Articles | Volume 13, issue 3
https://doi.org/10.5194/gmd-13-1685-2020
https://doi.org/10.5194/gmd-13-1685-2020
Development and technical paper
 | 
01 Apr 2020
Development and technical paper |  | 01 Apr 2020

COSMO-BEP-Tree v1.0: a coupled urban climate model with explicit representation of street trees

Gianluca Mussetti, Dominik Brunner, Stephan Henne, Jonas Allegrini, E. Scott Krayenhoff, Sebastian Schubert, Christian Feigenwinter, Roland Vogt, Andreas Wicki, and Jan Carmeliet

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Gianluca Mussetti on behalf of the Authors (25 Jan 2020)  Manuscript 
ED: Publish subject to minor revisions (review by editor) (14 Feb 2020) by Leena Järvi
AR by Gianluca Mussetti on behalf of the Authors (14 Feb 2020)  Author's response   Manuscript 
ED: Publish as is (27 Feb 2020) by Leena Järvi
AR by Gianluca Mussetti on behalf of the Authors (28 Feb 2020)
Download
Short summary
Street trees are regarded as a powerful measure to reduce excessive heat in cities. To enable city-wide studies of the cooling effect of street trees, we developed a coupled urban climate model with explicit representation of street trees (COSMO-BEP-Tree). The model compares well with surface, flux and satellite observations and responds realistically to changes in tree characteristics. Street trees largely impact energy fluxes and wind speed, while air temperatures are only slightly reduced.