Articles | Volume 11, issue 9
https://doi.org/10.5194/gmd-11-3537-2018
https://doi.org/10.5194/gmd-11-3537-2018
Model description paper
 | 
31 Aug 2018
Model description paper |  | 31 Aug 2018

A global scavenging and circulation ocean model of thorium-230 and protactinium-231 with improved particle dynamics (NEMO–ProThorP 0.1)

Marco van Hulten, Jean-Claude Dutay, and Matthieu Roy-Barman

Related authors

Evaluation of ocean dimethylsulfide concentration and emission in CMIP6 models
Josué Bock, Martine Michou, Pierre Nabat, Manabu Abe, Jane P. Mulcahy, Dirk J. L. Olivié, Jörg Schwinger, Parvadha Suntharalingam, Jerry Tjiputra, Marco van Hulten, Michio Watanabe, Andrew Yool, and Roland Séférian
Biogeosciences, 18, 3823–3860, https://doi.org/10.5194/bg-18-3823-2021,https://doi.org/10.5194/bg-18-3823-2021, 2021
Short summary
Variable reactivity of particulate organic matter in a global ocean biogeochemical model
Olivier Aumont, Marco van Hulten, Matthieu Roy-Barman, Jean-Claude Dutay, Christian Éthé, and Marion Gehlen
Biogeosciences, 14, 2321–2341, https://doi.org/10.5194/bg-14-2321-2017,https://doi.org/10.5194/bg-14-2321-2017, 2017
Short summary
Manganese in the west Atlantic Ocean in the context of the first global ocean circulation model of manganese
Marco van Hulten, Rob Middag, Jean-Claude Dutay, Hein de Baar, Matthieu Roy-Barman, Marion Gehlen, Alessandro Tagliabue, and Andreas Sterl
Biogeosciences, 14, 1123–1152, https://doi.org/10.5194/bg-14-1123-2017,https://doi.org/10.5194/bg-14-1123-2017, 2017
Short summary
On the effects of circulation, sediment resuspension and biological incorporation by diatoms in an ocean model of aluminium*
M. M. P. van Hulten, A. Sterl, R. Middag, H. J. W. de Baar, M. Gehlen, J.-C. Dutay, and A. Tagliabue
Biogeosciences, 11, 3757–3779, https://doi.org/10.5194/bg-11-3757-2014,https://doi.org/10.5194/bg-11-3757-2014, 2014

Related subject area

Oceanography
An optimal transformation method for inferring ocean tracer sources and sinks
Jan D. Zika and Taimoor Sohail
Geosci. Model Dev., 17, 8049–8068, https://doi.org/10.5194/gmd-17-8049-2024,https://doi.org/10.5194/gmd-17-8049-2024, 2024
Short summary
PPCon 1.0: Biogeochemical-Argo profile prediction with 1D convolutional networks
Gloria Pietropolli, Luca Manzoni, and Gianpiero Cossarini
Geosci. Model Dev., 17, 7347–7364, https://doi.org/10.5194/gmd-17-7347-2024,https://doi.org/10.5194/gmd-17-7347-2024, 2024
Short summary
Experimental design for the Marine Ice Sheet–Ocean Model Intercomparison Project – phase 2 (MISOMIP2)
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024,https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Development of a total variation diminishing (TVD) sea ice transport scheme and its application in an ocean (SCHISM v5.11) and sea ice (Icepack v1.3.4) coupled model on unstructured grids
Qian Wang, Yang Zhang, Fei Chai, Y. Joseph Zhang, and Lorenzo Zampieri
Geosci. Model Dev., 17, 7067–7081, https://doi.org/10.5194/gmd-17-7067-2024,https://doi.org/10.5194/gmd-17-7067-2024, 2024
Short summary
Spurious numerical mixing under strong tidal forcing: a case study in the south-east Asian seas using the Symphonie model (v3.1.2)
Adrien Garinet, Marine Herrmann, Patrick Marsaleix, and Juliette Pénicaud
Geosci. Model Dev., 17, 6967–6986, https://doi.org/10.5194/gmd-17-6967-2024,https://doi.org/10.5194/gmd-17-6967-2024, 2024
Short summary

Cited articles

Anderson, R.: Chemical tracers of particle transport, Treatise on Geochemistry, 6, 247–273, https://doi.org/10.1016/B0-08-043751-6/06111-9, 2003. a
Anderson, R., Bacon, M., and Brewer, P.: Removal of 230Th and 231Pa from the open ocean, Earth Planet. Sc. Lett., 62, 7–23, https://doi.org/10.1016/0012-821X(83)90067-5, 1983. a
Arsouze, T., Dutay, J.-C., Kageyama, M., Lacan, F., Alkama, R., Marti, O., and Jeandel, C.: A modeling sensitivity study of the influence of the Atlantic meridional overturning circulation on neodymium isotopic composition at the Last Glacial Maximum, Clim. Past, 4, 191–203, https://doi.org/10.5194/cp-4-191-2008, 2008. a
Arsouze, T., Dutay, J.-C., Lacan, F., and Jeandel, C.: Reconstructing the Nd oceanic cycle using a coupled dynamical – biogeochemical model, Biogeosciences, 6, 2829–2846, https://doi.org/10.5194/bg-6-2829-2009, 2009. a, b, c
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. a, b, c, d, e, f, g
Download
Short summary
We present an ocean model of the natural radioactive isotopes thorium-230 and protactinium-231. These isotopes are often used to investigate past ocean circulation and particle transport. They are removed by particles produced by plankton and from uplifted desert dust that is deposited into the ocean. We approach observed dissolved and adsorbed Th-230 and Pa-231 activities. The Pa-231 / Th-230 sedimentation ratio is reproduced as well; this quantity can be used as a proxy for ocean circulation.