanu, Andreea Calcan, Magdalena Ardelean, Sorin Ghemulet, Alexandru Pana, Aurel Constantinescu, Lucian Cusa, Alexandru Nica, Calin Baciu, Cristian Pop, Andrei Radovici, Alexandru Mereuta, Horatiu Stefanie, Bas Hermans, Stefan Schwietzke, Daniel Zavala-Araiza, Huilin Chen, and Thomas Röckmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-247, https://doi.org/10.5194/egusphere-2023-247, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In this study, we quantify CH4 emissions from onshore oil production sites in Romania at source and facility level using a combination of ground-based measurement techniques. We show that the total CH4 emissions in our studied areas are much higher than the reported emissions to UNFCCC. On the component scale, up to three-quarters of the detected emissions are related to operational venting. Our results suggest that O&G production infrastructure in Romania holds a massive mitigation potential.
Ioannis Katharopoulos, Dominique Rust, Martin K. Vollmer, Dominik Brunner, Stefan Reimann, Simon J. O'Doherty, Dickon Young, Kieran M. Stanley, Tanja Schuck, Jgor Arduini, Lukas Emmenegger, and Stephan Henne
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-723, https://doi.org/10.5194/acp-2022-723, 2023
Preprint under review for ACP
Short summary
Short summary
The effectiveness of climate change mitigation needs to be scrutinized by monitoring greenhouse gas (GHG) emissions. Countries report their emissions to the UN in a bottom-up manner. By combining atmospheric observations and transport models someone can independently validate emission estimates in a top-down fashion. We report Swiss emissions of synthetic GHGs based on kilometer-scale transport and inverse modeling, highlighting the role of appropriate resolution in complex terrain.
Alison L. Redington, Alistair J. Manning, Stephan Henne, Francesco Graziosi, Luke M. Western, Jgor Arduini, Anita L. Ganesan, Christina M. Harth, Michela Maione, Jens Mühle, Simon O'Doherty, Joseph Pitt, Stefan Reimann, Matthew Rigby, Peter K. Salameh, Peter G. Simmonds, T. Gerard Spain, Kieran Stanley, Martin K. Vollmer, Ray F. Weiss, and Dickon Young
EGUsphere, https://doi.org/10.5194/egusphere-2023-40, https://doi.org/10.5194/egusphere-2023-40, 2023
Short summary
Short summary
Chlorofluorocarbons were used in Europe pre-1990, before legislation controlled production and use to stop further damage to the stratospheric ozone layer. Global emissions have then decreased sharply, but the rate of decline of CFC-11 recently slowed, which was in part attributed to illegal emission from Eastern China. This four model study concludes that emissions of CFC-11 in Western Europe are unlikely to be the result of new production and that the rate of decline of CFC-11 is as expected.
Prabhakar Shrestha, Jana Mendrok, and Dominik Brunner
Atmos. Chem. Phys., 22, 14095–14117, https://doi.org/10.5194/acp-22-14095-2022, https://doi.org/10.5194/acp-22-14095-2022, 2022
Short summary
Short summary
The study extends the Terrestrial Systems Modeling Platform with gas-phase chemistry aerosol dynamics and a radar forward operator to enable detailed studies of aerosol–cloud–precipitation interactions. This is demonstrated using a case study of a deep convective storm, which showed that the strong updraft in the convective core of the storm produced aerosol-tower-like features, which affected the size of the hydrometeors and the simulated polarimetric features (e.g., ZDR and KDP columns).
Peter Bergamaschi, Arjo Segers, Dominik Brunner, Jean-Matthieu Haussaire, Stephan Henne, Michel Ramonet, Tim Arnold, Tobias Biermann, Huilin Chen, Sebastien Conil, Marc Delmotte, Grant Forster, Arnoud Frumau, Dagmar Kubistin, Xin Lan, Markus Leuenberger, Matthias Lindauer, Morgan Lopez, Giovanni Manca, Jennifer Müller-Williams, Simon O'Doherty, Bert Scheeren, Martin Steinbacher, Pamela Trisolino, Gabriela Vítková, and Camille Yver Kwok
Atmos. Chem. Phys., 22, 13243–13268, https://doi.org/10.5194/acp-22-13243-2022, https://doi.org/10.5194/acp-22-13243-2022, 2022
Short summary
Short summary
We present a novel high-resolution inverse modelling system, "FLEXVAR", and its application for the inverse modelling of European CH4 emissions in 2018. The new system combines a high spatial resolution of 7 km x 7 km with a variational data assimilation technique, which allows CH4 emissions to be optimized from individual model grid cells. The high resolution allows the observations to be better reproduced, while the derived emissions show overall good consistency with two existing models.
J. Robert Logan, Kathe E. Todd-Brown, Kathryn M. Jacobson, Peter J. Jacobson, Roland Vogt, and Sarah E. Evans
Biogeosciences, 19, 4129–4146, https://doi.org/10.5194/bg-19-4129-2022, https://doi.org/10.5194/bg-19-4129-2022, 2022
Short summary
Short summary
Understanding how plants decompose is important for understanding where the atmospheric CO2 they absorb ends up after they die. In forests, decomposition is controlled by rain but not in deserts. We performed a 2.5-year study in one of the driest places on earth (the Namib desert in southern Africa) and found that fog and dew, not rainfall, closely controlled how quickly plants decompose. We also created a model to help predict decomposition in drylands with lots of fog and/or dew.
Simone M. Pieber, Béla Tuzson, Stephan Henne, Ute Karstens, Christoph Gerbig, Frank-Thomas Koch, Dominik Brunner, Martin Steinbacher, and Lukas Emmenegger
Atmos. Chem. Phys., 22, 10721–10749, https://doi.org/10.5194/acp-22-10721-2022, https://doi.org/10.5194/acp-22-10721-2022, 2022
Short summary
Short summary
Understanding regional greenhouse gas emissions into the atmosphere is a prerequisite to mitigate climate change. In this study, we investigated the regional contributions of carbon dioxide (CO2) at the location of the high Alpine observatory Jungfraujoch (JFJ, Switzerland, 3580 m a.s.l.). To this purpose, we combined receptor-oriented atmospheric transport simulations for CO2 concentration in the period 2009–2017 with stable carbon isotope (δ13C–CO2) information.
Luke M. Western, Alison L. Redington, Alistair J. Manning, Cathy M. Trudinger, Lei Hu, Stephan Henne, Xuekun Fang, Lambert J. M. Kuijpers, Christina Theodoridi, David S. Godwin, Jgor Arduini, Bronwyn Dunse, Andreas Engel, Paul J. Fraser, Christina M. Harth, Paul B. Krummel, Michela Maione, Jens Mühle, Simon O'Doherty, Hyeri Park, Sunyoung Park, Stefan Reimann, Peter K. Salameh, Daniel Say, Roland Schmidt, Tanja Schuck, Carolina Siso, Kieran M. Stanley, Isaac Vimont, Martin K. Vollmer, Dickon Young, Ronald G. Prinn, Ray F. Weiss, Stephen A. Montzka, and Matthew Rigby
Atmos. Chem. Phys., 22, 9601–9616, https://doi.org/10.5194/acp-22-9601-2022, https://doi.org/10.5194/acp-22-9601-2022, 2022
Short summary
Short summary
The production of ozone-destroying gases is being phased out. Even though production of one of the main ozone-depleting gases, called HCFC-141b, has been declining for many years, the amount that is being released to the atmosphere has been increasing since 2017. We do not know for sure why this is. A possible explanation is that HCFC-141b that was used to make insulating foams many years ago is only now escaping to the atmosphere, or a large part of its production is not being reported.
Horim Kim, Michael Müller, Stephan Henne, and Christoph Hüglin
Atmos. Meas. Tech., 15, 2979–2992, https://doi.org/10.5194/amt-15-2979-2022, https://doi.org/10.5194/amt-15-2979-2022, 2022
Short summary
Short summary
In this study, the performance of electrochemical sensors for NO and NO2 for measuring air quality was determined over a longer operating period. The performance of NO sensors remained reliable for more than 18 months. However, the NO2 sensors showed decreasing performance over time. During deployment, we found that the NO2 sensors can distinguish general pollution levels, but they proved unsuitable for accurate measurements due to significant biases.
Randulph Morales, Jonas Ravelid, Katarina Vinkovic, Piotr Korbeń, Béla Tuzson, Lukas Emmenegger, Huilin Chen, Martina Schmidt, Sebastian Humbel, and Dominik Brunner
Atmos. Meas. Tech., 15, 2177–2198, https://doi.org/10.5194/amt-15-2177-2022, https://doi.org/10.5194/amt-15-2177-2022, 2022
Short summary
Short summary
Mapping trace gas emission plumes using in situ measurements from unmanned aerial vehicles (UAVs) is an emerging and attractive possibility to quantify emissions from localized sources. We performed an extensive controlled-release experiment to develop an optimal quantification method and to determine the related uncertainties under various environmental and sampling conditions. Our approach was successful in quantifying local methane sources from drone-based measurements.
Gerrit Kuhlmann, Ka Lok Chan, Sebastian Donner, Ying Zhu, Marc Schwaerzel, Steffen Dörner, Jia Chen, Andreas Hueni, Duc Hai Nguyen, Alexander Damm, Annette Schütt, Florian Dietrich, Dominik Brunner, Cheng Liu, Brigitte Buchmann, Thomas Wagner, and Mark Wenig
Atmos. Meas. Tech., 15, 1609–1629, https://doi.org/10.5194/amt-15-1609-2022, https://doi.org/10.5194/amt-15-1609-2022, 2022
Short summary
Short summary
Nitrogen dioxide (NO2) is an air pollutant whose concentration often exceeds air quality guideline values, especially in urban areas. To map the spatial distribution of NO2 in Munich, we conducted the Munich NO2 Imaging Campaign (MuNIC), where NO2 was measured with stationary, mobile, and airborne in situ and remote sensing instruments. The campaign provides a unique dataset that has been used to compare the different instruments and to study the spatial variability of NO2 and its sources.
Dominique Rust, Ioannis Katharopoulos, Martin K. Vollmer, Stephan Henne, Simon O'Doherty, Daniel Say, Lukas Emmenegger, Renato Zenobi, and Stefan Reimann
Atmos. Chem. Phys., 22, 2447–2466, https://doi.org/10.5194/acp-22-2447-2022, https://doi.org/10.5194/acp-22-2447-2022, 2022
Short summary
Short summary
Artificial halocarbons contribute to ozone layer depletion and to global warming. We measured the atmospheric concentrations of halocarbons at the Beromünster tower, modelled the Swiss emissions, and compared the results to the internationally reported Swiss emissions inventory. For most of the halocarbons, we found good agreement, whereas one refrigerant might be overestimated in the inventory. In addition, we present first emission estimates of the newest types of halocarbons.
Mohamed H. Salim, Sebastian Schubert, Jaroslav Resler, Pavel Krč, Björn Maronga, Farah Kanani-Sühring, Matthias Sühring, and Christoph Schneider
Geosci. Model Dev., 15, 145–171, https://doi.org/10.5194/gmd-15-145-2022, https://doi.org/10.5194/gmd-15-145-2022, 2022
Short summary
Short summary
Radiative transfer processes are the main energy transport mechanism in urban areas which influence the surface energy budget and drive local convection. We show here the importance of each process to help modellers decide on how much detail they should include in their models to parameterize radiative transfer in urban areas. We showed how the flow field may change in response to these processes and the essential processes needed to assure acceptable quality of the numerical simulations.
Cyril Brunner, Benjamin T. Brem, Martine Collaud Coen, Franz Conen, Maxime Hervo, Stephan Henne, Martin Steinbacher, Martin Gysel-Beer, and Zamin A. Kanji
Atmos. Chem. Phys., 21, 18029–18053, https://doi.org/10.5194/acp-21-18029-2021, https://doi.org/10.5194/acp-21-18029-2021, 2021
Short summary
Short summary
Special microscopic particles called ice-nucleating particles (INPs) are essential for ice crystals to form in the atmosphere. INPs are sparse and their atmospheric concentration and properties are not well understood. Mineral dust particles make up a significant fraction of INPs but how much remains unknown. Here, we address this knowledge gap by studying periods when mineral particles are present in large quantities at a mountaintop station in central Europe.
Larissa Lacher, Hans-Christian Clemen, Xiaoli Shen, Stephan Mertes, Martin Gysel-Beer, Alireza Moallemi, Martin Steinbacher, Stephan Henne, Harald Saathoff, Ottmar Möhler, Kristina Höhler, Thea Schiebel, Daniel Weber, Jann Schrod, Johannes Schneider, and Zamin A. Kanji
Atmos. Chem. Phys., 21, 16925–16953, https://doi.org/10.5194/acp-21-16925-2021, https://doi.org/10.5194/acp-21-16925-2021, 2021
Short summary
Short summary
We investigate ice-nucleating particle properties at Jungfraujoch during the 2017 joint INUIT/CLACE field campaign, to improve the knowledge about those rare particles in a cloud-relevant environment. By quantifying ice-nucleating particles in parallel to single-particle mass spectrometry measurements, we find that mineral dust and aged sea spray particles are potential candidates for ice-nucleating particles. Our findings are supported by ice residual analysis and source region modeling.
Marc Schwaerzel, Dominik Brunner, Fabian Jakub, Claudia Emde, Brigitte Buchmann, Alexis Berne, and Gerrit Kuhlmann
Atmos. Meas. Tech., 14, 6469–6482, https://doi.org/10.5194/amt-14-6469-2021, https://doi.org/10.5194/amt-14-6469-2021, 2021
Short summary
Short summary
NO2 maps from airborne imaging remote sensing often appear much smoother than one would expect from high-resolution model simulations of NO2 over cities, despite the small ground-pixel size of the sensors. Our case study over Zurich, using the newly implemented building module of the MYSTIC radiative transfer solver, shows that the 3D effect can explain part of the smearing and that building shadows cause a noticeable underestimation and noise in the measured NO2 columns.
Antoine Berchet, Espen Sollum, Rona L. Thompson, Isabelle Pison, Joël Thanwerdas, Grégoire Broquet, Frédéric Chevallier, Tuula Aalto, Adrien Berchet, Peter Bergamaschi, Dominik Brunner, Richard Engelen, Audrey Fortems-Cheiney, Christoph Gerbig, Christine D. Groot Zwaaftink, Jean-Matthieu Haussaire, Stephan Henne, Sander Houweling, Ute Karstens, Werner L. Kutsch, Ingrid T. Luijkx, Guillaume Monteil, Paul I. Palmer, Jacob C. A. van Peet, Wouter Peters, Philippe Peylin, Elise Potier, Christian Rödenbeck, Marielle Saunois, Marko Scholze, Aki Tsuruta, and Yuanhong Zhao
Geosci. Model Dev., 14, 5331–5354, https://doi.org/10.5194/gmd-14-5331-2021, https://doi.org/10.5194/gmd-14-5331-2021, 2021
Short summary
Short summary
We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is a programming protocol to allow various inversion bricks to be exchanged among researchers.
The ensemble of bricks makes a flexible, transparent and open-source Python-based tool. We describe the main structure and functionalities and demonstrate it in a simple academic case.
Pavel Krč, Jaroslav Resler, Matthias Sühring, Sebastian Schubert, Mohamed H. Salim, and Vladimír Fuka
Geosci. Model Dev., 14, 3095–3120, https://doi.org/10.5194/gmd-14-3095-2021, https://doi.org/10.5194/gmd-14-3095-2021, 2021
Short summary
Short summary
The adverse effects of an urban environment, e.g. heat stress and air pollution, pose a risk to health and well-being. Precise modelling of the urban climate is crucial to mitigate these effects. Conventional atmospheric models are inadequate for modelling the complex structures of the urban environment; in particular, they lack a 3-D model of radiation and its interaction with surfaces and the plant canopy. The new RTM simulates these processes within the PALM-4U urban climate model.
Dac-Loc Nguyen, Hendryk Czech, Simone M. Pieber, Jürgen Schnelle-Kreis, Martin Steinbacher, Jürgen Orasche, Stephan Henne, Olga B. Popovicheva, Gülcin Abbaszade, Guenter Engling, Nicolas Bukowiecki, Nhat-Anh Nguyen, Xuan-Anh Nguyen, and Ralf Zimmermann
Atmos. Chem. Phys., 21, 8293–8312, https://doi.org/10.5194/acp-21-8293-2021, https://doi.org/10.5194/acp-21-8293-2021, 2021
Short summary
Short summary
Southeast Asia is well-known for emission-intense and recurring wildfires and after-harvest crop residue burning during the pre-monsoon season from February to April. We describe a biomass burning (BB) plume arriving at remote Pha Din meteorological station, outline its carbonaceous particulate matter (PM) constituents based on more than 50 target compounds and discuss possible BB sources. This study adds valuable information on chemical PM composition for a region with scarce data availability.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Mohsen Moradi, Benjamin Dyer, Amir Nazem, Manoj K. Nambiar, M. Rafsan Nahian, Bruno Bueno, Chris Mackey, Saeran Vasanthakumar, Negin Nazarian, E. Scott Krayenhoff, Leslie K. Norford, and Amir A. Aliabadi
Geosci. Model Dev., 14, 961–984, https://doi.org/10.5194/gmd-14-961-2021, https://doi.org/10.5194/gmd-14-961-2021, 2021
Short summary
Short summary
The Vertical City Weather Generator (VCWG) is an urban microclimate model developed to predict temporal and vertical variation of potential temperature, wind speed, and specific humidity. VCWG is forced by climate variables at a nearby rural site and coupled to radiation and building energy models. VCWG is evaluated against field observations of the BUBBLE campaign. It is run under exploration mode to assess its performance given urban characteristics, seasonal variations, and climate zones.
Gerrit Kuhlmann, Dominik Brunner, Grégoire Broquet, and Yasjka Meijer
Atmos. Meas. Tech., 13, 6733–6754, https://doi.org/10.5194/amt-13-6733-2020, https://doi.org/10.5194/amt-13-6733-2020, 2020
Short summary
Short summary
The European CO2M mission is a proposed constellation of CO2 imaging satellites expected to monitor CO2 emissions of large cities. Using synthetic observations, we show that a constellation of two or more satellites should be able to quantify Berlin's annual emissions with 10–20 % accuracy, even when considering atmospheric transport model errors. We therefore expect that CO2M will make an important contribution to the monitoring and verification of CO2 emissions from cities worldwide.
Ying Zhu, Jia Chen, Xiao Bi, Gerrit Kuhlmann, Ka Lok Chan, Florian Dietrich, Dominik Brunner, Sheng Ye, and Mark Wenig
Atmos. Chem. Phys., 20, 13241–13251, https://doi.org/10.5194/acp-20-13241-2020, https://doi.org/10.5194/acp-20-13241-2020, 2020
Short summary
Short summary
Average NO2 concentration of on-street mobile measurements (MMs) near the monitoring stations (MSs) was found to be considerably higher than the MSs data. The common measurement height (H) and distance (D) of the MSs result in 27 % lower average concentrations in total than the concentration of our MMs. Another 21 % difference remained after correcting the influence of the measuring H and D. This result makes our city-wide measurements for capturing the full range of concentrations necessary.
Rachel L. Tunnicliffe, Anita L. Ganesan, Robert J. Parker, Hartmut Boesch, Nicola Gedney, Benjamin Poulter, Zhen Zhang, Jošt V. Lavrič, David Walter, Matthew Rigby, Stephan Henne, Dickon Young, and Simon O'Doherty
Atmos. Chem. Phys., 20, 13041–13067, https://doi.org/10.5194/acp-20-13041-2020, https://doi.org/10.5194/acp-20-13041-2020, 2020
Short summary
Short summary
This study quantifies Brazil’s emissions of a potent atmospheric greenhouse gas, methane. This is in the field of atmospheric modelling and uses remotely sensed data and surface measurements of methane concentrations as well as an atmospheric transport model to interpret the data. Because of Brazil’s large emissions from wetlands, agriculture and biomass burning, these emissions affect global methane concentrations and thus are of global significance.
Brian N. Bailey, María A. Ponce de León, and E. Scott Krayenhoff
Geosci. Model Dev., 13, 4789–4808, https://doi.org/10.5194/gmd-13-4789-2020, https://doi.org/10.5194/gmd-13-4789-2020, 2020
Short summary
Short summary
Numerous models of plant radiation interception based on a range of assumptions are available in the literature, but the importance of each assumption is not well understood. In this work, we evaluate several assumptions common in simple models of radiation interception in canopies with widely spaced plants by comparing against a detailed 3-D model. This yielded a simple model based on readily measurable parameters that could accurately predict interception for a wide range of architectures.
Marc Schwaerzel, Claudia Emde, Dominik Brunner, Randulph Morales, Thomas Wagner, Alexis Berne, Brigitte Buchmann, and Gerrit Kuhlmann
Atmos. Meas. Tech., 13, 4277–4293, https://doi.org/10.5194/amt-13-4277-2020, https://doi.org/10.5194/amt-13-4277-2020, 2020
Short summary
Short summary
Horizontal homogeneity is often assumed for trace gases remote sensing, although it is not valid where trace gas concentrations have high spatial variability, e.g., in cities. We show the importance of 3D effects for MAX-DOAS and airborne imaging spectrometers using 3D-box air mass factors implemented in the MYSTIC radiative transfer solver. In both cases, 3D information is invaluable for interpreting the measurements, as not considering 3D effects can lead to misinterpretation of measurements.
Michael Müller, Peter Graf, Jonas Meyer, Anastasia Pentina, Dominik Brunner, Fernando Perez-Cruz, Christoph Hüglin, and Lukas Emmenegger
Atmos. Meas. Tech., 13, 3815–3834, https://doi.org/10.5194/amt-13-3815-2020, https://doi.org/10.5194/amt-13-3815-2020, 2020
Peter G. Simmonds, Matthew Rigby, Alistair J. Manning, Sunyoung Park, Kieran M. Stanley, Archie McCulloch, Stephan Henne, Francesco Graziosi, Michela Maione, Jgor Arduini, Stefan Reimann, Martin K. Vollmer, Jens Mühle, Simon O'Doherty, Dickon Young, Paul B. Krummel, Paul J. Fraser, Ray F. Weiss, Peter K. Salameh, Christina M. Harth, Mi-Kyung Park, Hyeri Park, Tim Arnold, Chris Rennick, L. Paul Steele, Blagoj Mitrevski, Ray H. J. Wang, and Ronald G. Prinn
Atmos. Chem. Phys., 20, 7271–7290, https://doi.org/10.5194/acp-20-7271-2020, https://doi.org/10.5194/acp-20-7271-2020, 2020
Short summary
Short summary
Sulfur hexafluoride (SF6) is a potent greenhouse gas which is regulated under the Kyoto Protocol. From a 40-year record of measurements, collected at five global monitoring sites and archived air samples, we show that its concentration in the atmosphere has steadily increased. Using modelling techniques, we estimate that global emissions have increased by about 24 % over the past decade. We find that this increase is driven by the demand for SF6-insulated switchgear in developing countries.
Longfei Yu, Eliza Harris, Stephan Henne, Sarah Eggleston, Martin Steinbacher, Lukas Emmenegger, Christoph Zellweger, and Joachim Mohn
Atmos. Chem. Phys., 20, 6495–6519, https://doi.org/10.5194/acp-20-6495-2020, https://doi.org/10.5194/acp-20-6495-2020, 2020
Short summary
Short summary
We observed the isotopic composition of nitrous oxide in the unpolluted air at Jungfraujoch for 5 years. Our results indicate a clear seasonal pattern in the isotopic composition, corresponding with that in atmospheric nitrous oxide levels. This is most likely due to temporal variations in both emission processes and air mass sources for Jungfraujoch. Our findings are of importance to global nitrous oxide modelling and to better understanding of long-term trends in atmospheric nitrous oxide.
Michael Jähn, Gerrit Kuhlmann, Qing Mu, Jean-Matthieu Haussaire, David Ochsner, Katherine Osterried, Valentin Clément, and Dominik Brunner
Geosci. Model Dev., 13, 2379–2392, https://doi.org/10.5194/gmd-13-2379-2020, https://doi.org/10.5194/gmd-13-2379-2020, 2020
Short summary
Short summary
Emission inventories of air pollutants and greenhouse gases are widely used as input for atmospheric chemistry transport models. However, the pre-processing of these data is both time-consuming and requires a large amount of disk storage. To overcome this issue, a Python package has been developed and tested for two different models. There, the inventory is projected to the model grid and scaling factors are provided. This approach saves computational time while remaining numerically equivalent.
Hendrik Andersen, Jan Cermak, Julia Fuchs, Peter Knippertz, Marco Gaetani, Julian Quinting, Sebastian Sippel, and Roland Vogt
Atmos. Chem. Phys., 20, 3415–3438, https://doi.org/10.5194/acp-20-3415-2020, https://doi.org/10.5194/acp-20-3415-2020, 2020
Short summary
Short summary
Fog and low clouds (FLCs) are an essential but poorly understood element of Namib regional climate. Here, a satellite-based data set of FLCs in central Namib, reanalysis data, and back trajectories are used to systematically analyze conditions when FLCs occur. Synoptic-scale mechanisms are identified that influence the formation of FLCs and the onshore advection of marine boundary-layer air masses. The findings lead to a new conceptual model of mechanisms that drive FLC variability in the Namib.
Björn Maronga, Sabine Banzhaf, Cornelia Burmeister, Thomas Esch, Renate Forkel, Dominik Fröhlich, Vladimir Fuka, Katrin Frieda Gehrke, Jan Geletič, Sebastian Giersch, Tobias Gronemeier, Günter Groß, Wieke Heldens, Antti Hellsten, Fabian Hoffmann, Atsushi Inagaki, Eckhard Kadasch, Farah Kanani-Sühring, Klaus Ketelsen, Basit Ali Khan, Christoph Knigge, Helge Knoop, Pavel Krč, Mona Kurppa, Halim Maamari, Andreas Matzarakis, Matthias Mauder, Matthias Pallasch, Dirk Pavlik, Jens Pfafferott, Jaroslav Resler, Sascha Rissmann, Emmanuele Russo, Mohamed Salim, Michael Schrempf, Johannes Schwenkel, Gunther Seckmeyer, Sebastian Schubert, Matthias Sühring, Robert von Tils, Lukas Vollmer, Simon Ward, Björn Witha, Hauke Wurps, Julian Zeidler, and Siegfried Raasch
Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, https://doi.org/10.5194/gmd-13-1335-2020, 2020
Short summary
Short summary
In this paper, we describe the PALM model system 6.0. PALM is a Fortran-based turbulence-resolving code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. During the last years, PALM has been significantly improved and now offers a variety of new components that are especially designed to simulate the urban atmosphere at building-resolving resolution.
Negin Nazarian, E. Scott Krayenhoff, and Alberto Martilli
Geosci. Model Dev., 13, 937–953, https://doi.org/10.5194/gmd-13-937-2020, https://doi.org/10.5194/gmd-13-937-2020, 2020
Short summary
Short summary
We present an update to the Multi-Layer Urban Canopy Model by revisiting the parameterization of length scales based on high-resolution and validated large-eddy simulations. Additionally, the inclusion of dispersive fluxes in the parameterization schemes are also discussed. The results demonstrate that updated parameterizations improve the accuracy of the vertical exchange of momentum in the street canyon.
Gerrit Kuhlmann, Grégoire Broquet, Julia Marshall, Valentin Clément, Armin Löscher, Yasjka Meijer, and Dominik Brunner
Atmos. Meas. Tech., 12, 6695–6719, https://doi.org/10.5194/amt-12-6695-2019, https://doi.org/10.5194/amt-12-6695-2019, 2019
Short summary
Short summary
The Copernicus Anthropogenic CO2 Monitoring (CO2M) mission is a proposed constellation of imaging satellites with a CO2 instrument as main payload and optionally instruments for NO2, CO and aerosols. This study demonstrates the huge benefit of an NO2 instrument for detecting city plumes and weak point sources. Its main advantages are the higher signal-to-noise ratio and the lower sensitivity to clouds that significantly increases the number of observations available for quantifying CO2 emission.
Ignacio Pisso, Espen Sollum, Henrik Grythe, Nina I. Kristiansen, Massimo Cassiani, Sabine Eckhardt, Delia Arnold, Don Morton, Rona L. Thompson, Christine D. Groot Zwaaftink, Nikolaos Evangeliou, Harald Sodemann, Leopold Haimberger, Stephan Henne, Dominik Brunner, John F. Burkhart, Anne Fouilloux, Jerome Brioude, Anne Philipp, Petra Seibert, and Andreas Stohl
Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, https://doi.org/10.5194/gmd-12-4955-2019, 2019
Short summary
Short summary
We present the latest release of the Lagrangian transport model FLEXPART, which simulates the transport, diffusion, dry and wet deposition, radioactive decay, and 1st-order chemical reactions of atmospheric tracers. The model has been recently updated both technically and in the representation of physicochemical processes. We describe the changes, document the most recent input and output files, provide working examples, and introduce testing capabilities.
Erkan Ibraim, Benjamin Wolf, Eliza Harris, Rainer Gasche, Jing Wei, Longfei Yu, Ralf Kiese, Sarah Eggleston, Klaus Butterbach-Bahl, Matthias Zeeman, Béla Tuzson, Lukas Emmenegger, Johan Six, Stephan Henne, and Joachim Mohn
Biogeosciences, 16, 3247–3266, https://doi.org/10.5194/bg-16-3247-2019, https://doi.org/10.5194/bg-16-3247-2019, 2019
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas and the major stratospheric ozone-depleting substance; therefore, mitigation of anthropogenic N2O emissions is needed. To trace N2O-emitting source processes, in this study, we observed N2O isotopocules above an intensively managed grassland research site with a recently developed laser spectroscopy method. Our results indicate that the domain of denitrification or nitrifier denitrification was the major N2O source.
Dominik Brunner, Gerrit Kuhlmann, Julia Marshall, Valentin Clément, Oliver Fuhrer, Grégoire Broquet, Armin Löscher, and Yasjka Meijer
Atmos. Chem. Phys., 19, 4541–4559, https://doi.org/10.5194/acp-19-4541-2019, https://doi.org/10.5194/acp-19-4541-2019, 2019
Short summary
Short summary
Atmospheric transport models are increasingly being used to estimate CO2 emissions from atmospheric CO2 measurements. This study demonstrates the importance of distributing CO2 emissions vertically in the model according to realistic profiles, since a major proportion of CO2 is emitted through tall stacks from power plants and industrial sources. With the traditional approach of emitting all CO2 at the surface, models may significantly overestimate the atmospheric CO2 levels.
Hendrik Andersen, Jan Cermak, Irina Solodovnik, Luca Lelli, and Roland Vogt
Atmos. Chem. Phys., 19, 4383–4392, https://doi.org/10.5194/acp-19-4383-2019, https://doi.org/10.5194/acp-19-4383-2019, 2019
Short summary
Short summary
Fog and low clouds (FLCs) are an essential but poorly understood component of Namib-region climate. This study uses observations from multiple satellite platforms and ground-based measurements to coherently characterize Namib-region FLC patterns. Findings concerning the seasonal cycle of the vertical structure and the diurnal cycle of FLCs lead to a new conceptual model of the spatiotemporal dynamics of FLCs in the Namib and help to improve the understanding of underlying processes.
Ashley M. Broadbent, Andrew M. Coutts, Kerry A. Nice, Matthias Demuzere, E. Scott Krayenhoff, Nigel J. Tapper, and Hendrik Wouters
Geosci. Model Dev., 12, 785–803, https://doi.org/10.5194/gmd-12-785-2019, https://doi.org/10.5194/gmd-12-785-2019, 2019
Short summary
Short summary
We present a simple model for assessing the cooling impacts of vegetation and water features (green and blue infrastructure) in urban environments. This model is designed to be computationally efficient so that those without technical knowledge or access to high-performance computers can use it. TARGET can be used to model average street-level air temperature at canyon to block scales (e.g. 100 m resolution). The model is carefully designed to provide reliable and accurate cooling estimates.
Christine D. Groot Zwaaftink, Stephan Henne, Rona L. Thompson, Edward J. Dlugokencky, Toshinobu Machida, Jean-Daniel Paris, Motoki Sasakawa, Arjo Segers, Colm Sweeney, and Andreas Stohl
Geosci. Model Dev., 11, 4469–4487, https://doi.org/10.5194/gmd-11-4469-2018, https://doi.org/10.5194/gmd-11-4469-2018, 2018
Short summary
Short summary
A Lagrangian particle dispersion model is used to simulate global fields of methane, constrained by observations through nudging. We show that this rather simple and computationally inexpensive method can give results similar to or as good as a computationally expensive Eulerian chemistry transport model with a data assimilation scheme. The three-dimensional methane fields are of interest to applications such as inverse modelling and satellite retrievals.
Rocío Baró, Pedro Jiménez-Guerrero, Martin Stengel, Dominik Brunner, Gabriele Curci, Renate Forkel, Lucy Neal, Laura Palacios-Peña, Nicholas Savage, Martijn Schaap, Paolo Tuccella, Hugo Denier van der Gon, and Stefano Galmarini
Atmos. Chem. Phys., 18, 15183–15199, https://doi.org/10.5194/acp-18-15183-2018, https://doi.org/10.5194/acp-18-15183-2018, 2018
Short summary
Short summary
Particles in the atmosphere, such as pollution, desert dust, and volcanic ash, have an impact on meteorology. They interact with incoming radiation resulting in a cooling effect of the atmosphere. Today, the use of meteorology and chemistry models help us to understand these processes, but there are a lot of uncertainties. The goal of this work is to evaluate how these interactions are represented in the models by comparing them to satellite data to see how close they are to reality.
Amelie Driemel, John Augustine, Klaus Behrens, Sergio Colle, Christopher Cox, Emilio Cuevas-Agulló, Fred M. Denn, Thierry Duprat, Masato Fukuda, Hannes Grobe, Martial Haeffelin, Gary Hodges, Nicole Hyett, Osamu Ijima, Ain Kallis, Wouter Knap, Vasilii Kustov, Charles N. Long, David Longenecker, Angelo Lupi, Marion Maturilli, Mohamed Mimouni, Lucky Ntsangwane, Hiroyuki Ogihara, Xabier Olano, Marc Olefs, Masao Omori, Lance Passamani, Enio Bueno Pereira, Holger Schmithüsen, Stefanie Schumacher, Rainer Sieger, Jonathan Tamlyn, Roland Vogt, Laurent Vuilleumier, Xiangao Xia, Atsumu Ohmura, and Gert König-Langlo
Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, https://doi.org/10.5194/essd-10-1491-2018, 2018
Short summary
Short summary
The Baseline Surface Radiation Network (BSRN) collects and centrally archives high-quality ground-based radiation measurements in 1 min resolution. More than 10 300 months, i.e., > 850 years, of high-radiation data in 1 min resolution from the years 1992 to 2017 are available. The network currently comprises 59 stations collectively representing all seven continents as well as island-based stations in the Pacific, Atlantic, Indian and Arctic oceans.
Laura Palacios-Peña, Rocío Baró, Alexander Baklanov, Alessandra Balzarini, Dominik Brunner, Renate Forkel, Marcus Hirtl, Luka Honzak, José María López-Romero, Juan Pedro Montávez, Juan Luis Pérez, Guido Pirovano, Roberto San José, Wolfram Schröder, Johannes Werhahn, Ralf Wolke, Rahela Žabkar, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 18, 5021–5043, https://doi.org/10.5194/acp-18-5021-2018, https://doi.org/10.5194/acp-18-5021-2018, 2018
Short summary
Short summary
Atmospheric aerosols modify the radiative budget of the Earth, and it is therefore mandatory to have an accurate representation of their optical properties for understanding their climatic role. This work therefore evaluates the skill in the representation of optical properties by different remote-sensing sensors and regional online coupled chemistry–climate models over Europe.
Peter G. Simmonds, Matthew Rigby, Archie McCulloch, Martin K. Vollmer, Stephan Henne, Jens Mühle, Simon O'Doherty, Alistair J. Manning, Paul B. Krummel, Paul J. Fraser, Dickon Young, Ray F. Weiss, Peter K. Salameh, Christina M. Harth, Stefan Reimann, Cathy M. Trudinger, L. Paul Steele, Ray H. J. Wang, Diane J. Ivy, Ronald G. Prinn, Blagoj Mitrevski, and David M. Etheridge
Atmos. Chem. Phys., 18, 4153–4169, https://doi.org/10.5194/acp-18-4153-2018, https://doi.org/10.5194/acp-18-4153-2018, 2018
Short summary
Short summary
Recent measurements of the potent greenhouse gas HFC-23, a by-product of HCFC-22 production, show a 28 % increase in the atmospheric mole fraction from 2009 to 2016. A minimum in the atmospheric abundance of HFC-23 in 2009 was attributed to abatement of HFC-23 emissions by incineration under the Clean Development Mechanism (CDM). Our results indicate that the recent increase in HFC-23 emissions is driven by failure of mitigation under the CDM to keep pace with increased HCFC-22 production.
Fabian Schoenenberger, Stephan Henne, Matthias Hill, Martin K. Vollmer, Giorgos Kouvarakis, Nikolaos Mihalopoulos, Simon O'Doherty, Michela Maione, Lukas Emmenegger, Thomas Peter, and Stefan Reimann
Atmos. Chem. Phys., 18, 4069–4092, https://doi.org/10.5194/acp-18-4069-2018, https://doi.org/10.5194/acp-18-4069-2018, 2018
Short summary
Short summary
Anthropogenic halocarbon emissions contribute to stratospheric ozone depletion and global warming. We measured atmospheric halocarbons for 6 months on Crete to extend the coverage of the existing observation network to the Eastern Mediterranean. The derived emission estimates showed a contribution of 16.8 % (13.6–23.3 %) and 53.2 % (38.1–84.2 %) of this region to the total HFC and HCFC emissions of the analyzed European domain and a reduction of the underlying uncertainties by 40–80 %.
Abdelhadi El Yazidi, Michel Ramonet, Philippe Ciais, Gregoire Broquet, Isabelle Pison, Amara Abbaris, Dominik Brunner, Sebastien Conil, Marc Delmotte, Francois Gheusi, Frederic Guerin, Lynn Hazan, Nesrine Kachroudi, Giorgos Kouvarakis, Nikolaos Mihalopoulos, Leonard Rivier, and Dominique Serça
Atmos. Meas. Tech., 11, 1599–1614, https://doi.org/10.5194/amt-11-1599-2018, https://doi.org/10.5194/amt-11-1599-2018, 2018
Martin K. Vollmer, Dickon Young, Cathy M. Trudinger, Jens Mühle, Stephan Henne, Matthew Rigby, Sunyoung Park, Shanlan Li, Myriam Guillevic, Blagoj Mitrevski, Christina M. Harth, Benjamin R. Miller, Stefan Reimann, Bo Yao, L. Paul Steele, Simon A. Wyss, Chris R. Lunder, Jgor Arduini, Archie McCulloch, Songhao Wu, Tae Siek Rhee, Ray H. J. Wang, Peter K. Salameh, Ove Hermansen, Matthias Hill, Ray L. Langenfelds, Diane Ivy, Simon O'Doherty, Paul B. Krummel, Michela Maione, David M. Etheridge, Lingxi Zhou, Paul J. Fraser, Ronald G. Prinn, Ray F. Weiss, and Peter G. Simmonds
Atmos. Chem. Phys., 18, 979–1002, https://doi.org/10.5194/acp-18-979-2018, https://doi.org/10.5194/acp-18-979-2018, 2018
Short summary
Short summary
We measured the three chlorofluorocarbons (CFCs) CFC-13, CFC-114, and CFC-115 in the atmosphere because they are important in stratospheric ozone depletion. These compounds should have decreased in the atmosphere because they are banned by the Montreal Protocol but we find the opposite. Emissions over the last decade have not declined on a global scale. We use inverse modeling and our observations to find that a large part of the emissions originate in the Asian region.
Yu Liu, Nicolas Gruber, and Dominik Brunner
Atmos. Chem. Phys., 17, 14145–14169, https://doi.org/10.5194/acp-17-14145-2017, https://doi.org/10.5194/acp-17-14145-2017, 2017
Short summary
Short summary
We analyze fossil fuel signals in atmospheric CO2 over Europe using a high-resolution atmospheric transport model and diurnal emission data. We find that fossil fuel CO2 accounts for more than half of the atmospheric CO2 variations, mainly at diurnal timescales. The covariance of diurnal emission and transport also leads to a substantial rectification effect. Thus, the consideration of diurnal emissions and high-resolution transport is paramount for accurately modeling the fossil fuel signal.
Antoine Berchet, Katrin Zink, Dietmar Oettl, Jürg Brunner, Lukas Emmenegger, and Dominik Brunner
Geosci. Model Dev., 10, 3441–3459, https://doi.org/10.5194/gmd-10-3441-2017, https://doi.org/10.5194/gmd-10-3441-2017, 2017
Short summary
Short summary
We evaluate a new cost-effective method to simulate pollutant dispersion at high resolution on a city-wide domain. The method is based on a catalogue of reference simulations matched to weather observations to produce a sequence of hourly pollution maps. A total of 2 years of simulations are compared with continuous measurements and passive NO2 samplers in the city of Zurich. Spatial and temporal variability proved to be very well reproduced by the method.
Tesfaye A. Berhanu, Sönke Szidat, Dominik Brunner, Ece Satar, Rüdiger Schanda, Peter Nyfeler, Michael Battaglia, Martin Steinbacher, Samuel Hammer, and Markus Leuenberger
Atmos. Chem. Phys., 17, 10753–10766, https://doi.org/10.5194/acp-17-10753-2017, https://doi.org/10.5194/acp-17-10753-2017, 2017
Short summary
Short summary
Fossil fuel CO2 is the major contributor of anthropogenic CO2 in the atmosphere, and accurate quantification is essential to better understand the carbon cycle. Such accurate quantification can be conducted based on radiocarbon measurements. In this study, we present radiocarbon measurements from a tall tower site in Switzerland. From these measurements, we have observed seasonally varying fossil fuel CO2 contributions and a biospheric CO2 component that varies diurnally and seasonally.
Dominik Brunner, Tim Arnold, Stephan Henne, Alistair Manning, Rona L. Thompson, Michela Maione, Simon O'Doherty, and Stefan Reimann
Atmos. Chem. Phys., 17, 10651–10674, https://doi.org/10.5194/acp-17-10651-2017, https://doi.org/10.5194/acp-17-10651-2017, 2017
Short summary
Short summary
Hydrofluorocarbons (HFCs) and SF6 are industrially produced gases with a large greenhouse-gas warming potential. In this study, we estimated the emissions of HFCs and SF6 over Europe by combining measurements at three background stations with four different model systems. We identified significant differences between our estimates and nationally reported numbers, but also found that the network of only three sites in Europe is insufficient to reliably attribute emissions to individual countries.
Eleni Athanasopoulou, Orestis Speyer, Dominik Brunner, Heike Vogel, Bernhard Vogel, Nikolaos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Chem. Phys., 17, 10597–10618, https://doi.org/10.5194/acp-17-10597-2017, https://doi.org/10.5194/acp-17-10597-2017, 2017
Short summary
Short summary
This work focuses on the impact of residential wood burning on aerosol levels, composition and radiation under the ongoing economic crisis in Greece. The atmospheric model COSMO-ART performed a series of runs during the winter of 2013–2014. Emission inputs were revised according to the detailed aerosol characterization by local measurements. Aerosol levels were found to be elevated and mostly composed of organics, yet the timing of the plume justifies the minor radiative cooling and feedbacks.
Yann Poltera, Giovanni Martucci, Martine Collaud Coen, Maxime Hervo, Lukas Emmenegger, Stephan Henne, Dominik Brunner, and Alexander Haefele
Atmos. Chem. Phys., 17, 10051–10070, https://doi.org/10.5194/acp-17-10051-2017, https://doi.org/10.5194/acp-17-10051-2017, 2017
Short summary
Short summary
We present the PathfinderTURB algorithm for the analysis of ceilometer backscatter data and the real-time detection of the vertical structure of the planetary boundary layer. PathfinderTURB has been applied to 1 year of data measured by two ceilometers operated at two Swiss stations: the Aerological Observatory of Payerne on the Swiss plateau, and the Alpine Jungfraujoch observatory. The study shows that aerosols from the boundary layer significantly influence the air measured at Jungfraujoch.
Rocío Baró, Laura Palacios-Peña, Alexander Baklanov, Alessandra Balzarini, Dominik Brunner, Renate Forkel, Marcus Hirtl, Luka Honzak, Juan Luis Pérez, Guido Pirovano, Roberto San José, Wolfram Schröder, Johannes Werhahn, Ralf Wolke, Rahela Žabkar, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 17, 9677–9696, https://doi.org/10.5194/acp-17-9677-2017, https://doi.org/10.5194/acp-17-9677-2017, 2017
Short summary
Short summary
The influence on modeled max., mean and min. temperature over Europe of including aerosol–radiation–cloud interactions has been assessed for two case studies in 2010. Data were taken from an ensemble of online regional chemistry–climate models from EuMetChem COST Action. The results indicate that including these interactions clearly improves the spatiotemporal variability in the temperature signal simulated by the models, with implications for reducing the uncertainty in climate projections.
Carla Frege, Federico Bianchi, Ugo Molteni, Jasmin Tröstl, Heikki Junninen, Stephan Henne, Mikko Sipilä, Erik Herrmann, Michel J. Rossi, Markku Kulmala, Christopher R. Hoyle, Urs Baltensperger, and Josef Dommen
Atmos. Chem. Phys., 17, 2613–2629, https://doi.org/10.5194/acp-17-2613-2017, https://doi.org/10.5194/acp-17-2613-2017, 2017
Short summary
Short summary
We present measurements of the chemical composition of atmospheric ions at high altitude (3450 m a.s.l.) during a 9-month campaign. We detected remarkably high correlation between methanesulfonic acid (MSA) and SO5−. Halogenated species were also detected frequently at this continental location. New-particle formation events occurred via the condensation of highly oxygenated molecules (HOMs) at very low sulfuric acid concentration or, less frequently, due to ammonia–sulfuric acid clusters.
Laura Palacios-Peña, Rocío Baró, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Dominik Brunner, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 17, 277–296, https://doi.org/10.5194/acp-17-277-2017, https://doi.org/10.5194/acp-17-277-2017, 2017
Short summary
Short summary
The effects of atmospheric aerosols over the Earth’s climate mainly depend on their optical, microphysical and chemical properties, which modify the Earth's radiative budget, the main source of uncertainty in climate change. In this work we have studied the representation of aerosol optical properties using an online coupled model (WRF-Chem) when aerosol–radiation interactions (ARIs) and aerosol–clouds interactions (ACIs) are taken into account over the Iberian Peninsula.
Ioannis Kioutsioukis, Ulas Im, Efisio Solazzo, Roberto Bianconi, Alba Badia, Alessandra Balzarini, Rocío Baró, Roberto Bellasio, Dominik Brunner, Charles Chemel, Gabriele Curci, Hugo Denier van der Gon, Johannes Flemming, Renate Forkel, Lea Giordano, Pedro Jiménez-Guerrero, Marcus Hirtl, Oriol Jorba, Astrid Manders-Groot, Lucy Neal, Juan L. Pérez, Guidio Pirovano, Roberto San Jose, Nicholas Savage, Wolfram Schroder, Ranjeet S. Sokhi, Dimiter Syrakov, Paolo Tuccella, Johannes Werhahn, Ralf Wolke, Christian Hogrefe, and Stefano Galmarini
Atmos. Chem. Phys., 16, 15629–15652, https://doi.org/10.5194/acp-16-15629-2016, https://doi.org/10.5194/acp-16-15629-2016, 2016
Short summary
Short summary
Four ensemble methods are applied to two annual AQMEII datasets and their performance is compared for O3, NO2 and PM10. The goal of the study is to quantify to what extent we can extract predictable signals from an ensemble with superior skill at each station over the single models and the ensemble mean. The promotion of the right amount of accuracy and diversity within the ensemble results in an average additional skill of up to 31 % compared to using the full ensemble in an unconditional way.
Thomas Röckmann, Simon Eyer, Carina van der Veen, Maria E. Popa, Béla Tuzson, Guillaume Monteil, Sander Houweling, Eliza Harris, Dominik Brunner, Hubertus Fischer, Giulia Zazzeri, David Lowry, Euan G. Nisbet, Willi A. Brand, Jaroslav M. Necki, Lukas Emmenegger, and Joachim Mohn
Atmos. Chem. Phys., 16, 10469–10487, https://doi.org/10.5194/acp-16-10469-2016, https://doi.org/10.5194/acp-16-10469-2016, 2016
Short summary
Short summary
A dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS)-based technique were deployed at the Cabauw experimental site for atmospheric research (CESAR) in the Netherlands and performed in situ, high-frequency (approx. hourly) measurements for a period of more than 5 months, yielding a combined dataset with more than 2500 measurements of both δ13C and δD.
Michael F. Schibig, Emmanuel Mahieu, Stephan Henne, Bernard Lejeune, and Markus C. Leuenberger
Atmos. Chem. Phys., 16, 9935–9949, https://doi.org/10.5194/acp-16-9935-2016, https://doi.org/10.5194/acp-16-9935-2016, 2016
Short summary
Short summary
Two CO2 time series measured at the High Alpine Research Station Jungfraujoch, Switzerland (3580 m a.s.l.), in the period from 2005 to 2013 were compared. One data set was measured in situ whereas the other data set was measured in the column above Jungfraujoch. The trends of the column integrated and the in situ data set are in good agreement, the amplitude of the in situ data set is ca. two times the amplitude of the column integrated data set, because it is closer to the sources and sinks.
Emiliano Stopelli, Franz Conen, Cindy E. Morris, Erik Herrmann, Stephan Henne, Martin Steinbacher, and Christine Alewell
Atmos. Chem. Phys., 16, 8341–8351, https://doi.org/10.5194/acp-16-8341-2016, https://doi.org/10.5194/acp-16-8341-2016, 2016
Short summary
Short summary
Knowing the variability of ice nucleating particles (INPs) helps determining their role in the formation of precipitation. Here we describe and predict the concentrations of INPs active at −8 °C in precipitation samples collected at Jungfraujoch (CH, 3580 m a.s.l.). A high abundance of these INPs can be expected whenever a coincidence of high wind speed and first precipitation from an air mass occurs. This expands the set of conditions where such INPs could affect the onset of precipitation.
Tesfaye Ayalneh Berhanu, Ece Satar, Rudiger Schanda, Peter Nyfeler, Hanspeter Moret, Dominik Brunner, Brian Oney, and Markus Leuenberger
Atmos. Meas. Tech., 9, 2603–2614, https://doi.org/10.5194/amt-9-2603-2016, https://doi.org/10.5194/amt-9-2603-2016, 2016
Short summary
Short summary
In this manuscript, we have presented Co, CO2 and CH4 measurement data from an old radio tower tower (217.5 m) at Beromunster, Switzerland. From about 2 years of continuous CO, CO2 and CH4 measurement at five different heights, we have determined a long-term reproducibility of 2.79 ppb, 0.05 ppm and 0.29 ppb for CO, CO2 and CH4, respectively, compliant with the GAW requirements. We have also observed seasonal and diurnal variation of these species.
Florian Berkes, Peter Hoor, Heiko Bozem, Daniel Kunkel, Michael Sprenger, and Stephan Henne
Atmos. Chem. Phys., 16, 6011–6025, https://doi.org/10.5194/acp-16-6011-2016, https://doi.org/10.5194/acp-16-6011-2016, 2016
Short summary
Short summary
We presented airborne measurements of CO2 and O3 across the entrainment zone over a semi-remote environment in southwestern Germany in late summer 2011 .
For the first time CO2 and O3 were used as tracer to identify mixing through this transport barrier. We demonstrated that the tracer--tracer correlation of CO2 and O3 is a powerful tool to identify entrainment and mixing.
Ece Satar, Tesfaye A. Berhanu, Dominik Brunner, Stephan Henne, and Markus Leuenberger
Biogeosciences, 13, 2623–2635, https://doi.org/10.5194/bg-13-2623-2016, https://doi.org/10.5194/bg-13-2623-2016, 2016
Short summary
Short summary
Beromünster tall tower is the flagship of the densely placed Swiss greenhouse gas observation network (CarboCount CH). In this research article we report the first 2 years of the continuous greenhouse gas measurements using cavity ring down spectroscopy analyzer from this tall tower. We have adopted a purely observation based, multi-species and multi-level approach to characterize the site with respect to sources and sinks of natural and anthropogenic origin at diurnal to annual timescales.
Stephan Henne, Dominik Brunner, Brian Oney, Markus Leuenberger, Werner Eugster, Ines Bamberger, Frank Meinhardt, Martin Steinbacher, and Lukas Emmenegger
Atmos. Chem. Phys., 16, 3683–3710, https://doi.org/10.5194/acp-16-3683-2016, https://doi.org/10.5194/acp-16-3683-2016, 2016
Short summary
Short summary
Greenhouse gas emissions can be assessed by "top-down" methods that combine atmospheric observations, a transport model and a mathematical optimisation framework. Here, we apply such a top-down method to the methane emissions of Switzerland, utilising observations from the recently installed CarboCount-CH network. Our Swiss total emissions largely agree with those of the national "bottom-up" inventory, whereas regional differences suggest lower than reported emissions from manure handling.
P. G. Simmonds, M. Rigby, A. J. Manning, M. F. Lunt, S. O'Doherty, A. McCulloch, P. J. Fraser, S. Henne, M. K. Vollmer, J. Mühle, R. F. Weiss, P. K. Salameh, D. Young, S. Reimann, A. Wenger, T. Arnold, C. M. Harth, P. B. Krummel, L. P. Steele, B. L. Dunse, B. R. Miller, C. R. Lunder, O. Hermansen, N. Schmidbauer, T. Saito, Y. Yokouchi, S. Park, S. Li, B. Yao, L. X. Zhou, J. Arduini, M. Maione, R. H. J. Wang, D. Ivy, and R. G. Prinn
Atmos. Chem. Phys., 16, 365–382, https://doi.org/10.5194/acp-16-365-2016, https://doi.org/10.5194/acp-16-365-2016, 2016
Short summary
Short summary
We report regional and global emissions estimates of HFC-152a using high frequency measurements from 11 observing sites and archived air samples dating back to 1978 together with atmospheric transport models. The "bottom-up" emissions of HFC-152a reported to the UNFCCC appear to significantly underestimate those reported here from observations. This discrepancy we suggest arises from largely underestimated USA and undeclared Asian emissions.
R. Fröhlich, M. J. Cubison, J. G. Slowik, N. Bukowiecki, F. Canonaco, P. L. Croteau, M. Gysel, S. Henne, E. Herrmann, J. T. Jayne, M. Steinbacher, D. R. Worsnop, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 11373–11398, https://doi.org/10.5194/acp-15-11373-2015, https://doi.org/10.5194/acp-15-11373-2015, 2015
Short summary
Short summary
This manuscript presents the first long-term (14-month) and highly time-resolved (10 min) measurements of NR-PM1 aerosol chemical composition at a high-altitude site (JFJ, Switzerland, 3580m a.s.l.). The elevated location allowed the investigation of free tropospheric aerosol year round. Total and relative mass loadings, diurnal variations as well as seasonal variations are discussed together with geographical origin, organic aerosol sources and the influence of the planetary boundary layer.
B. Oney, S. Henne, N. Gruber, M. Leuenberger, I. Bamberger, W. Eugster, and D. Brunner
Atmos. Chem. Phys., 15, 11147–11164, https://doi.org/10.5194/acp-15-11147-2015, https://doi.org/10.5194/acp-15-11147-2015, 2015
Short summary
Short summary
We present a detailed analysis of a new greenhouse gas measurement network
in the Swiss Plateau, situated between the Jura mountains and the Alps. We
find the network's measurements to be information rich and suitable
for studying surface carbon fluxes of the study region. However, we are
limited by the high-resolution (2km) atmospheric transport model's ability
to simulate meteorology at the individual measurement stations, especially
at those situated in rough terrain.
F. Kaspar, J. Helmschrot, A. Mhanda, M. Butale, W. de Clercq, J. K. Kanyanga, F. O. S. Neto, S. Kruger, M. Castro Matsheka, G. Muche, T. Hillmann, K. Josenhans, R. Posada, J. Riede, M. Seely, C. Ribeiro, P. Kenabatho, R. Vogt, and N. Jürgens
Adv. Sci. Res., 12, 171–177, https://doi.org/10.5194/asr-12-171-2015, https://doi.org/10.5194/asr-12-171-2015, 2015
Short summary
Short summary
One task of the “Southern African Science Service Centre for Climate Change and Adaptive Land Management” (www.sasscal.org) is the provision of climate data for Southern Africa. Extension and improvements of observational networks in Angola, Botswana, Namibia, Zambia and South Africa are supported. This effort is complemented by an improvement of climate data management at national weather authorities, capacity building activities and an extension of the data bases with historical climate data.
S. Pandey Deolal, S. Henne, L. Ries, S. Gilge, U. Weers, M. Steinbacher, J. Staehelin, and T. Peter
Atmos. Chem. Phys., 14, 12553–12571, https://doi.org/10.5194/acp-14-12553-2014, https://doi.org/10.5194/acp-14-12553-2014, 2014
Short summary
Short summary
Mixing ratios of Peroxyacetyl nitrate (PAN) at Jungfraujoch (Switzerland) and Zugspitze (Germany) show a seasonal variation with maxima in spring, typical for remote sites in the lower atmosphere in northern mid-latitudes. The detailed analysis of PAN measurements of May 2008 indicates that PAN at these high mountain sites is dominated by photochemical formation in the relatively cold polluted European planetary boundary layer rather than formation in the free troposphere.
R. V. Hiller, D. Bretscher, T. DelSontro, T. Diem, W. Eugster, R. Henneberger, S. Hobi, E. Hodson, D. Imer, M. Kreuzer, T. Künzle, L. Merbold, P. A. Niklaus, B. Rihm, A. Schellenberger, M. H. Schroth, C. J. Schubert, H. Siegrist, J. Stieger, N. Buchmann, and D. Brunner
Biogeosciences, 11, 1941–1959, https://doi.org/10.5194/bg-11-1941-2014, https://doi.org/10.5194/bg-11-1941-2014, 2014
E. Hammer, N. Bukowiecki, M. Gysel, Z. Jurányi, C. R. Hoyle, R. Vogt, U. Baltensperger, and E. Weingartner
Atmos. Chem. Phys., 14, 1123–1139, https://doi.org/10.5194/acp-14-1123-2014, https://doi.org/10.5194/acp-14-1123-2014, 2014
A. Baklanov, K. Schlünzen, P. Suppan, J. Baldasano, D. Brunner, S. Aksoyoglu, G. Carmichael, J. Douros, J. Flemming, R. Forkel, S. Galmarini, M. Gauss, G. Grell, M. Hirtl, S. Joffre, O. Jorba, E. Kaas, M. Kaasik, G. Kallos, X. Kong, U. Korsholm, A. Kurganskiy, J. Kushta, U. Lohmann, A. Mahura, A. Manders-Groot, A. Maurizi, N. Moussiopoulos, S. T. Rao, N. Savage, C. Seigneur, R. S. Sokhi, E. Solazzo, S. Solomos, B. Sørensen, G. Tsegas, E. Vignati, B. Vogel, and Y. Zhang
Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, https://doi.org/10.5194/acp-14-317-2014, 2014
P. Sturm, B. Tuzson, S. Henne, and L. Emmenegger
Atmos. Meas. Tech., 6, 1659–1671, https://doi.org/10.5194/amt-6-1659-2013, https://doi.org/10.5194/amt-6-1659-2013, 2013
C. Knote and D. Brunner
Atmos. Chem. Phys., 13, 1177–1192, https://doi.org/10.5194/acp-13-1177-2013, https://doi.org/10.5194/acp-13-1177-2013, 2013
Related subject area
Climate and Earth system modeling
UKESM1.1: development and evaluation of an updated configuration of the UK Earth System Model
Porting the WAVEWATCH III (v6.07) wave action source terms to GPU
Yeti 1.0: a generalized framework for constructing bottom-up emission inventories from traffic sources at road-link resolutions
Analysis of systematic biases in tropospheric hydrostatic delay models and construction of a correction model
A new precipitation emulator (PREMU v1.0) for lower-complexity models
Simulating marine neodymium isotope distributions using Nd v1.0 coupled to the ocean component of the FAMOUS–MOSES1 climate model: sensitivities to reversible scavenging efficiency and benthic source distributions
CMIP6 simulations with the compact Earth system model OSCAR v3.1
Application of a satellite-retrieved sheltering parameterization (v1.0) for dust event simulation with WRF-Chem v4.1
The pseudo-global-warming (PGW) approach: methodology, software package PGW4ERA5 v1.1, validation, and sensitivity analyses
AttentionFire_v1.0: interpretable machine learning fire model for burned-area predictions over tropics
Cell tracking of convective rainfall: sensitivity of climate-change signal to tracking algorithm and cell definition (Cell-TAO v1.0)
ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer and subkilometer scales
Ocean Modeling with Adaptive REsolution (OMARE; version 1.0) – refactoring the NEMO model (version 4.0.1) with the parallel computing framework of JASMIN – Part 1: Adaptive grid refinement in an idealized double-gyre case
Monthly-scale extended predictions using the atmospheric model coupled with a slab ocean
stoPET v1.0: a stochastic potential evapotranspiration generator for simulation of climate change impacts
URANOS v1.0 – the Ultra Rapid Adaptable Neutron-Only Simulation for Environmental Research
Combining regional mesh refinement with vertically enhanced physics to target marine stratocumulus biases as demonstrated in the Energy Exascale Earth System Model version 1
Evaluation of native Earth system model output with ESMValTool v2.6.0
WRF–ML v1.0: a bridge between WRF v4.3 and machine learning parameterizations and its application to atmospheric radiative transfer
The Euro-Mediterranean Center on Climate Change (CMCC) decadal prediction system
Climate impacts of parameterizing subgrid variation and partitioning of land surface heat fluxes to the atmosphere with the NCAR CESM1.2
Accelerated photosynthesis routine in LPJmL4
Improving scalability of Earth system models through coarse-grained component concurrency – a case study with the ICON v2.6.5 modelling system
Temperature forecasting by deep learning methods
Pathfinder v1.0.1: a Bayesian-inferred simple carbon–climate model to explore climate change scenarios
Inclusion of a cold hardening scheme to represent frost tolerance is essential to model realistic plant hydraulics in the Arctic–boreal zone in CLM5.0-FATES-Hydro
Climate change projections of wet and dry extreme events in the Upper Jhelum Basin using a multivariate drought index: Evaluation of bias correction
Implementation and evaluation of the GEOS-Chem chemistry module version 13.1.2 within the Community Earth System Model v2.1
Understanding AMOC stability: the North Atlantic Hosing Model Intercomparison Project
Assessment of JSBACHv4.30 as a land component of ICON-ESM-V1 in comparison to its predecessor JSBACHv3.2 of MPI-ESM1.2
Importance of Ice Nucleation and Precipitation on Climate with the Parameterization of Unified Microphysics Across Scales version 1 (PUMASv1)
Global biomass burning fuel consumption and emissions at 500 m spatial resolution based on the Global Fire Emissions Database (GFED)
Impact of increased resolution on the representation of the Canary upwelling system in climate models
Assessing Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI): protocol and initial results from the first simulations
Introducing the VIIRS-based Fire Emission Inventory version 0 (VFEIv0)
Impact of physical parameterizations on wind simulation with WRF V3.9.1.1 under stable conditions at planetary boundary layer gray-zone resolution: a case study over the coastal regions of North China
Advancing precipitation prediction using a new-generation storm-resolving model framework – SIMA-MPAS (V1.0): a case study over the western United States
SURFER v2.0: a flexible and simple model linking anthropogenic CO2 emissions and solar radiation modification to ocean acidification and sea level rise
A new bootstrap technique to quantify uncertainty in estimates of ground surface temperature and ground heat flux histories from geothermal data
Modeling the topographic influence on aboveground biomass using a coupled model of hillslope hydrology and ecosystem dynamics
Impacts of the ice-particle size distribution shape parameter on climate simulations with the Community Atmosphere Model Version 6 (CAM6)
A modeling framework to understand historical and projected ocean climate change in large coupled ensembles
TriCCo v1.1.0 – a cubulation-based method for computing connected components on triangular grids
Estimation of missing building height in OpenStreetMap data: a French case study using GeoClimate 0.0.1
The Moist Quasi-Geostrophic Coupled Model: MQ-GCM 2.0
Pace v0.1: A Python-based Performance-Portable Implementation of the FV3 Dynamical Core
Transport parameterization of the Polar SWIFT model (version 2)
Effects of complex terrain on the shortwave radiative balance: A sub–grid scale parameterization for the GFDL Land Model version 4.2
Analog data assimilation for the selection of suitable general circulation models
Uncertainty and sensitivity analysis for probabilistic weather and climate-risk modelling: an implementation in CLIMADA v.3.1.0
Jane P. Mulcahy, Colin G. Jones, Steven T. Rumbold, Till Kuhlbrodt, Andrea J. Dittus, Edward W. Blockley, Andrew Yool, Jeremy Walton, Catherine Hardacre, Timothy Andrews, Alejandro Bodas-Salcedo, Marc Stringer, Lee de Mora, Phil Harris, Richard Hill, Doug Kelley, Eddy Robertson, and Yongming Tang
Geosci. Model Dev., 16, 1569–1600, https://doi.org/10.5194/gmd-16-1569-2023, https://doi.org/10.5194/gmd-16-1569-2023, 2023
Short summary
Short summary
Recent global climate models simulate historical global mean surface temperatures which are too cold, possibly to due to excessive aerosol cooling. This raises questions about the models' ability to simulate important climate processes and reduces confidence in future climate predictions. We present a new version of the UK Earth System Model, which has an improved aerosols simulation and a historical temperature record. Interestingly, the long-term response to CO2 remains largely unchanged.
Olawale James Ikuyajolu, Luke Van Roekel, Steven R. Brus, Erin E. Thomas, Yi Deng, and Sarat Sreepathi
Geosci. Model Dev., 16, 1445–1458, https://doi.org/10.5194/gmd-16-1445-2023, https://doi.org/10.5194/gmd-16-1445-2023, 2023
Short summary
Short summary
Wind-generated waves play an important role in modifying physical processes at the air–sea interface, but they have been traditionally excluded from climate models due to the high computational cost of running spectral wave models for climate simulations. To address this, our work identified and accelerated the computationally intensive section of WAVEWATCH III on GPU using OpenACC. This allows for high-resolution modeling of atmosphere–wave–ocean feedbacks in century-scale climate integrations.
Edward C. Chan, Joana Leitão, Andreas Kerschbaumer, and Timothy M. Butler
Geosci. Model Dev., 16, 1427–1444, https://doi.org/10.5194/gmd-16-1427-2023, https://doi.org/10.5194/gmd-16-1427-2023, 2023
Short summary
Short summary
Yeti is a Handbook Emission Factors for Road Transport-based traffic emission inventory written in the Python 3 scripting language, which adopts a generalized treatment for activity data using traffic information of varying levels of detail introduced in a systematic and consistent manner, with the ability to maximize reusability. Thus, Yeti has been conceived and implemented with a high degree of data and process symmetry, allowing scalable and flexible execution while affording ease of use.
Haopeng Fan, Siran Li, Zhongmiao Sun, Guorui Xiao, Xinxing Li, and Xiaogang Liu
Geosci. Model Dev., 16, 1345–1358, https://doi.org/10.5194/gmd-16-1345-2023, https://doi.org/10.5194/gmd-16-1345-2023, 2023
Short summary
Short summary
The traditional tropospheric zenith hydrostatic delay (ZHD) model's bias is usually thought negligible, yet it still reaches 10 mm sometimes and would lead to millimeter-level position errors for space geodetic observations. Therefore, we analyzed the bias’ characteristics and present a grid model to correct the traditional ZHD formula. When verifying the efficiency based on data from the ECMWF (European Centre for Medium-Range Weather Forecasts), ZHD biases were rectified by ~50 %.
Gang Liu, Shushi Peng, Chris Huntingford, and Yi Xi
Geosci. Model Dev., 16, 1277–1296, https://doi.org/10.5194/gmd-16-1277-2023, https://doi.org/10.5194/gmd-16-1277-2023, 2023
Short summary
Short summary
Due to computational limits, lower-complexity models (LCMs) were developed as a complementary tool for accelerating comprehensive Earth system models (ESMs) but still lack a good precipitation emulator for LCMs. Here, we developed a data-calibrated precipitation emulator (PREMU), a computationally effective way to better estimate historical and simulated precipitation by current ESMs. PREMU has potential applications related to land surface processes and their interactions with climate change.
Suzanne Robinson, Ruza F. Ivanovic, Lauren J. Gregoire, Julia Tindall, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, Kazuyo Tachikawa, and Paul J. Valdes
Geosci. Model Dev., 16, 1231–1264, https://doi.org/10.5194/gmd-16-1231-2023, https://doi.org/10.5194/gmd-16-1231-2023, 2023
Short summary
Short summary
We present the implementation of neodymium (Nd) isotopes into the ocean model of FAMOUS (Nd v1.0). Nd fluxes from seafloor sediment and incorporation of Nd onto sinking particles represent the major global sources and sinks, respectively. However, model–data mismatch in the North Pacific and northern North Atlantic suggest that certain reactive components of the sediment interact the most with seawater. Our results are important for interpreting Nd isotopes in terms of ocean circulation.
Yann Quilcaille, Thomas Gasser, Philippe Ciais, and Olivier Boucher
Geosci. Model Dev., 16, 1129–1161, https://doi.org/10.5194/gmd-16-1129-2023, https://doi.org/10.5194/gmd-16-1129-2023, 2023
Short summary
Short summary
The model OSCAR is a simple climate model, meaning its representation of the Earth system is simplified but calibrated on models of higher complexity. Here, we diagnose its latest version using a total of 99 experiments in a probabilistic framework and under observational constraints. OSCAR v3.1 shows good agreement with observations, complex Earth system models and emerging properties. Some points for improvements are identified, such as the ocean carbon cycle.
Sandra L. LeGrand, Theodore W. Letcher, Gregory S. Okin, Nicholas P. Webb, Alex R. Gallagher, Saroj Dhital, Taylor S. Hodgdon, Nancy P. Ziegler, and Michelle L. Michaels
Geosci. Model Dev., 16, 1009–1038, https://doi.org/10.5194/gmd-16-1009-2023, https://doi.org/10.5194/gmd-16-1009-2023, 2023
Short summary
Short summary
Ground cover affects dust emissions by reducing wind flow over the immediate soil surface. This study reviews a method for estimating ground cover effects on wind erosion from satellite-detected terrain shadows. We conducted a case study for a US dust event using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. Adding the shadow-based method for ground cover effects markedly improved simulated results and may lead to better dust modeling outcomes in vegetated drylands.
Roman Brogli, Christoph Heim, Jonas Mensch, Silje Lund Sørland, and Christoph Schär
Geosci. Model Dev., 16, 907–926, https://doi.org/10.5194/gmd-16-907-2023, https://doi.org/10.5194/gmd-16-907-2023, 2023
Short summary
Short summary
The pseudo-global-warming (PGW) approach is a downscaling methodology that imposes the large-scale GCM-based climate change signal on the boundary conditions of a regional climate simulation. It offers several benefits in comparison to conventional downscaling. We present a detailed description of the methodology, provide companion software to facilitate the preparation of PGW simulations, and present validation and sensitivity studies.
Fa Li, Qing Zhu, William J. Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, Huayi Wu, Zhipeng Gui, Jianya Gong, and James T. Randerson
Geosci. Model Dev., 16, 869–884, https://doi.org/10.5194/gmd-16-869-2023, https://doi.org/10.5194/gmd-16-869-2023, 2023
Short summary
Short summary
We developed an interpretable machine learning model to predict sub-seasonal and near-future wildfire-burned area over African and South American regions. We found strong time-lagged controls (up to 6–8 months) of local climate wetness on burned areas. A skillful use of such time-lagged controls in machine learning models results in highly accurate predictions of wildfire-burned areas; this will also help develop relevant early-warning and management systems for tropical wildfires.
Edmund P. Meredith, Uwe Ulbrich, and Henning W. Rust
Geosci. Model Dev., 16, 851–867, https://doi.org/10.5194/gmd-16-851-2023, https://doi.org/10.5194/gmd-16-851-2023, 2023
Short summary
Short summary
Cell-tracking algorithms allow for the study of properties of a convective cell across its lifetime and, in particular, how these respond to climate change. We investigated whether the design of the algorithm can affect the magnitude of the climate-change signal. The algorithm's criteria for identifying a cell were found to have a strong impact on the warming response. The sensitivity of the warming response to different algorithm settings and cell types should thus be fully explored.
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
Yan Zhang, Xuantong Wang, Yuhao Sun, Chenhui Ning, Shiming Xu, Hengbin An, Dehong Tang, Hong Guo, Hao Yang, Ye Pu, Bo Jiang, and Bin Wang
Geosci. Model Dev., 16, 679–704, https://doi.org/10.5194/gmd-16-679-2023, https://doi.org/10.5194/gmd-16-679-2023, 2023
Short summary
Short summary
We construct a new ocean model, OMARE, that can carry out multi-scale ocean simulation with adaptive mesh refinement. OMARE is based on the refactorization of NEMO with a third-party, high-performance piece of middleware. We report the porting process and experiments of an idealized western-boundary current system. The new model simulates turbulent and temporally varying mesoscale and submesoscale processes via adaptive refinement. Related topics and future work with OMARE are also discussed.
Zhenming Wang, Shaoqing Zhang, Yishuai Jin, Yinglai Jia, Yangyang Yu, Yang Gao, Xiaolin Yu, Mingkui Li, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev., 16, 705–717, https://doi.org/10.5194/gmd-16-705-2023, https://doi.org/10.5194/gmd-16-705-2023, 2023
Short summary
Short summary
To improve the numerical model predictability of monthly extended-range scales, we use the simplified slab ocean model (SOM) to restrict the complicated sea surface temperature (SST) bias from a 3-D dynamical ocean model. As for SST prediction, whether in space or time, the WRF-SOM is verified to have better performance than the WRF-ROMS, which has a significant impact on the atmosphere. For extreme weather events such as typhoons, the predictions of WRF-SOM are in good agreement with WRF-ROMS.
Dagmawi Teklu Asfaw, Michael Bliss Singer, Rafael Rosolem, David MacLeod, Mark Cuthbert, Edisson Quichimbo Miguitama, Manuel F. Rios Gaona, and Katerina Michaelides
Geosci. Model Dev., 16, 557–571, https://doi.org/10.5194/gmd-16-557-2023, https://doi.org/10.5194/gmd-16-557-2023, 2023
Short summary
Short summary
stoPET is a new stochastic potential evapotranspiration (PET) generator for the globe at hourly resolution. Many stochastic weather generators are used to generate stochastic rainfall time series; however, no such model exists for stochastically generating plausible PET time series. As such, stoPET represents a significant methodological advance. stoPET generate many realizations of PET to conduct climate studies related to the water balance, agriculture, water resources, and ecology.
Markus Köhli, Martin Schrön, Steffen Zacharias, and Ulrich Schmidt
Geosci. Model Dev., 16, 449–477, https://doi.org/10.5194/gmd-16-449-2023, https://doi.org/10.5194/gmd-16-449-2023, 2023
Short summary
Short summary
In the last decades, Monte Carlo codes were often consulted to study neutrons near the surface. As an alternative for the growing community of CRNS, we developed URANOS. The main model features are tracking of particle histories from creation to detection, detector representations as layers or geometric shapes, a voxel-based geometry model, and material setup based on color codes in ASCII matrices or bitmap images. The entire software is developed in C++ and features a graphical user interface.
Peter A. Bogenschutz, Hsiang-He Lee, Qi Tang, and Takanobu Yamaguchi
Geosci. Model Dev., 16, 335–352, https://doi.org/10.5194/gmd-16-335-2023, https://doi.org/10.5194/gmd-16-335-2023, 2023
Short summary
Short summary
Models that are used to simulate and predict climate often have trouble representing specific cloud types, such as stratocumulus, that are particularly thin in the vertical direction. It has been found that increasing the model resolution can help improve this problem. In this paper, we develop a novel framework that increases the horizontal and vertical resolutions only for areas of the globe that contain stratocumulus, hence reducing the model runtime while providing better results.
Manuel Schlund, Birgit Hassler, Axel Lauer, Bouwe Andela, Patrick Jöckel, Rémi Kazeroni, Saskia Loosveldt Tomas, Brian Medeiros, Valeriu Predoi, Stéphane Sénési, Jérôme Servonnat, Tobias Stacke, Javier Vegas-Regidor, Klaus Zimmermann, and Veronika Eyring
Geosci. Model Dev., 16, 315–333, https://doi.org/10.5194/gmd-16-315-2023, https://doi.org/10.5194/gmd-16-315-2023, 2023
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool for routine evaluation of Earth system models. Originally, ESMValTool was designed to process reformatted output provided by large model intercomparison projects like the Coupled Model Intercomparison Project (CMIP). Here, we describe a new extension of ESMValTool that allows for reading and processing native climate model output, i.e., data that have not been reformatted before.
Xiaohui Zhong, Zhijian Ma, Yichen Yao, Lifei Xu, Yuan Wu, and Zhibin Wang
Geosci. Model Dev., 16, 199–209, https://doi.org/10.5194/gmd-16-199-2023, https://doi.org/10.5194/gmd-16-199-2023, 2023
Short summary
Short summary
More and more researchers use deep learning models to replace physics-based parameterizations to accelerate weather simulations. However, embedding the ML models within the weather models is difficult as they are implemented in different languages. This work proposes a coupling framework to allow ML-based parameterizations to be coupled with the Weather Research and Forecasting (WRF) model. We also demonstrate using the coupler to couple the ML-based radiation schemes with the WRF model.
Dario Nicolì, Alessio Bellucci, Paolo Ruggieri, Panos J. Athanasiadis, Stefano Materia, Daniele Peano, Giusy Fedele, Riccardo Hénin, and Silvio Gualdi
Geosci. Model Dev., 16, 179–197, https://doi.org/10.5194/gmd-16-179-2023, https://doi.org/10.5194/gmd-16-179-2023, 2023
Short summary
Short summary
Decadal climate predictions, obtained by constraining the initial condition of a dynamical model through a truthful estimate of the observed climate state, provide an accurate assessment of the near-term climate and are useful for informing decision-makers on future climate-related risks. The predictive skill for key variables is assessed from the operational decadal prediction system compared with non-initialized historical simulations so as to quantify the added value of initialization.
Ming Yin, Yilun Han, Yong Wang, Wenqi Sun, Jianbo Deng, Daoming Wei, Ying Kong, and Bin Wang
Geosci. Model Dev., 16, 135–156, https://doi.org/10.5194/gmd-16-135-2023, https://doi.org/10.5194/gmd-16-135-2023, 2023
Short summary
Short summary
All global climate models (GCMs) use the grid-averaged surface heat fluxes to drive the atmosphere, and thus their horizontal variations within the grid cell are averaged out. In this regard, a novel scheme considering the variation and partitioning of the surface heat fluxes within the grid cell is developed. The scheme reduces the long-standing rainfall biases on the southern and eastern margins of the Tibetan Plateau. The performance of key variables at the global scale is also evaluated.
Jenny Niebsch, Werner von Bloh, Kirsten Thonicke, and Ronny Ramlau
Geosci. Model Dev., 16, 17–33, https://doi.org/10.5194/gmd-16-17-2023, https://doi.org/10.5194/gmd-16-17-2023, 2023
Short summary
Short summary
The impacts of climate change require strategies for climate adaptation. Dynamic global vegetation models (DGVMs) are used to study the effects of multiple processes in the biosphere under climate change. There is a demand for a better computational performance of the models. In this paper, the photosynthesis model in the Lund–Potsdam–Jena managed Land DGVM (4.0.002) was examined. We found a better numerical solution of a nonlinear equation. A significant run time reduction was possible.
Leonidas Linardakis, Irene Stemmler, Moritz Hanke, Lennart Ramme, Fatemeh Chegini, Tatiana Ilyina, and Peter Korn
Geosci. Model Dev., 15, 9157–9176, https://doi.org/10.5194/gmd-15-9157-2022, https://doi.org/10.5194/gmd-15-9157-2022, 2022
Short summary
Short summary
In Earth system modelling, we are facing the challenge of making efficient use of very large machines, with millions of cores. To meet this challenge we will need to employ multi-level and multi-dimensional parallelism. Component concurrency, being a function parallel technique, offers an additional dimension to the traditional data-parallel approaches. In this paper we examine the behaviour of component concurrency and identify the conditions for its optimal application.
Bing Gong, Michael Langguth, Yan Ji, Amirpasha Mozaffari, Scarlet Stadtler, Karim Mache, and Martin G. Schultz
Geosci. Model Dev., 15, 8931–8956, https://doi.org/10.5194/gmd-15-8931-2022, https://doi.org/10.5194/gmd-15-8931-2022, 2022
Short summary
Short summary
Inspired by the success of deep learning in various domains, we test the applicability of video prediction methods by generative adversarial network (GAN)-based deep learning to predict the 2 m temperature over Europe. Our video prediction models have skill in predicting the diurnal cycle of 2 m temperature up to 12 h ahead. Complemented by probing the relevance of several model parameters, this study confirms the potential of deep learning in meteorological forecasting applications.
Thomas Bossy, Thomas Gasser, and Philippe Ciais
Geosci. Model Dev., 15, 8831–8868, https://doi.org/10.5194/gmd-15-8831-2022, https://doi.org/10.5194/gmd-15-8831-2022, 2022
Short summary
Short summary
We developed a new simple climate model designed to fill a perceived gap within the existing simple climate models by fulfilling three key requirements: calibration using Bayesian inference, the possibility of coupling with integrated assessment models, and the capacity to explore climate scenarios compatible with limiting climate impacts. Here, we describe the model and its calibration using the latest data from complex CMIP6 models and the IPCC AR6, and we assess its performance.
Marius S. A. Lambert, Hui Tang, Kjetil S. Aas, Frode Stordal, Rosie A. Fisher, Yilin Fang, Junyan Ding, and Frans-Jan W. Parmentier
Geosci. Model Dev., 15, 8809–8829, https://doi.org/10.5194/gmd-15-8809-2022, https://doi.org/10.5194/gmd-15-8809-2022, 2022
Short summary
Short summary
In this study, we implement a hardening mortality scheme into CTSM5.0-FATES-Hydro and evaluate how it impacts plant hydraulics and vegetation growth. Our work shows that the hydraulic modifications prescribed by the hardening scheme are necessary to model realistic vegetation growth in cold climates, in contrast to the default model that simulates almost nonexistent and declining vegetation due to abnormally large water loss through the roots.
Rubina Ansari, Ana Casanueva, Muhammad Usman Liaqat, and Giovanna Grossi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-237, https://doi.org/10.5194/gmd-2022-237, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
Bias correction has become indispensable to climate model output as a post-processing step to render climate model output more useful for impact assessment studies. The current work presents a comparison of different state-of-the-art BC methods (univariate and multivariate) and BC approaches (direct and component-wise) for climate model simulations from three initiatives (CMIP6, CORDEX and CORDEX-CORE) for a multivariate drought index (i.e., Standardized Precipitation Evapotranspiration Index).
Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Haipeng Lin, Elizabeth W. Lundgren, Steve Goldhaber, Steven R. H. Barrett, and Daniel J. Jacob
Geosci. Model Dev., 15, 8669–8704, https://doi.org/10.5194/gmd-15-8669-2022, https://doi.org/10.5194/gmd-15-8669-2022, 2022
Short summary
Short summary
We bring the state-of-the-science chemistry module GEOS-Chem into the Community Earth System Model (CESM). We show that some known differences between results from GEOS-Chem and CESM's CAM-chem chemistry module may be due to the configuration of model meteorology rather than inherent differences in the model chemistry. This is a significant step towards a truly modular Earth system model and allows two strong but currently separate research communities to benefit from each other's advances.
Laura Claire Jackson, Eduardo Alastrué de Asenjo, Katinka Bellomo, Gokhan Danabasoglu, Helmuth Haak, Aixue Hu, Johann Jungclaus, Warren Lee, Virna L. Meccia, Oleg Saenko, Andrew Shao, and Didier Swingedouw
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-277, https://doi.org/10.5194/gmd-2022-277, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
The Atlantic meridional overturning circulation (AMOC) has an important impact on the climate. There are theories that freshening of the ocean might cause the AMOC to cross a tipping point (TP) beyond which recovery is difficult, however it is unclear whether TP exist in global climate models. Here we outline a set of experiments designed to explore AMOC tipping points and sensitivity to additional freshwater input as part of the North Atlantic hosing model intercomparison project (NAHosMIP).
Rainer Schneck, Veronika Gayler, Julia E. M. S. Nabel, Thomas Raddatz, Christian H. Reick, and Reiner Schnur
Geosci. Model Dev., 15, 8581–8611, https://doi.org/10.5194/gmd-15-8581-2022, https://doi.org/10.5194/gmd-15-8581-2022, 2022
Short summary
Short summary
The versions of ICON-A and ICON-Land/JSBACHv4 used for this study constitute the first milestone in the development of the new ICON Earth System Model ICON-ESM. JSBACHv4 is the successor of JSBACHv3, and most of the parameterizations of JSBACHv4 are re-implementations from JSBACHv3. We assess and compare the performance of JSBACHv4 and JSBACHv3. Overall, the JSBACHv4 results are as good as JSBACHv3, but both models reveal the same main shortcomings, e.g. the depiction of the leaf area index.
Andrew Gettelman, Hugh Morrison, Trude Eidhammer, Katherine Thayer-Calder, Jian Sun, Richard Forbes, Zachary McGraw, Jiang Zhu, Trude Storelvmo, and John Dennis
EGUsphere, https://doi.org/10.5194/egusphere-2022-980, https://doi.org/10.5194/egusphere-2022-980, 2022
Short summary
Short summary
Clouds are a critical part of weather and climate prediction. In this work, we document updates and corrections to the description of clouds used in several Earth System Models. These updates include the ability to run the scheme on Graphics Processing Units (GPUs) and changes to the numerical description of precipitation, as well as a correction to ice number. There are big improvements in computational performance that can be achieved with GPU acceleration.
Dave van Wees, Guido R. van der Werf, James T. Randerson, Brendan M. Rogers, Yang Chen, Sander Veraverbeke, Louis Giglio, and Douglas C. Morton
Geosci. Model Dev., 15, 8411–8437, https://doi.org/10.5194/gmd-15-8411-2022, https://doi.org/10.5194/gmd-15-8411-2022, 2022
Short summary
Short summary
We present a global fire emission model based on the GFED model framework with a spatial resolution of 500 m. The higher resolution allowed for a more detailed representation of spatial heterogeneity in fuels and emissions. Specific modules were developed to model, for example, emissions from fire-related forest loss and belowground burning. Results from the 500 m model were compared to GFED4s, showing that global emissions were relatively similar but that spatial differences were substantial.
Adama Sylla, Emilia Sanchez Gomez, Juliette Mignot, and Jorge López-Parages
Geosci. Model Dev., 15, 8245–8267, https://doi.org/10.5194/gmd-15-8245-2022, https://doi.org/10.5194/gmd-15-8245-2022, 2022
Short summary
Short summary
Increasing model resolution depends on the subdomain of the Canary upwelling considered. In the Iberian Peninsula, the high-resolution (HR) models do not seem to better simulate the upwelling indices, while in Morocco to the Senegalese coast, the HR models show a clear improvement. Thus increasing the resolution of a global climate model does not necessarily have to be the only way to better represent the climate system. There is still much work to be done in terms of physical parameterizations.
Jadwiga H. Richter, Daniele Visioni, Douglas G. MacMartin, David A. Bailey, Nan Rosenbloom, Brian Dobbins, Walker R. Lee, Mari Tye, and Jean-Francois Lamarque
Geosci. Model Dev., 15, 8221–8243, https://doi.org/10.5194/gmd-15-8221-2022, https://doi.org/10.5194/gmd-15-8221-2022, 2022
Short summary
Short summary
Solar climate intervention using stratospheric aerosol injection is a proposed method of reducing global mean temperatures to reduce the worst consequences of climate change. We present a new modeling protocol aimed at simulating a plausible deployment of stratospheric aerosol injection and reproducibility of simulations using other Earth system models: Assessing Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI).
Gonzalo A. Ferrada, Meng Zhou, Jun Wang, Alexei Lyapustin, Yujie Wang, Saulo R. Freitas, and Gregory R. Carmichael
Geosci. Model Dev., 15, 8085–8109, https://doi.org/10.5194/gmd-15-8085-2022, https://doi.org/10.5194/gmd-15-8085-2022, 2022
Short summary
Short summary
The smoke from fires is composed of different compounds that interact with the atmosphere and can create poor air-quality episodes. Here, we present a new fire inventory based on satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS). We named this inventory the VIIRS-based Fire Emission Inventory (VFEI). Advantages of VFEI are its high resolution (~500 m) and that it provides information for many species. VFEI is publicly available and has provided data since 2012.
Entao Yu, Rui Bai, Xia Chen, and Lifang Shao
Geosci. Model Dev., 15, 8111–8134, https://doi.org/10.5194/gmd-15-8111-2022, https://doi.org/10.5194/gmd-15-8111-2022, 2022
Short summary
Short summary
A large number of simulations are conducted to investigate how different physical parameterization schemes impact surface wind simulations under stable weather conditions over the coastal regions of North China using the Weather Research and Forecasting model with a horizontal grid spacing of 0.5 km. Results indicate that the simulated wind speed is most sensitive to the planetary boundary layer schemes, followed by short-wave/long-wave radiation schemes and microphysics schemes.
Xingying Huang, Andrew Gettelman, William C. Skamarock, Peter Hjort Lauritzen, Miles Curry, Adam Herrington, John T. Truesdale, and Michael Duda
Geosci. Model Dev., 15, 8135–8151, https://doi.org/10.5194/gmd-15-8135-2022, https://doi.org/10.5194/gmd-15-8135-2022, 2022
Short summary
Short summary
We focus on the recent development of a state-of-the-art storm-resolving global climate model and investigate how this next-generation model performs for precipitation prediction over the western USA. Results show realistic representations of precipitation with significantly enhanced snowpack over complex terrains. The model evaluation advances the unified modeling of large-scale forcing constraints and realistic fine-scale features to advance multi-scale climate predictions and changes.
Marina Martínez Montero, Michel Crucifix, Victor Couplet, Nuria Brede, and Nicola Botta
Geosci. Model Dev., 15, 8059–8084, https://doi.org/10.5194/gmd-15-8059-2022, https://doi.org/10.5194/gmd-15-8059-2022, 2022
Short summary
Short summary
We present SURFER, a lightweight model that links CO2 emissions and geoengineering to ocean acidification and sea level rise from glaciers, ocean thermal expansion and Greenland and Antarctic ice sheets. The ice sheet module adequately describes the tipping points of both Greenland and Antarctica. SURFER is understandable, fast, accurate up to several thousands of years, capable of emulating results obtained by state of the art models and well suited for policy analyses.
Francisco José Cuesta-Valero, Hugo Beltrami, Stephan Gruber, Almudena García-García, and J. Fidel González-Rouco
Geosci. Model Dev., 15, 7913–7932, https://doi.org/10.5194/gmd-15-7913-2022, https://doi.org/10.5194/gmd-15-7913-2022, 2022
Short summary
Short summary
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface temperature histories and ground heat flux histories at timescales of decades to millennia. Theses estimates complement high-frequency proxy temperature reconstructions and are the basis for studying continental heat storage. We develop and release a new bootstrap method to derive meaningful confidence intervals for the average surface temperature and heat flux histories from any number of profiles.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Wentao Zhang, Xiangjun Shi, and Chunsong Lu
Geosci. Model Dev., 15, 7751–7766, https://doi.org/10.5194/gmd-15-7751-2022, https://doi.org/10.5194/gmd-15-7751-2022, 2022
Short summary
Short summary
The two-moment bulk cloud microphysics scheme used in CAM6 was modified to consider the impacts of the ice-crystal size distribution shape parameter (μi). After that, how the μi impacts cloud microphysical processes and then climate simulations is clearly illustrated by offline tests and CAM6 model experiments. Our results and findings are useful for the further development of μi-related parameterizations.
Yona Silvy, Clément Rousset, Eric Guilyardi, Jean-Baptiste Sallée, Juliette Mignot, Christian Ethé, and Gurvan Madec
Geosci. Model Dev., 15, 7683–7713, https://doi.org/10.5194/gmd-15-7683-2022, https://doi.org/10.5194/gmd-15-7683-2022, 2022
Short summary
Short summary
A modeling framework is introduced to understand and decompose the mechanisms causing the ocean temperature, salinity and circulation to change since the pre-industrial period and into 21st century scenarios of global warming. This framework aims to look at the response to changes in the winds and in heat and freshwater exchanges at the ocean interface in global climate models, throughout the 1850–2100 period, to unravel their individual effects on the changing physical structure of the ocean.
Aiko Voigt, Petra Schwer, Noam von Rotberg, and Nicole Knopf
Geosci. Model Dev., 15, 7489–7504, https://doi.org/10.5194/gmd-15-7489-2022, https://doi.org/10.5194/gmd-15-7489-2022, 2022
Short summary
Short summary
In climate science, it is helpful to identify coherent objects, for example, those formed by clouds. However, many models now use unstructured grids, which makes it harder to identify coherent objects. We present a new method that solves this problem by moving model data from an unstructured triangular grid to a structured cubical grid. We implement the method in an open-source Python package and show that the method is ready to be applied to climate model data.
Jérémy Bernard, Erwan Bocher, Elisabeth Le Saux Wiederhold, François Leconte, and Valéry Masson
Geosci. Model Dev., 15, 7505–7532, https://doi.org/10.5194/gmd-15-7505-2022, https://doi.org/10.5194/gmd-15-7505-2022, 2022
Short summary
Short summary
OpenStreetMap is a collaborative project aimed at creaing a free dataset containing topographical information. Since these data are available worldwide, they can be used as standard data for geoscience studies. However, most buildings miss the height information that constitutes key data for numerous fields (urban climate, noise propagation, air pollution). In this work, the building height is estimated using statistical modeling using indicators that characterize the building's environment.
Sergey Kravtsov, Ilijana Mastilovic, Andrew McC. Hogg, William K. Dewar, and Jeffrey R. Blundell
Geosci. Model Dev., 15, 7449–7469, https://doi.org/10.5194/gmd-15-7449-2022, https://doi.org/10.5194/gmd-15-7449-2022, 2022
Short summary
Short summary
Climate is a complex system whose behavior is shaped by multitudes of processes operating on widely different spatial scales and timescales. In hierarchical modeling, one goes back and forth between highly idealized process models and state-of-the-art models coupling the entire range of climate subsystems to identify specific phenomena and understand their dynamics. The present contribution highlights an intermediate climate model focussing on midlatitude ocean–atmosphere interactions.
Johann Dahm, Eddie Davis, Florian Deconinck, Oliver Elbert, Rhea George, Jeremy McGibbon, Tobias Wicky, Elynn Wu, Christopher Kung, Tal Ben-Nun, Lucas Harris, Linus Groner, and Oliver Fuhrer
EGUsphere, https://doi.org/10.5194/egusphere-2022-943, https://doi.org/10.5194/egusphere-2022-943, 2022
Short summary
Short summary
It is hard for scientists to write efficient code which runs fast on all kinds of supercomputers. They like writing Python because it is easier to read and use. We re-wrote a Fortran code that simulates weather and climate into Python. The Python code re-writes itself to a much faster language to run on either normal processors or graphics cards. On one big computer system, our code is 3.5–4x faster on its graphics cards than the original code is on its processors.
Ingo Wohltmann, Daniel Kreyling, and Ralph Lehmann
Geosci. Model Dev., 15, 7243–7255, https://doi.org/10.5194/gmd-15-7243-2022, https://doi.org/10.5194/gmd-15-7243-2022, 2022
Short summary
Short summary
The study evaluates the performance of the Data Assimilation Research Testbed (DART), equipped with the recently added forward operator Radiative Transfer for TOVS (RTTOV), in assimilating FY-4A visible images into the Weather Research and Forecasting (WRF) model. The ability of the WRF-DART/RTTOV system to improve the forecasting skills for a tropical storm over East Asia and the Western Pacific is demonstrated in an Observing System Simulation Experiment framework.
Enrico Zorzetto, Sergey Malyshev, Nathaniel Chaney, David Paynter, Raymond Menzel, and Elena Shevliakova
EGUsphere, https://doi.org/10.5194/egusphere-2022-770, https://doi.org/10.5194/egusphere-2022-770, 2022
Short summary
Short summary
In this paper we develop a methodology to model the spatial distribution of solar radiation received by land over mountainous terrain. The approach is designed to be used in Earth System Models, where coarse grid cells hinder the description of fine scale land-atmosphere interactions. We adopt a clustering algorithm to partiton land domain in a set of homogeneous sub-grid “tiles”, and for each evaluate solar radiation receive by land based on terrain properties.
Juan Ruiz, Pierre Ailliot, Thi Tuyet Trang Chau, Pierre Le Bras, Valérie Monbet, Florian Sévellec, and Pierre Tandeo
Geosci. Model Dev., 15, 7203–7220, https://doi.org/10.5194/gmd-15-7203-2022, https://doi.org/10.5194/gmd-15-7203-2022, 2022
Short summary
Short summary
We present a new approach to validate numerical simulations of the current climate. The method can take advantage of existing climate simulations produced by different centers combining an analog forecasting approach with data assimilation to quantify how well a particular model reproduces a sequence of observed values. The method can be applied with different observations types and is implemented locally in space and time significantly reducing the associated computational cost.
Chahan M. Kropf, Alessio Ciullo, Laura Otth, Simona Meiler, Arun Rana, Emanuel Schmid, Jamie W. McCaughey, and David N. Bresch
Geosci. Model Dev., 15, 7177–7201, https://doi.org/10.5194/gmd-15-7177-2022, https://doi.org/10.5194/gmd-15-7177-2022, 2022
Short summary
Short summary
Mathematical models are approximations, and modellers need to understand and ideally quantify the arising uncertainties. Here, we describe and showcase the first, simple-to-use, uncertainty and sensitivity analysis module of the open-source and open-access climate-risk modelling platform CLIMADA. This may help to enhance transparency and intercomparison of studies among climate-risk modellers, help focus future research, and lead to better-informed decisions on climate adaptation.
Cited articles
Abreu, L. and Anderson, G.: The MODTRAN 2/3 report and LOWTRAN 7 model,
Contract, 19628, 0132, Phillips Laboratory,
1996. a
Allen, L., Lindberg, F., and Grimmond, C.: Global to city scale urban
anthropogenic heat flux: model and variability, Int. J.
Climatol., 31, 1990–2005, https://doi.org/10.1002/joc.2210, 2011. a
Alonzo, M., Bookhagen, B., and Roberts, D. A.: Urban tree species mapping using
hyperspectral and lidar data fusion, Remote Sens. Environ., 148,
70–83, https://doi.org/10.1016/j.rse.2014.03.018, 2014. a, b
Alonzo, M., Bookhagen, B., McFadden, J. P., Sun, A., and Roberts, D. A.:
Mapping urban forest leaf area index with airborne lidar using penetration
metrics and allometry, Remote Sens. Environ., 162, 141–153,
https://doi.org/10.1016/j.rse.2015.02.025, 2015. a
Armson, D., Stringer, P., and Ennos, A.: The effect of tree shade and grass on
surface and globe temperatures in an urban area, Urban For. Urban
Gree., 11, 245–255, https://doi.org/10.1016/j.ufug.2012.05.002, 2012. a, b
Asawa, T., Kiyono, T., and Hoyano, A.: Continuous measurement of whole-tree
water balance for studying urban tree transpiration, Hydrol. Process.,
31, 3056–3068, https://doi.org/10.1002/hyp.11244, 2017. a, b
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M.,
and Reinhardt, T.: Operational convective-scale numerical weather prediction
with the COSMO model: description and sensitivities, Mon. Weather Rev.,
139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011. a
Baldridge, A., Hook, S., Grove, C., and Rivera, G.: The ASTER spectral library
version 2.0, Remote Sens. Environ., 113, 711–715,
https://doi.org/10.1016/j.rse.2008.11.007, 2009. a
Basel-Stadt, S. A. K.: Monatlicher Energieverbrauch,
available at: http://www.statistik.bs.ch/zahlen/tabellen/8-energie.html, last access: 31 March 2020. a
Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., and Van Den Bosch,
J.: MODTRAN® 6: A major upgrade of the
MODTRAN® radiative transfer code, in: 2014 6th Workshop on
Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
(WHISPERS), IEEE, 1–4, https://doi.org/10.1109/WHISPERS.2014.8077573, 2014. a, b
Bowler, D. E., Buyung-Ali, L., Knight, T. M., and Pullin, A. S.: Urban greening
to cool towns and cities: A systematic review of the empirical evidence,
Landscape Urban Plan., 97, 147–155,
https://doi.org/10.1016/j.landurbplan.2010.05.006, 2010. a
Brandmeyer, J. E. and Karimi, H. A.: Coupling methodologies for environmental
models, Environ. Modell. Softw., 15, 479–488,
https://doi.org/10.1016/S1364-8152(00)00027-X, 2000. a, b
Branson, S., Wegner, J. D., Hall, D., Lang, N., Schindler, K., and Perona, P.:
From Google Maps to a fine-grained catalog of street trees, ISPRS J.
Photogramm., 135, 13–30,
https://doi.org/10.1016/j.isprsjprs.2017.11.008, 2018. a
Brown de Colstoun, E. C., Huang, C., Wang, P., Tilton, J. C., Tan, B.,
Phillips, J., Niemczura, S., Ling, P.-Y., and Wolfe, R. E.: Global Man-made
Impervious Surface (GMIS) Dataset From Landsat, Palisades, NY, NASA
Socioeconomic Data and Applications Center (SEDAC), https://doi.org/10.7927/H4P55KKF,
2017. a
Buzzi, M., Rotach, M. W., Holtslag, M., and Holtslag, A. A.: Evaluation of the
COSMO-SC turbulence scheme in a shear-driven stable boundary layer,
Meteorol. Z., 20, 335–350, https://doi.org/10.1127/0941-2948/2011/0050,
2011. a
CCLM-Community: Climate Limited-area Modelling Community,
available at: https://www.clm-community.eu/, last access: 31 March 2020. a
Center for International Earth Science Information Network – CIESIN – Columbia
University, International Food Policy Research Institute – IFPRI, The World
Bank, and Centro Internacional de Agricultura Tropical – CIAT. 2011: Global
rural-urban mapping project, version 1 (GRUMPv1): urban extents grid,
https://doi.org/10.7927/H4GH9FVG, 2011. a
Cerenzia, I.: Challenges and Critical Aspects in Stable Boundary Layer
Representation in Numerical Weather Prediction Modeling: Diagnostic Analyses
and Proposals for Improvement, PhD thesis, Alma Mater Studiorum Università
di Bologna, https://doi.org/10.6092/unibo/amsdottorato/8067, 2017. a
Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C., Grossman-Clarke,
S., Loridan, T., Manning, K. W., Martilli, A., Miao, S., Sailor, D., Salamanca, F. P., Taha, H., Tewari, M., Wang, X., Wyszogrodzki, A. A., and Zhang, C.: The
integrated WRF/urban modelling system: development, evaluation, and
applications to urban environmental problems, Int. J.
Climatol., 31, 273–288, https://doi.org/10.1002/joc.2158, 2011a. a
Chen, F., Yang, S., Yin, K., and Chan, P.: Challenges to quantitative
applications of Landsat observations for the urban thermal environment,
J. Environ. Sci., 59, 80–88,
https://doi.org/10.1016/j.jes.2017.02.009, 2017. a, b
Chen, L., Zhang, Z., Li, Z., Tang, J., Caldwell, P., and Zhang, W.: Biophysical
control of whole tree transpiration under an urban environment in Northern
China, J. Hydrol., 402, 388–400,
https://doi.org/10.1016/j.jhydrol.2011.03.034, 2011b. a
Ching, J., Mills, G., Bechtel, B., See, L., Feddema, J., Wang, X., Ren, C.,
Brousse, O., Martilli, A., Neophytou, M., Mouzourides, P., Stewart, I., Hanna, A., Ng, E., Foley, M., Alexander, P., Aliaga, D., Niyogi, D., Shreevastava, A., Bhalachandran, P., Masson, V., Hidalgo, J., Fung, J., Andrade, M., Baklanov, A., Dai, W., Milcinski, G., Demuzere, M., Brunsell, N., Pesaresi, M., Miao, S., Mu, Q., Chen, F., and Theeuwes, N.: WUDAPT: An urban weather,
climate, and environmental modeling infrastructure for the anthropocene,
B. Am, Meteorol, Soc,, 99, 1907–1924,
https://doi.org/10.1175/BAMS-D-16-0236.1, 2018. a
Christen, A.: Atmospheric turbulence and surface energy exchange in urban
environments: results from the Basel Urban Boundary Layer Experiment
(BUBBLE), PhD thesis, University of Basel,
https://doi.org/10.5451/unibas-003631734, 2005. a
Coll, C., Galve, J. M., Sanchez, J. M., and Caselles, V.: Validation of
Landsat-7/ETM+ thermal-band calibration and atmospheric correction with
ground-based measurements, IEEE T. Geosci. Remote, 48, 547–555, https://doi.org/10.1109/TGRS.2009.2024934, 2010. a
Coutts, A. M., White, E. C., Tapper, N. J., Beringer, J., and Livesley, S. J.:
Temperature and human thermal comfort effects of street trees across three
contrasting street canyon environments, Theor. Appl. Climatol.,
124, 55–68, https://doi.org/10.1007/s00704-015-1409-y, 2016. a, b, c
Craig, A., Valcke, S., and Coquart, L.: Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308, https://doi.org/10.5194/gmd-10-3297-2017, 2017. a
Crawford, B., Grimmond, S. B., Gabey, A., Marconcini, M., Ward, H. C., and
Kent, C. W.: Variability of urban surface temperatures and implications for
aerodynamic energy exchange in unstable conditions, Q. J.
Roy. Meteor. Soc., 144, 1719–1741, https://doi.org/10.1002/qj.3325, 2018. a
Damour, G., Simonneau, T., Cochard, H., and Urban, L.: An overview of models of
stomatal conductance at the leaf level, Plant Cell Environ., 33,
1419–1438, https://doi.org/10.1111/j.1365-3040.2010.02181.x, 2010. a
Davin, E. L., Stöckli, R., Jaeger, E. B., Levis, S., and Seneviratne,
S. I.: COSMO-CLM 2: a new version of the COSMO-CLM model coupled to the
Community Land Model, Clim. Dynam., 37, 1889–1907,
https://doi.org/10.1007/s00382-011-1019-z, 2011. a
De Munck, C., Lemonsu, A., Masson, V., Le Bras, J., and Bonhomme, M.:
Evaluating the impacts of greening scenarios on thermal comfort and energy
and water consumptions for adapting Paris city to climate change, Urban
Climate, 23, 260–286, https://doi.org/10.1016/j.uclim.2017.01.003, 2018. a, b
De Rosnay, P., Drusch, M., Vasiljevic, D., Balsamo, G., Albergel, C., and
Isaksen, L.: A simplified Extended Kalman Filter for the global operational
soil moisture analysis at ECMWF, Q. J. Roy.
Meteor. Soc., 139, 1199–1213, https://doi.org/10.1002/qj.2023, 2013. a
Dong, B., Sutton, R., Shaffrey, L., and Wilcox, L.: The 2015 European heat
wave, B. Am. Meteorol. Soc., 97, S57–S62,
https://doi.org/10.1175/BAMS-D-16-0140.1, 2016. a
Dupont, S., Otte, T. L., and Ching, J. K.: Simulation of meteorological fields
within and above urban and rural canopies with a mesoscale model,
Bound.-Lay. Meteorol., 113, 111–158,
https://doi.org/10.1023/B:BOUN.0000037327.19159.ac, 2004. a, b, c
Efstathiou, G. and Beare, R. J.: Quantifying and improving sub-grid diffusion
in the boundary-layer grey zone, Q. J. Roy.
Meteor. Soc., 141, 3006–3017, https://doi.org/10.1002/qj.2585, 2015. a
FAO, IIASA, ISRIC, ISS-CAS, and JRC: Harmonized World Soil Database (version
1.1), available at:
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (last access: 31 March 2020),
2009. a
Federal Office of Topography, S. C.: swissBUILDINGS3D 1.0,
available at: https://shop.swisstopo.admin.ch/en/products/landscape/build3D (last access: 31 March 2020),
2007. a
Feigenwinter, C., Vogt, R., and Christen, A.: Eddy covariance measurements over
urban areas, in: Eddy Covariance, Springer, 377–397,
https://doi.org/10.1007/978-94-007-2351-1_16, 2012. a
Feigenwinter, C., Vogt, R., Parlow, E., Lindberg, F., Marconcini, M.,
Del Frate, F., and Chrysoulakis, N.: Spatial Distribution of Sensible and
Latent Heat Flux in the City of Basel (Switzerland), IEEE J. Sel.
Top. Appl., 11, 2717–2723,
https://doi.org/10.1109/JSTARS.2018.2807815, 2018. a, b
Giannaros, T. M., Melas, D., Daglis, I. A., Keramitsoglou, I., and Kourtidis,
K.: Numerical study of the urban heat island over Athens (Greece) with the
WRF model, Atmos. Environ., 73, 103–111,
https://doi.org/10.1016/j.atmosenv.2013.02.055, 2013. a
Green, S.: Radiation balance, transpiration and photosynthesis of an isolated
tree, Agr. Forest Meteorol., 64, 201–221,
https://doi.org/10.1016/0168-1923(93)90029-H, 1993. a
Grell, G. A., Dudhia, J., and Stauffer, D. R.: A description of the
fifth-generation Penn State/NCAR Mesoscale Model (MM5), NCAR/TN-398, NCAR Techincal Note, 1994. a
Grimmond, C. and Oke, T. R.: Aerodynamic properties of urban areas derived from
analysis of surface form, J. Appl. Meteorol., 38, 1262–1292,
https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2, 1999. a
Grimmond, C., Blackett, M., Best, M., Baik, J.-J., Belcher, S., Beringer, J.,
Bohnenstengel, S., Calmet, I., Chen, F., Coutts, A., Dandou, A., Fortuniak, K., Gouvea, M. L.. Hamdi, R., Hendry, M., Kanda, M., Kawai, T., Kawamoto, Y., Kondo, H., Krayenhoff, E. S., Lee, S.‐H., Loridan, T., Martilli, A., Masson, V., Miao, S., Oleson, K., Ooka, R., Pigeon, G., Porson, A., Ryu, Y.‐H., Salamanca, F., Steeneveld, G.J., Tombrou, M., Voogt, J. A., Young, D. T., and Zhang, N.: Initial results
from Phase 2 of the international urban energy balance model comparison,
Int. J. Climatol., 31, 244–272, https://doi.org/10.1002/joc.2227,
2011. a, b, c
Grimmond, S., Lindberg, F., Allen, L., Yogeswaran, N., and Kotthaus, S.: LUCY:
Large scale Urban Consumption of Energy, University of Reading, Software, https://doi.org/10.17864/1947.149, 2018. a
Gromke, C., Blocken, B., Janssen, W., Merema, B., van Hooff, T., and
Timmermans, H.: CFD analysis of transpirational cooling by vegetation: Case
study for specific meteorological conditions during a heat wave in Arnhem,
Netherlands, Build. Environ., 83, 11–26,
https://doi.org/10.1016/j.buildenv.2014.04.022, 2015. a
Grossman-Clarke, S., Schubert, S., and Fenner, D.: Urban effects on summertime
air temperature in Germany under climate change, Int. J.
Climatol., 37, 905–917, https://doi.org/10.1002/joc.4748, 2017. a
Gunawardena, K., Wells, M., and Kershaw, T.: Utilising green and bluespace to
mitigate urban heat island intensity, Sci. Total Environ., 584,
1040–1055, https://doi.org/10.1016/j.scitotenv.2017.01.158, 2017. a
Gutiérrez, E., González, J. E., Martilli, A., Bornstein, R., and Arend,
M.: Simulations of a heat-wave event in New York City using a multilayer
urban parameterization, J. Appl. Meteorol. Clim., 54,
283–301, https://doi.org/10.1175/JAMC-D-14-0028.1, 2015. a
Hollinger, D. and Richardson, A.: Uncertainty in eddy covariance measurements
and its application to physiological models, Tree Physiol., 25, 873–885,
https://doi.org/10.1093/treephys/25.7.873, 2005. a
Hu, L., Brunsell, N. A., Monaghan, A. J., Barlage, M., and Wilhelmi, O. V.: How
can we use MODIS land surface temperature to validate long-term urban model
simulations?, J. Geophys. Res.-Atmos., 119, 3185–3201,
https://doi.org/10.1002/2013JD021101, 2014. a, b, c, d
Hu, L., Monaghan, A., Voogt, J. A., and Barlage, M.: A first satellite-based
observational assessment of urban thermal anisotropy, Remote Sens.
Environ., 181, 111–121, https://doi.org/10.1016/j.rse.2016.03.043, 2016. a
Ionita, M., Tallaksen, L. M., Kingston, D. G., Stagge, J. H., Laaha, G., Van Lanen, H. A. J., Scholz, P., Chelcea, S. M., and Haslinger, K.: The European 2015 drought from a climatological perspective, Hydrol. Earth Syst. Sci., 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017, 2017. a
Ito, J., Niino, H., Nakanishi, M., and Moeng, C.-H.: An extension of the
Mellor–Yamada model to the terra incognita zone for dry convective mixed
layers in the free convection regime, Bound.-Lay. Meteorol., 157,
23–43, https://doi.org/10.1007/s10546-015-0045-5, 2015. a
Järvi, L., Grimmond, C., and Christen, A.: The surface urban energy and
water balance scheme (SUEWS): Evaluation in Los Angeles and Vancouver,
J. Hydrol., 411, 219–237, https://doi.org/10.1016/j.jhydrol.2011.10.001,
2011. a
Järvi, L., Rannik, Ü., Kokkonen, T. V., Kurppa, M., Karppinen, A., Kouznetsov, R. D., Rantala, P., Vesala, T., and Wood, C. R.: Uncertainty of eddy covariance flux measurements over an urban area based on two towers, Atmos. Meas. Tech., 11, 5421–5438, https://doi.org/10.5194/amt-11-5421-2018, 2018. a
Keel, S. G., Pepin, S., Leuzinger, S., and Körner, C.: Stomatal conductance
in mature deciduous forest trees exposed to elevated CO2, Trees, 21, 151,
https://doi.org/10.1007/s00468-006-0106-y, 2007. a
Klingberg, J., Konarska, J., Lindberg, F., Johansson, L., and Thorsson, S.:
Mapping leaf area of urban greenery using aerial LiDAR and ground-based
measurements in Gothenburg, Sweden, Urban For. Urban Gree., 26,
31–40, https://doi.org/10.1016/j.ufug.2017.05.011, 2017. a, b, c, d
Kolbe, T. H., Gröger, G., and Plümer, L.: CityGML: Interoperable access
to 3D city models, in: Geo-information for disaster management,
Springer, 883–899, https://doi.org/10.1007/3-540-27468-5_63, 2005. a
Konarska, J., Uddling, J., Holmer, B., Lutz, M., Lindberg, F., Pleijel, H., and
Thorsson, S.: Transpiration of urban trees and its cooling effect in a high
latitude city, Int. J. Biometeorol., 60, 159–172,
https://doi.org/10.1007/s00484-015-1014-x, 2016. a, b, c
Krayenhoff, E., Christen, A., Martilli, A., and Oke, T.: A multi-layer
radiation model for urban neighbourhoods with trees, Bound.-Lay.
Meteorol., 151, 139–178, https://doi.org/10.1007/s10546-013-9883-1, 2014. a, b, c, d
Krayenhoff, E., Santiago, J.-L., Martilli, A., Christen, A., and Oke, T.:
Parametrization of drag and turbulence for urban neighbourhoods with trees,
Bound.-Lay. Meteorol., 156, 157–189, https://doi.org/10.1007/s10546-015-0028-6,
2015. a, b, c
Krayenhoff, E. S., Moustaoui, M., Broadbent, A. M., Gupta, V., and Georgescu,
M.: Diurnal interaction between urban expansion, climate change and
adaptation in US cities, Nat. Clim. Change, 8, 1097,
https://doi.org/10.1038/s41558-018-0320-9, 2018. a, b
Krayenhoff, E. S., Jiang, T., Christen, A., Martilli, A., Oke, T. R., Bailey,
B. N., Nazarian, N., Voogt, J. A., Giometto, M. G., Stastny, A., and
Crawford, B. R.: A multi-layer urban canopy meteorological model with trees
(BEP-Tree): Street tree impacts on pedestrian-level climate, Urban Climate,
32, 100590, https://doi.org/10.1016/j.uclim.2020.100590, 2020. a, b, c, d, e, f
Lee, S.-H.: Further development of the vegetated urban canopy model including a
grass-covered surface parametrization and photosynthesis effects,
Bound.-Lay. Meteorol., 140, 315–342, https://doi.org/10.1007/s10546-011-9603-7,
2011. a
Lee, S.-H. and Park, S.-U.: A vegetated urban canopy model for meteorological
and environmental modelling, Bound.-Lay. Meteorol., 126, 73–102,
https://doi.org/10.1007/s10546-007-9221-6, 2008. a, b
Lee, S.-H., Lee, H., Park, S.-B., Woo, J.-W., Lee, D.-I., and Baik, J.-J.:
Impacts of in-canyon vegetation and canyon aspect ratio on the thermal
environment of street canyons: numerical investigation using a coupled
WRF-VUCM model, Q. J. Roy. Meteor. Soc., 142,
2562–2578, 2016. a
Li, D. and Bou-Zeid, E.: Synergistic interactions between urban heat islands
and heat waves: The impact in cities is larger than the sum of its parts,
J. Appl. Meteorol. Clim., 52, 2051–2064,
https://doi.org/10.1175/JAMC-D-13-02.1, 2013. a
Li, X.-X. and Norford, L. K.: Evaluation of cool roof and vegetations in
mitigating urban heat island in a tropical city, Singapore, Urban Climate,
16, 59–74, https://doi.org/10.1016/j.uclim.2015.12.002, 2016. a
Lietzke, B. and Vogt, R.: Variability of CO2 concentrations and fluxes in and
above an urban street canyon, Atmos. Environ., 74, 60–72,
https://doi.org/10.1016/j.atmosenv.2013.03.030, 2013. a, b
Lindberg, F., Grimmond, C. S. B., Yogeswaran, N., Kotthaus, S., and Allen, L.:
Impact of city changes and weather on anthropogenic heat flux in Europe
1995–2015, Urban Climate, 4, 1–15, https://doi.org/10.1016/j.uclim.2013.03.002, 2013. a, b
Liss, K., Tooke, R., Heyman, E., Coops, N., and Christen, A.: Vegetation
Characteristics at the Vancouver EPiCC experimental sites,
https://doi.org/10.14288/1.0103589, 2010. a
Loridan, T. and Grimmond, C.: Multi-site evaluation of an urban land-surface
model: intra-urban heterogeneity, seasonality and parameter complexity
requirements, Q. J. Roy. Meteor. Soc., 138,
1094–1113, https://doi.org/10.1002/qj.963, 2012. a, b
Loughner, C. P., Allen, D. J., Zhang, D.-L., Pickering, K. E., Dickerson,
R. R., and Landry, L.: Roles of urban tree canopy and buildings in urban heat
island effects: Parameterization and preliminary results, J. Appl.
Meteorol. Clim., 51, 1775–1793, https://doi.org/10.1175/JAMC-D-11-0228.1,
2012. a, b
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L.,
and Merchant, J. W.: Development of a global land cover characteristics
database and IGBP DISCover from 1 km AVHRR data, Int. J.
Remote Sens., 21, 1303–1330, https://doi.org/10.1080/014311600210191, 2000. a
Manickathan, L., Defraeye, T., Allegrini, J., Derome, D., and Carmeliet, J.:
Parametric study of the influence of environmental factors and tree
properties on the transpirative cooling effect of trees, Agr,
Forest Meteorol., 248, 259–274, 2018. a
Marcolla, B., Pitacco, A., and Cescatti, A.: Canopy Architecture and Turbulence
Structure in a Coniferous Forest, Bound.-Lay. Meteorol., 108, 39–59,
https://doi.org/10.1023/A:1023027709805, 2003. a
Martilli, A.: On the derivation of input parameters for urban canopy models
from urban morphological datasets, Bound.-Lay. Meteorol., 130, 301–306,
https://doi.org/10.1007/s10546-008-9345-3, 2009. a
Martilli, A., Clappier, A., and Rotach, M. W.: An urban surface exchange
parameterisation for mesoscale models, Bound.-Lay. Meteorol., 104,
261–304, https://doi.org/10.1023/A:1016099921195, 2002. a, b, c
McInerney, D. and Kempeneers, P.: Image (re-) projections and merging, in: Open
source geospatial tools, Springer, 99–127,
https://doi.org/10.1007/978-3-319-01824-9_8, 2015. a
Miao, S., Chen, F., LeMone, M. A., Tewari, M., Li, Q., and Wang, Y.: An
observational and modeling study of characteristics of urban heat island and
boundary layer structures in Beijing, J. Appl. Meteorol. Clim., 48, 484–501, https://doi.org/10.1175/2008JAMC1909.1, 2009. a
Mitraka, Z., Chrysoulakis, N., Kamarianakis, Y., Partsinevelos, P., and
Tsouchlaraki, A.: Improving the estimation of urban surface emissivity based
on sub-pixel classification of high resolution satellite imagery, Remote
Sens. Environ., 117, 125–134, https://doi.org/10.1016/j.rse.2011.06.025, 2012. a
Mussetti, G.: Data for “COSMO-BEP-Tree v1.0: a coupled urban climate model
with explicit representation of street trees”, https://doi.org/10.5281/zenodo.3377392,
2019a. a
Ng, E., Chen, L., Wang, Y., and Yuan, C.: A study on the cooling effects of
greening in a high-density city: An experience from Hong Kong, Build.
Environ., 47, 256–271, https://doi.org/10.1016/j.buildenv.2011.07.014, 2012. a
Nilson, T.: A theoretical analysis of the frequency of gaps in plant stands,
Agr. Meteorol., 8, 25–38, https://doi.org/10.1016/0002-1571(71)90092-6,
1971. a
Oke, T. R.: The micrometeorology of the urban forest, Philos.
T. Roy. Soc. London, 324,
335–349, https://doi.org/10.1098/rstb.1989.0051, 1989. a
Oke, T. R., Mills, G., Christen, A., and Voogt, J. A.: Urban Climates,
Cambridge University Press, https://doi.org/10.1017/9781139016476, 2017. a
Oleson, K. W., Bonan, G. B., Feddema, J., Vertenstein, M., and Grimmond, C.: An
urban parameterization for a global climate model. Part I: Formulation and
evaluation for two cities, J. Appl. Meteorol. Clima.,
47, 1038–1060, https://doi.org/10.1175/2007JAMC1597.1, 2008. a
Panosetti, D., Böing, S., Schlemmer, L., and Schmidli, J.: Idealized
large-eddy and convection-resolving simulations of moist convection over
mountainous terrain, J. Atmos. Sci., 73, 4021–4041,
https://doi.org/10.1175/JAS-D-15-0341.1, 2016. a
Parlow, E., Vogt, R., and Feigenwinter, C.: The urban heat island of
Basel – seen from different perspectives, DIE ERDE – Journal of the
Geographical Society of Berlin, 145, 96–110,
2014. a
Ramamurthy, P., Li, D., and Bou-Zeid, E.: High-resolution simulation of
heatwave events in New York City, Theor. Appl. Climatol., 128,
89–102, https://doi.org/10.1007/s00704-015-1703-8, 2017. a
Redon, E. C., Lemonsu, A., Masson, V., Morille, B., and Musy, M.: Implementation of street trees within the solar radiative exchange parameterization of TEB in SURFEX v8.0, Geosci. Model Dev., 10, 385–411, https://doi.org/10.5194/gmd-10-385-2017, 2017. a
Richardson, A. D., Aubinet, M., Barr, A. G., Hollinger, D. Y., Ibrom, A.,
Lasslop, G., and Reichstein, M.: Uncertainty quantification, in: Eddy
Covariance, Springer, 173–209, https://doi.org/10.1007/978-94-007-2351-1_7, 2012. a
Rockel, B., Will, A., and Hense, A.: The regional climate model COSMO-CLM
(CCLM), Meteorol. Z., 17, 347–348,
https://doi.org/10.1127/0941-2948/2008/0309, 2008. a, b
Rosenzweig, C., Solecki, W. D., Romero-Lankao, P., Mehrotra, S., Dhakal, S.,
and Ibrahim, S. A.: Climate Change and Cities: Second Assessment Report of
the Urban Climate Change Research Network, Cambridge University Press,
https://doi.org/10.1017/9781316563878.007, 2018. a
Rotach, M., Vogt, R., Bernhofer, C., Batchvarova, E., Christen, A., Clappier,
A., Feddersen, B., Gryning, S.-E., Martucci, G., Mayer, H., Mitev, V., Oke, T. R., Parlow, E., Richner, H., Roth, M., Roulet, Y.-A., Ruffieux, D., Salmond, J. A., Schatzmann, M., and Voogt, J. A.:
BUBBLE – an urban boundary layer meteorology project, Theor. Appl.
Climatol., 81, 231–261, https://doi.org/10.1007/s00704-004-0117-9, 2005. a
Ryu, Y., Sonnentag, O., Nilson, T., Vargas, R., Kobayashi, H., Wenk, R., and
Baldocchi, D. D.: How to quantify tree leaf area index in an open savanna
ecosystem: a multi-instrument and multi-model approach, Agr.
Forest Meteorol., 150, 63–76, https://doi.org/10.1016/j.agrformet.2009.08.007, 2010. a
Ryu, Y.-H., Bou-Zeid, E., Wang, Z.-H., and Smith, J. A.: Realistic
representation of trees in an urban canopy model, Bound.-Lay. Meteorol.,
159, 193–220, https://doi.org/10.1007/s10546-015-0120-y, 2016. a, b
Salamanca, F., Martilli, A., and Yagüe, C.: A numerical study of the Urban
Heat Island over Madrid during the DESIREX (2008) campaign with WRF and an
evaluation of simple mitigation strategies, Int. J.
Climatol., 32, 2372–2386, https://doi.org/10.1002/joc.3398, 2012. a
Santiago, J. and Martilli, A.: A dynamic urban canopy parameterization for
mesoscale models based on computational fluid dynamics Reynolds-averaged
Navier–Stokes microscale simulations, Bound.-Lay. Meteorol., 137,
417–439, https://doi.org/10.1007/s10546-010-9538-4, 2010. a
Schmutz, M., Vogt, R., Feigenwinter, C., and Parlow, E.: Ten years of eddy
covariance measurements in Basel, Switzerland: Seasonal and interannual
variabilities of urban CO2 mole fraction and flux, J. Geophys.
Res.-Atmos., 121, 8649–8667, https://doi.org/10.1002/2016JD025063, 2016. a, b
Schraff, C. H.: Mesoscale data assimilation and prediction of low stratus in
the Alpine region, Meteorol. Atmos. Phys., 64, 21–50,
https://doi.org/10.1007/BF01044128, 1997. a
Schubert, S. and Grossman-Clarke, S.: The influence of green areas and roof
albedos on air temperatures during extreme heat events in Berlin, Germany,
Meteorol. Z., 22, 131–143, https://doi.org/10.1127/0941-2948/2013/0393,
2013. a, b
Schubert, S., Grossman-Clarke, S., and Martilli, A.: A double-canyon radiation
scheme for multi-layer urban canopy models, Bound.-Lay. Meteorol., 145,
439–468, https://doi.org/10.1007/s10546-012-9728-3, 2012. a, b
Shashua-Bar, L., Pearlmutter, D., and Erell, E.: The cooling efficiency of
urban landscape strategies in a hot dry climate, Landscape Urban
Plan., 92, 179–186, https://doi.org/10.1016/j.landurbplan.2009.04.005, 2009. a, b, c
Shin, H. H. and Hong, S.-Y.: Representation of the subgrid-scale turbulent
transport in convective boundary layers at gray-zone resolutions, Mon.
Weather Rev., 143, 250–271, https://doi.org/10.1175/MWR-D-14-00116.1, 2015. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang,
W., and Powers, J. G.: A description of the advanced research WRF version 2,
Tech. rep., National Center For Atmospheric Research Boulder Co Mesoscale and
Microscale Meteorology Div, 2005. a
Sobrino, J. A., Jiménez-Muñoz, J. C., Sòria, G., Romaguera, M.,
Guanter, L., Moreno, J., Plaza, A., and Martínez, P.: Land surface
emissivity retrieval from different VNIR and TIR sensors, IEEE T.
Geosci. Remote, 46, 316–327,
https://doi.org/10.1109/TGRS.2007.904834, 2008. a
Stavropulos-Laffaille, X., Chancibault, K., Brun, J.-M., Lemonsu, A., Masson, V., Boone, A., and Andrieu, H.: Improvements to the hydrological processes of the Town Energy Balance model (TEB-Veg, SURFEX v7.3) for urban modelling and impact assessment, Geosci. Model Dev., 11, 4175–4194, https://doi.org/10.5194/gmd-11-4175-2018, 2018. a
Steppeler, J., Doms, G., Schättler, U., Bitzer, H., Gassmann, A., Damrath,
U., and Gregoric, G.: Meso-gamma scale forecasts using the nonhydrostatic
model LM, Meteorol. Atmos. Phys., 82, 75–96,
https://doi.org/10.1007/s00703-001-0592-9, 2003. a
Stewart, I. D. and Oke, T. R.: Local climate zones for urban temperature
studies, B. Am. Meteorol. Soc., 93, 1879–1900,
https://doi.org/10.1175/BAMS-D-11-00019.1, 2012. a
Stull, R. B.: An introduction to boundary layer meteorology, vol. 13, Springer
Science & Business Media, https://doi.org/10.1007/978-94-009-3027-8, 2012. a
Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D., Oimoen, M., Zhang, Z.,
Danielson, J., Krieger, T., Curtis, B., Haase, J., Abrams, M., Crippen, R., and Carabajal, C.: ASTER Global
Digital Elevation Model Version 2 – Summary of Validation Results, ASTER GDEM Validation Team, available at: https://ssl.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Summary_GDEM2_validation_report_final.pdf
(last access: 31 March 2020),
31 August 2011. a
Tan, Z., Lau, K. K.-L., and Ng, E.: Urban tree design approaches for mitigating
daytime urban heat island effects in a high-density urban environment, Energ. Buildings, 114, 265–274, https://doi.org/10.1016/j.enbuild.2015.06.031, 2016. a
Tardy, B., Rivalland, V., Huc, M., Hagolle, O., Marcq, S., and Boulet, G.: A
software tool for atmospheric correction and surface temperature estimation
of landsat infrared thermal data, Remote Sensing, 8, 696,
https://doi.org/10.3390/rs8090696, 2016. a
Thatcher, M. and Hurley, P.: Simulating Australian urban climate in a mesoscale
atmospheric numerical model, Bound.-Lay. Meteorol., 142, 149–175,
https://doi.org/10.1007/s10546-011-9663-8, 2012. a
Tölle, M. H., Breil, M., Radtke, K., and Panitz, H.-J.: Sensitivity of
European temperature to albedo parameterization in the regional climate model
COSMO-CLM linked to extreme land use changes, Front. Environ.
Sci., 6, 123, https://doi.org/10.3389/fenvs.2018.00123, 2018. a
Trusilova, K., Früh, B., Brienen, S., Walter, A., Masson, V., Pigeon, G.,
and Becker, P.: Implementation of an urban parameterization scheme into the
regional climate model COSMO-CLM, J. Appl. Meteorol.
Clim., 52, 2296–2311, https://doi.org/10.1175/JAMC-D-12-0209.1, 2013. a
Trusilova, K., Schubert, S., Wouters, H., Früh, B., Grossman-Clarke, S.,
Demuzere, M., and Becker, P.: The urban land use in the COSMO-CLM model: a
comparison of three parameterizations for Berlin, Meteorol. Z., 25, 231–244,
https://doi.org/10.1127/metz/2015/0587, 2016. a
Voogt, J. A. and Oke, T. R.: Thermal remote sensing of urban climates, Remote
Sens. Environ., 86, 370–384, https://doi.org/10.1016/S0034-4257(03)00079-8,
2003. a, b
Wang, C., Wang, Z.-H., and Yang, J.: Cooling effect of urban trees on the built
environment of contiguous United States, Earth's Future, 6, 1066–1081,
https://doi.org/10.1029/2018EF000891, 2018. a, b
Wang, P., Zhang, Q., Yang, Y., and Tang, J.: The sensitivity to initial soil
moisture for three severe cases of heat waves over Eastern China, Front.
Environ. Sci., 7, 18, https://doi.org/10.3389/fenvs.2019.00018, 2019. a
Wang, Z.-H.: Monte Carlo simulations of radiative heat exchange in a street
canyon with trees, Sol. Energy, 110, 704–713,
https://doi.org/10.1016/j.solener.2014.10.012, 2014. a
Wang, Z.-H., Bou-Zeid, E., and Smith, J. A.: A coupled energy transport and
hydrological model for urban canopies evaluated using a wireless sensor
network, Q. J. Roy. Meteor. Soc., 139,
1643–1657, https://doi.org/10.1002/qj.2032, 2013. a
Wicki, A., Parlow, E., and Feigenwinter, C.: Evaluation and modeling of urban
heat island intensity in Basel, Switzerland, Climate, 6, 55,
https://doi.org/10.3390/cli6030055, 2018. a
Will, A., Akhtar, N., Brauch, J., Breil, M., Davin, E., Ho-Hagemann, H. T. M., Maisonnave, E., Thürkow, M., and Weiher, S.: The COSMO-CLM 4.8 regional climate model coupled to regional ocean, land surface and global earth system models using OASIS3-MCT: description and performance, Geosci. Model Dev., 10, 1549–1586, https://doi.org/10.5194/gmd-10-1549-2017, 2017.
a
Willmott, C. J.: On the validation of models, Phys. Geogr., 2, 184–194,
https://doi.org/10.1080/02723646.1981.10642213, 1981. a
Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M.,
Legates, D. R., O'donnell, J., and Rowe, C. M.: Statistics for the evaluation
and comparison of models, J. Geophys. Res.-Oceans, 90,
8995–9005, https://doi.org/10.1029/JC090iC05p08995, 1985. a, b
Wilson, N. R. and Shaw, R. H.: A higher order closure model for canopy flow,
J. Appl. Meteorol., 16, 1197–1205,
https://doi.org/10.1175/1520-0450(1977)016<1197:AHOCMF>2.0.CO;2, 1977. a
Wouters, H., Demuzere, M., De Ridder, K., and van Lipzig, N. P.: The impact of
impervious water-storage parametrization on urban climate modelling, Urban
Climate, 11, 24–50, https://doi.org/10.1016/j.uclim.2014.11.005, 2015. a
Wouters, H., Demuzere, M., Blahak, U., Fortuniak, K., Maiheu, B., Camps, J., Tielemans, D., and van Lipzig, N. P. M.: The efficient urban canopy dependency parametrization (SURY) v1.0 for atmospheric modelling: description and application with the COSMO-CLM model for a Belgian summer, Geosci. Model Dev., 9, 3027–3054, https://doi.org/10.5194/gmd-9-3027-2016, 2016. a, b, c, d, e, f, g
Wouters, H., De Ridder, K., Poelmans, L., Willems, P., Brouwers, J.,
Hosseinzadehtalaei, P., Tabari, H., Vanden Broucke, S., van Lipzig, N. P.,
and Demuzere, M.: Heat stress increase under climate change twice as large in
cities as in rural areas: A study for a densely populated midlatitude
maritime region, Geophys. Res. Lett., 44, 8997–9007,
https://doi.org/10.1002/2017GL074889, 2017. a
Wyngaard, J. C.: Toward numerical modeling in the “Terra Incognita”,
J. Atmos. Sci., 61, 1816–1826,
https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2, 2004. a
Xiong, D., Douthe, C., and Flexas, J.: Differential coordination of stomatal
conductance, mesophyll conductance, and leaf hydraulic conductance in
response to changing light across species, Plant Cell Environ., 41,
436–450, https://doi.org/10.1111/pce.13111, 2018. a
Yang, J., Wang, Z.-H., Chen, F., Miao, S., Tewari, M., Voogt, J. A., and Myint,
S.: Enhancing hydrologic modelling in the coupled weather research and
forecasting–urban modelling system, Bound.-Lay. Meteorol., 155,
87–109, 2015. a
Short summary
Street trees are regarded as a powerful measure to reduce excessive heat in cities. To enable city-wide studies of the cooling effect of street trees, we developed a coupled urban climate model with explicit representation of street trees (COSMO-BEP-Tree). The model compares well with surface, flux and satellite observations and responds realistically to changes in tree characteristics. Street trees largely impact energy fluxes and wind speed, while air temperatures are only slightly reduced.
Street trees are regarded as a powerful measure to reduce excessive heat in cities. To enable...