Articles | Volume 9, issue 10
https://doi.org/10.5194/gmd-9-3639-2016
https://doi.org/10.5194/gmd-9-3639-2016
Development and technical paper
 | 
13 Oct 2016
Development and technical paper |  | 13 Oct 2016

A diagnostic interface for the ICOsahedral Non-hydrostatic (ICON) modelling framework based on the Modular Earth Submodel System (MESSy v2.50)

Bastian Kern and Patrick Jöckel

Related authors

Emulating lateral gravity wave propagation in a global chemistry-climate model (EMAC v2.55.2) through horizontal flux redistribution
Roland Eichinger, Sebastian Rhode, Hella Garny, Peter Preusse, Petr Pisoft, Aleš Kuchar, Patrick Jöckel, Astrid Kerkweg, and Bastian Kern
EGUsphere, https://doi.org/10.5194/egusphere-2023-270,https://doi.org/10.5194/egusphere-2023-270, 2023
Short summary
Evaluation of simulated CO2 power plant plumes from six high-resolution atmospheric transport models
Dominik Brunner, Gerrit Kuhlmann, Stephan Henne, Erik Koene, Bastian Kern, Sebastian Wolff, Christiane Voigt, Patrick Jöckel, Christoph Kiemle, Anke Roiger, Alina Fiehn, Sven Krautwurst, Konstantin Gerilowski, Heinrich Bovensmann, Jakob Borchardt, Michal Galkowski, Christoph Gerbig, Julia Marshall, Andrzej Klonecki, Pascal Prunet, Robert Hanfland, Margit Pattantyús-Ábrahám, Andrzej Wyszogrodzki, and Andreas Fix
Atmos. Chem. Phys., 23, 2699–2728, https://doi.org/10.5194/acp-23-2699-2023,https://doi.org/10.5194/acp-23-2699-2023, 2023
Short summary
Newly developed aircraft routing options for air traffic simulation in the chemistry–climate model EMAC 2.53: AirTraf 2.0
Hiroshi Yamashita, Feijia Yin, Volker Grewe, Patrick Jöckel, Sigrun Matthes, Bastian Kern, Katrin Dahlmann, and Christine Frömming
Geosci. Model Dev., 13, 4869–4890, https://doi.org/10.5194/gmd-13-4869-2020,https://doi.org/10.5194/gmd-13-4869-2020, 2020
Short summary
Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016,https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary

Related subject area

Climate and Earth system modeling
The Canadian Atmospheric Model version 5 (CanAM5.0.3)
Jason Neil Steven Cole, Knut von Salzen, Jiangnan Li, John Scinocca, David Plummer, Vivek Arora, Norman McFarlane, Michael Lazare, Murray MacKay, and Diana Verseghy
Geosci. Model Dev., 16, 5427–5448, https://doi.org/10.5194/gmd-16-5427-2023,https://doi.org/10.5194/gmd-16-5427-2023, 2023
Short summary
The Teddy tool v1.1: temporal disaggregation of daily climate model data for climate impact analysis
Florian Zabel and Benjamin Poschlod
Geosci. Model Dev., 16, 5383–5399, https://doi.org/10.5194/gmd-16-5383-2023,https://doi.org/10.5194/gmd-16-5383-2023, 2023
Short summary
Assimilation of the AMSU-A radiances using the CESM (v2.1.0) and the DART (v9.11.13)–RTTOV (v12.3)
Young-Chan Noh, Yonghan Choi, Hyo-Jong Song, Kevin Raeder, Joo-Hong Kim, and Youngchae Kwon
Geosci. Model Dev., 16, 5365–5382, https://doi.org/10.5194/gmd-16-5365-2023,https://doi.org/10.5194/gmd-16-5365-2023, 2023
Short summary
Modernizing the open-source community Noah with multi-parameterization options (Noah-MP) land surface model (version 5.0) with enhanced modularity, interoperability, and applicability
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023,https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Simulated stable water isotopes during the mid-Holocene and pre-industrial periods using AWI-ESM-2.1-wiso
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023,https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary

Cited articles

Ali, N., Carns, P., Iskra, K., Kimpe, D., Lang, S., Latham, R., Ross, R., Ward, L., and Sadayappan, P.: Scalable I/O forwarding framework for high-performance computing systems, in: 2009 IEEE International Conference on Cluster Computing and Workshops, 1–10, https://doi.org/10.1109/CLUSTR.2009.5289188, 2009.
Baker, A. H., Hammerling, D. M., Mickleson, S. A., Xu, H., Stolpe, M. B., Naveau, P., Sanderson, B., Ebert-Uphoff, I., Samarasinghe, S., De Simone, F., Carbone, F., Gencarelli, C. N., Dennis, J. M., Kay, J. E., and Lindstrom, P.: Evaluating Lossy Data Compression on Climate Simulation Data within a Large Ensemble, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-146, in review, 2016.
Baumgaertner, A. J. G., Jöckel, P., Kerkweg, A., Sander, R., and Tost, H.: Implementation of the Community Earth System Model (CESM) version 1.2.1 as a new base model into version 2.50 of the MESSy framework, Geosci. Model Dev., 9, 125–135, https://doi.org/10.5194/gmd-9-125-2016, 2016.
Bodas-Salcedo, A., Webb, M. J., Brooks, M. E., Ringer, M. A., Williams, K. D., Milton, S. F., and Wilson, D. R.: Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities, J. Geophys. Res.-Atmos., 113, D00A13, https://doi.org/10.1029/2007JD009620, 2008.
Buehler, S. and Russchenberg, H. (Eds.): HD(CP)2 Observational Prototype Experiment, Atmos. Chem. Phys., http://www.atmos-chem-phys.net/special_issue366.html, 2014.
Download
Short summary
Input and output of large data limit the performance of numerical models on supercomputers. We present an interface for the calculation of online diagnostics in a weather and climate model. These diagnostics are calculated online during the simulation instead of as subsequent post-processing. Depending on the diagnostic, we can reduce the amount of model output.