Articles | Volume 12, issue 6
Geosci. Model Dev., 12, 2419–2440, 2019
https://doi.org/10.5194/gmd-12-2419-2019

Special issue: The Lund–Potsdam–Jena managed Land (LPJmL) dynamic...

Geosci. Model Dev., 12, 2419–2440, 2019
https://doi.org/10.5194/gmd-12-2419-2019
Model description paper
19 Jun 2019
Model description paper | 19 Jun 2019

Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage)

Femke Lutz et al.

Related authors

The importance of management information and soil moisture representation for simulating tillage effects on N2O emissions in LPJmL5.0-tillage
Femke Lutz, Stephen Del Grosso, Stephen Ogle, Stephen Williams, Sara Minoli, Susanne Rolinski, Jens Heinke, Jetse J. Stoorvogel, and Christoph Müller
Geosci. Model Dev., 13, 3905–3923, https://doi.org/10.5194/gmd-13-3905-2020,https://doi.org/10.5194/gmd-13-3905-2020, 2020
Short summary

Related subject area

Biogeosciences
ECOSMO II(CHL): a marine biogeochemical model for the North Atlantic and the Arctic
Veli Çağlar Yumruktepe, Annette Samuelsen, and Ute Daewel
Geosci. Model Dev., 15, 3901–3921, https://doi.org/10.5194/gmd-15-3901-2022,https://doi.org/10.5194/gmd-15-3901-2022, 2022
Short summary
Water Ecosystems Tool (WET) 1.0 – a new generation of flexible aquatic ecosystem model
Nicolas Azaña Schnedler-Meyer, Tobias Kuhlmann Andersen, Fenjuan Rose Schmidt Hu, Karsten Bolding, Anders Nielsen, and Dennis Trolle
Geosci. Model Dev., 15, 3861–3878, https://doi.org/10.5194/gmd-15-3861-2022,https://doi.org/10.5194/gmd-15-3861-2022, 2022
Short summary
Development of an open-source regional data assimilation system in PEcAn v. 1.7.2: application to carbon cycle reanalysis across the contiguous US using SIPNET
Hamze Dokoohaki, Bailey D. Morrison, Ann Raiho, Shawn P. Serbin, Katie Zarada, Luke Dramko, and Michael Dietze
Geosci. Model Dev., 15, 3233–3252, https://doi.org/10.5194/gmd-15-3233-2022,https://doi.org/10.5194/gmd-15-3233-2022, 2022
Short summary
Predicting global terrestrial biomes with the LeNet convolutional neural network
Hisashi Sato and Takeshi Ise
Geosci. Model Dev., 15, 3121–3132, https://doi.org/10.5194/gmd-15-3121-2022,https://doi.org/10.5194/gmd-15-3121-2022, 2022
Short summary
KGML-ag: a modeling framework of knowledge-guided machine learning to simulate agroecosystems: a case study of estimating N2O emission using data from mesocosm experiments
Licheng Liu, Shaoming Xu, Jinyun Tang, Kaiyu Guan, Timothy J. Griffis, Matthew D. Erickson, Alexander L. Frie, Xiaowei Jia, Taegon Kim, Lee T. Miller, Bin Peng, Shaowei Wu, Yufeng Yang, Wang Zhou, Vipin Kumar, and Zhenong Jin
Geosci. Model Dev., 15, 2839–2858, https://doi.org/10.5194/gmd-15-2839-2022,https://doi.org/10.5194/gmd-15-2839-2022, 2022
Short summary

Cited articles

Abdalla, K., Chivenge, P., Ciais, P., and Chaplot, V.: No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: results from a meta-analysis, Biogeosciences, 13, 3619–3633, https://doi.org/10.5194/bg-13-3619-2016, 2016. 
Armand, R., Bockstaller, C., Auzet, A.-V., and Van Dijk, P.: Runoff generation related to intra-field soil surface characteristics variability: Application to conservation tillage context, Soil Till. Res., 102, 27–37, https://doi.org/10.1016/j.still.2008.07.009, 2009. 
Aslam, T., Choudhary, M. A., and Saggar, S.: Influence of land-use management on CO2 emissions from a silt loam soil in New Zealand, Agr. Ecosyst. Environ., 77, 257–262, https://doi.org/10.1016/S0167-8809(99)00102-4, 2000. 
Balland, V., Pollacco, J. A. P., and Arp, P. A.: Modeling soil hydraulic properties for a wide range of soil conditions, Ecol. Model., 219, 300–316, https://doi.org/10.1016/j.ecolmodel.2008.07.009, 2008. 
Batjes, N.: ISRIC-WISE global data set of derived soil properties on a 0.5 by 0.5 degree grid (version 3.0), ISRIC – World Soil Information, Wageningen, 2005. 
Download
Short summary
Tillage practices are under-represented in global biogeochemical models so that assessments of agricultural greenhouse gas emissions and climate mitigation options are hampered. We describe the implementation of tillage modules into the model LPJmL5.0, including multiple feedbacks between soil water, nitrogen, and productivity. By comparing simulation results with observational data, we show that the model can reproduce reported tillage effects on carbon and water dynamics and crop yields.