Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
Volume 8, issue 4
Geosci. Model Dev., 8, 975–1003, 2015
https://doi.org/10.5194/gmd-8-975-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Monitoring atmospheric composition and climate, research in...

Special issue: Coupled chemistry–meteorology modelling: status and...

Geosci. Model Dev., 8, 975–1003, 2015
https://doi.org/10.5194/gmd-8-975-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 07 Apr 2015

Model description paper | 07 Apr 2015

Tropospheric chemistry in the Integrated Forecasting System of ECMWF

J. Flemming et al.

Related authors

Systematic detection of local CH4 emissions anomalies combining satellite measurements and high-resolution forecasts
Jérôme Barré, Ilse Aben, Anna Agustí-Panareda, Gianpaolo Balsamo, Nicolas Bousserez, Peter Dueben, Richard Engelen, Antje Inness, Alba Lorente, Joe McNorton, Vincent-Henri Peuch, Gabor Radnoti, and Roberto Ribas
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-550,https://doi.org/10.5194/acp-2020-550, 2020
Preprint under review for ACP
Short summary
Aerosol data assimilation in the MOCAGE chemical transport model during the TRAQA/ChArMEx campaign: lidar observations
Laaziz El Amraoui, Bojan Sič, Andrea Piacentini, Virginie Marécal, Nicolas Frebourg, and Jean-Luc Attié
Atmos. Meas. Tech., 13, 4645–4667, https://doi.org/10.5194/amt-13-4645-2020,https://doi.org/10.5194/amt-13-4645-2020, 2020
Short summary
Cloud-scale modelling of the impact of deep convection on the fate of oceanic bromoform in the troposphere: a case study over the west coast of Borneo
Paul D. Hamer, Virginie Marécal, Ryan Hossaini, Michel Pirre, Gisèle Krysztofiak, Franziska Ziska, Andreas Engel, Stephan Sala, Timo Keber, Harald Bönisch, Elliot Atlas, Kirstin Krüger, Martyn Chipperfield, Valery Catoire, Azizan A. Samah, Marcel Dorf, Phang Siew Moi, Hans Schlager, and Klaus Pfeilsticker
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-655,https://doi.org/10.5194/acp-2020-655, 2020
Preprint under review for ACP
Short summary
Ship-borne measurements of XCO2, XCH4, and XCO above the Pacific Ocean and comparison to CAMS atmospheric analyses and S5P/TROPOMI
Marvin Knapp, Ralph Kleinschek, Frank Hase, Anna Agustí-Panareda, Antje Inness, Jérôme Barré, Jochen Landgraf, Tobias Borsdorff, Stefan Kinne, and André Butz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-132,https://doi.org/10.5194/essd-2020-132, 2020
Preprint under review for ESSD
Short summary
IntelliO3-ts v1.0: A neural network approach to predict near-surface ozone concentrations in Germany
Felix Kleinert, Lukas H. Leufen, and Martin G. Schultz
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-169,https://doi.org/10.5194/gmd-2020-169, 2020
Preprint under review for GMD
Short summary

Related subject area

Atmospheric Sciences
Image-processing-based atmospheric river tracking method version 1 (IPART-1)
Guangzhi Xu, Xiaohui Ma, Ping Chang, and Lin Wang
Geosci. Model Dev., 13, 4639–4662, https://doi.org/10.5194/gmd-13-4639-2020,https://doi.org/10.5194/gmd-13-4639-2020, 2020
Short summary
Simulating the forest fire plume dispersion, chemistry, and aerosol formation using SAM-ASP version 1.0
Chantelle R. Lonsdale, Matthew J. Alvarado, Anna L. Hodshire, Emily Ramnarine, and Jeffrey R. Pierce
Geosci. Model Dev., 13, 4579–4593, https://doi.org/10.5194/gmd-13-4579-2020,https://doi.org/10.5194/gmd-13-4579-2020, 2020
Short summary
A mass- and energy-conserving framework for using machine learning to speed computations: a photochemistry example
Patrick Obin Sturm and Anthony S. Wexler
Geosci. Model Dev., 13, 4435–4442, https://doi.org/10.5194/gmd-13-4435-2020,https://doi.org/10.5194/gmd-13-4435-2020, 2020
Short summary
The urban dispersion model EPISODE v10.0 – Part 1: An Eulerian and sub-grid-scale air quality model and its application in Nordic winter conditions
Paul D. Hamer, Sam-Erik Walker, Gabriela Sousa-Santos, Matthias Vogt, Dam Vo-Thanh, Susana Lopez-Aparicio, Philipp Schneider, Martin O. P. Ramacher, and Matthias Karl
Geosci. Model Dev., 13, 4323–4353, https://doi.org/10.5194/gmd-13-4323-2020,https://doi.org/10.5194/gmd-13-4323-2020, 2020
Short summary
Can machine learning improve the model representation of turbulent kinetic energy dissipation rate in the boundary layer for complex terrain?
Nicola Bodini, Julie K. Lundquist, and Mike Optis
Geosci. Model Dev., 13, 4271–4285, https://doi.org/10.5194/gmd-13-4271-2020,https://doi.org/10.5194/gmd-13-4271-2020, 2020
Short summary

Cited articles

Archibald, A. T., Cooke, M. C., Utembe, S. R., Shallcross, D. E., Derwent, R. G., and Jenkin, M. E.: Impacts of mechanistic changes on HOx formation and recycling in the oxidation of isoprene, Atmos. Chem. Phys., 10, 8097–8118, https://doi.org/10.5194/acp-10-8097-2010, 2010.
Arnold, S. R., Emmons, L. K., Monks, S. A., Law, K. S., Ridley, D. A., Turquety, S., Tilmes, S., Thomas, J. L., Bouarar, I., Flemming, J., Huijnen, V., Mao, J., Duncan, B. N., Steenrod, S., Yoshida, Y., Langner, J., and Long, Y.: Biomass burning influence on high latitude tropospheric ozone and reactive nitrogen in summer 2008: a multi-model analysis based on POLMIP simulations, Atmos. Chem. Phys. Discuss., 14, 24573–24621, https://doi.org/10.5194/acpd-14-24573-2014, 2014.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Publications Copernicus
Download
Short summary
We describe modules for atmospheric chemistry, wet and dry deposition and lightning NO production, which have been newly introduced in ECMWF's weather forecasting model. With that model, we want to forecast global air pollution as part of the European Copernicus Atmosphere Monitoring Service. We show that the new model results compare as well or better with in situ and satellite observations of ozone, CO, NO2, SO2 and formaldehyde as the previous model.
We describe modules for atmospheric chemistry, wet and dry deposition and lightning NO...
Citation