

Supplement of

Tropospheric chemistry in the Integrated Forecasting System of ECMWF

J. Flemming et al.

Correspondence to: J. Flemming (johannes.flemming@ecmwf.int)

25 Supplement Tables

- 26 Table A1 Species of CB05 in C-IFS, if subject to wet and dry deposition and the Henry's law
- 27 coefficient (H_A) and Heat of Dissolution (ΔH_A) at 298 K

Short name	Long name	Dry Depo- sition	Wet Depo- sition	Molar Mass (g/mol)	H _A (M / atm)	Δ H _A (kcal / mol)
03	ozone	yes	no	48	0	0
H2O2	hydrogen peroxide	yes	yes	34	8.30E+04	7400
CH4	methane	no	no	16	0	0
СО	carbon monoxide	yes	yes	28	9.90E-04	1300
HNO3	nitric acid	yes	yes	63	3.20E+11	8700
СНЗООН	methylperoxide	yes	yes	48	3.10E+02	5200
НСНО	formaldehyde	yes	yes	30	3.20E+03	6800
PAR	paraffins	no	no	12	0	0
C2H4	ethene	no	no	28	0	0
OLE	olefins	no	no	24	0	0
ALD2	aldehydes	true	yes	24	17	5000
PAN	peroxyacetyl nitrate	yes	yes	121	8.00E+00	6500
ROOH	peroxides	yes	yes	47	340	6000
ONIT	organic nitrates	yes	yes	77	7.50E+03	6485
С5Н8	isoprene	no	no	68.1	0	0
SO2	sulfur dioxide	yes	yes	64.1	1.00E+05	3000

DMS	dimethyl sulfide	no	no	62.1	0	0
NH3	ammonia	yes	yes	17	75	3400
SO4	sulfate	yes	yes	96.1	3.20E+11	8700
NH4	ammonium	no	yes	18	3.20E+11	8700
MSA	methanesulfonic acid	no	yes	96.1	3.20E+11	8700
СНЗСОСНО	methylglyoxal	true	true	72.1	3.20E+04	8700
O3S	stratospheric ozone	true	no	48	0	0
Rn	radon	no	no	222	0	0
Pb	lead	no	yes	210	3.20E+11	8700
NO	nitrogen monoxide	yes	yes	30	1.90E-03	1400
HO2	hydroperoxy radical	no	yes	33	4.00E+03	5900
CH3O2	methylperoxy radical	no	no	47	0	0
ОН	hydroxyl radical	no	no	17	0	0
NO2	nitrogen dioxide	true	yes	46	1.20E-02	2500
NO3	nitrate radical	yes	yes	62	2.00E+00	2000
N2O5	dinitrogen pentoxide	yes	yes	76	2.10E+01	3400
HO2NO2	pernitric acid	yes	yes	79	1.20E+04	6900
C2O3	peroxyacetyl radical	no	no	75	0	0
ROR	organic ethers	no	no	28	0	0

RXPAR	PAR budget corrector	no	no	12	0	0
XO2	NO to NO2 operator	no	no	44	0	0
XO2N	NO to alkyl nitrate operator	no	no	44	0	0
NH2	amine	no	no	16	0	0
PSC	polar stratosph cloud	no	no	1	0	0
СНЗОН	methanol	yes	yes	31.01	220	5200
НСООН	formic acid	true	true	46.01	8.90E+03	6100
МСООН	methacrylic acid	true	true	62.02	4.10E+03	6300
С2Н6	ethane	no	no	30.02	0	0
С2Н5ОН	ethanol	yes	yes	46.02	190	6600
С3Н8	propane	no	no	44.03	0	0
С3Н6	propene	no	no	42.03	0	0
C10H16	terpenes	no	no	136	0	0
ISPD	methacrolein MVK	yes	no	70	0	0
NO3 A	nitrate	true	yes	62	3.20E+11	8700
СН3СОСН3	acetone	no	true	58	35	3800
ACO2	acetone product	no	no	58	0	0
IC3H7O2	(CH3)2CHO2	no	no	75	0	0
HYPROPO2	product from C3H6+OH	no	no	91	0	0

Table A2 The chemical mechanism as applied in C-IFS (CB05). The reaction products O₂, CO₂ and H₂O are not shown. All reactions of the NH2 radical act as sink processes for the respective radicals and oxidants. The source of the rate data is as follows: [1] Yarwood et al. (2005), [2] Sander et al. (2011), [3] IUPAC datasheet (http://iupac.pole-ether.fr), [4] Archibald et al. (2010) [5] Zaveri and Peters (1999), [6] Atkinson et al. (2006), [7] Williams et al. (2013), [8] Houweling et al. (1998), [9] Horowitz et al.(2003), [10] Atkinson et al.

35 (2004), [11] Emmons et al. (2010), [12] Huijnen, Williams and Flemming (2014).

Reactants	Products	Rate Expression	Reference
$NO + O_3$	NO ₂	3.0E-12*exp(-1500/T)	[1]
$NO + HO_2$	NO ₂ + OH	3.5E-12*exp(250/T)	[1]
$NO + CH_3O_2$	HCHO + HO ₂ + NO ₂	2.8E-12*exp(300/T)	[1]
$NO_2 + OH (+ M)$	HNO ₃	$K_0 = 1.8E-30*(300/T)^{-3.0}$	[1],[2]
		$K_{\infty} = 2.8E-11$	
OH + HNO ₃	NO ₃	$K_0 = 2.41E \cdot 14*(460/T)$	[1],[2]
5		$K_2 = 2.29E-17*(2199/T)$	
		$K_3 = 6.51E-14*(1336/T)$	
$NO_2 + O_3$	NO ₃	1.2E-13*exp(-2540/T)	[1]
$NO + NO_3$	$NO_2 + NO_2$	1.5E-11*exp(170/T)	[1]
$NO_2 + NO_3$	N ₂ O ₅	$K_0 = 2.0E-30*(300/T)^{4.4}$	[1],[2]
		$K_{\infty} = 1.4E - 12*(300/T)$	
		0.7	
N ₂ O ₅	$NO_2 + NO_3$	2.7E-27*exp(11000/T)	[1],[2]
OH + HNO ₄	NO ₂	1.3E-12*exp(380/T)	[1],[2]
$NO_2 + HO_2$	HNO ₄	$K_0 = 2.0E-31*(300/T)^{-3.4}$	[1],[2]
		$K_{\infty} = 2.9E - 12*(300/T)$	
		1.1	
HNO_4 (+ M)	$NO_2 + HO_2$	2.1E-27*exp(10900/T)	[1],[2]
$O(^{1}D) (+ M)$		3.3E-11*exp(55/T)*[O ₂]	[1],[2]
		+	
		$2.15E11*exp(110/T)*[N_2]$	
		$1.63E_{10*avp}(60/T)$	[1] [2]
$O(^{1}D) + H_{2}O$		1.05E-10 exp(00/1)	[1],[2]
O ₃ + HO ₂	OH	1.0E-14*exp(-490/T)	[1]
CO + OH	HO ₂	$K_0 = 5.9E-33*(300/T)^{-1.4}$	[1],[2]
		$K_{\infty} = 1.1E - 12*(300/T)^{-1}$	
		1.3	
		$K_0 = 1.5E-13*(300/T)^{-1}$	
		0.6	
		$K_{\infty} = 2.1E9*(300/T)^{-6.1}$	
O ₃ + OH	HO ₂	1.7E-12*exp(-940/T)	[1]
$OH + H_2O_2$	HO ₂	1.8E-12	[1]

OH + HCHO	$CO + HO_2$	5.5E-12*exp(125/T)	[1]
$OH + CH_4$	CH ₃ O ₂	2.45E-12*exp(-1775/T)	[1]
OH + CH ₃ OOH	0.7 CH ₃ O ₂ + 0.3 HCHO + 0.3 OH	3.8E-12*exp(200/T)	[1]
OH + ROOH	0.77 XO ₂ + 0.19 CH3COCHO + 0.04	2E-11	[4],[5]
	ALD2 + 0.23 OH + RXPAR		
$CH_3O_2 + HO_2$	СН3ООН	4.1E-13*exp(750/T)	[1]
$CH_3O_2 + CH_3O_2$	1.37 HCHO + 0.74 HO ₂ + 0.63 CH ₃ OH	9.5E-14*exp(390/T)	[2],[5]
OH + HO ₂		4.8E-11*exp(250/T)	[1]
HO ₂ + HO ₂	H ₂ O ₂	3.5E-13*exp(430/T) 1.77E-33*exp(1000/T) 1.4E-21*exp(2200/T)	[1],[2]
OH + H ₂	HO ₂	2.8E-12*exp(-1800/T)	[1]
$NO_3 + HCHO$	$\frac{2}{\text{HNO}_3 + \text{CO} + \text{HO}_2}$	5.8E-16	[1]
ALD2 + OH	C_2O_2	Average of ·	[1][6]
	0203	4.4E-12*exp(365/T)	[1],[0]
		5.1E-12*exp(405/T)	
ALD2 + NO ₃	$C_2O_3 + HNO_3$	Average of : 1.4E-12*exp(-1860/T) 6.4E-15	[1],[6]
$NO + C_2O_3$	$CH_3O_2 + NO_2$	8.1E-12*exp(270/T)	[1]
$NO_2 + C_2O_3$	PAN	$K_0 = 2.7E - 28*(300/T)^{7.1}$	[3]
		$K_{\infty} = 1.2E - 11^*(300/T)$	
		0.9	
PAN	$NO_2 + C_2O_3$	$K_0 = 4.9E-3*exp(-$	[1],[6]
		12100/T)	
		$K_{\infty} = 5.4E16 * exp(-$	
		13830/T)	
$NO_3 + HO_2$	HNO ₃	4.0E-12	[1],[3]
$NO_3 + CH_3O_2$	$NO_2 + HO_2 + HCHO$	1.2E-12	[3],[5]
$NO_3 + C_2O_3$	$NO_2 + CH_3O_2$	4.0E-12	[5]
$NO_3 + XO_2$	NO ₂	2.5E-12	[5]
OH + CH ₃ OH	HCHO + HO ₂	2.85E-12*exp(-345/T)	[1],[3]
OH + HCOOH	HO ₂	4.0E-13	[1]
$OH + C_2H_6$	0.991ALD2+0.991XO2+0.009XP2N+	6.9E-12*exp(-1000/T)	[1],[6]
OH + C ₂ H ₅ OH	$ALD2 + HO_2 + 0.1 XO_2 + 0.1HCHO$	3.0E-12*exp(20/T)	[1],[3]
OH +CH ₃ COOH	CH ₃ O ₂	4.2E-14*exp(-855/T)	[1],[6]
$OH + C_2H_{\circ}$	IC3H7O2	7.6E-12*exp(-585/T)	[3.11]
$IC_2H_7O_2 + NO$	$0.82 \text{ CH}_2\text{COCH}_2 + \text{HO}_2 + 0.27 \text{ ALD}_2 + 0.2$	4.2E-12*exp(180/T)	[11]
10311/02 + 110	NO ₂	1.2E 12 Cxp(100/1)	[11]
$IC_3H_7O_2 + HO_2$	ROOH	7.5E-13*exp(700/T)	[11]
$OH + C_3H_6$	HYPROPO2	ko =8.0E-27 *(-300/T) ^{3.5}	[3,11]
		$k_{\infty} = 3.0E-11$	
HYPROPO2 +NO	$ALD2 + HCHO + HO_2 + NO_2$	4.2E-12*exp(180/T)	[11]
HYPROPO2 +HO ₂	ROOH	7.5E-13*exp(700/T)	[11]
$O_3 + C_3 H_6$	0.54 HCHO + 0.19 HO ₂ + 0.33 OH +	5.5E-15*exp(-1880/T)	[6,9]
	$0.56CO + 0.5ALD2 + 0.31CH_3O_2 +$		
	0.25HCOOH		[(0]
$NU_3 + U_3H_6$		4.0E-13*exp(-1155/1)	[6,9]
$C_2O_3 + C_2O_3$	2 CH ₃ O ₂	2.9E-12*exp(500/T)	[1]

$C_2O_3 + HO_2$	0.4 CH ₃ COOH + 0.4 O ₃	4.3E-13*exp(1040/T)	[5]
OH + PAR	0.87 XO ₂ + 0.76 ROR + 0.11 HO ₂ +	8.1E-13	[1],[8]
	0.11 ALD2 + 0.11 RXPAR + 0.13 XO ₂ N		
ROR	1.1 ALD2 + 0.96 XO2 + 0.04 XO2N +	1E15*exp(-8000/T)	[4]
	$0.02 \text{ ROR} + 2.1 \text{ RXPAR} + 0.94 \text{ HO}_2$		
ROR	HO ₂	1600.0	[1]
OH + OLE	0.8 HCHO + 0.95 ALD2 + 0.8 XO ₂ +	5.2E-14*exp(-610/T)	[1],[7]
	1.57HO ₂ +0.7 RXPAR + 0.62 CO		
O ₃ + OLE	0.5 ALD2 + 0.74 HCHO + 0.76 HO ₂ +	8.5E-16*exp(1520/T)	[1],[7]
	$0.22 \text{ XO}_2 + 0.95 \text{ CO} + \text{RXPAR} + 0.1$		
	ОН		
NO ₃ + OLE	$0.91 \text{ XO}_2 + \text{HCHO} + 0.09 \text{ XO}_2\text{N} +$	4.6E-14*exp(400/T)	[1],[2]
	$NO_2 + 0.91 ALD2 + RXPAR + 0.56$		
	HO ₂ + 0.56 CO		
$OH + C_2H_4 (+M)$	HO ₂ + 1.56 HCHO + 0.22 ALD2 +	$K_0 = 1.0E-28*(300/T)^{4.5}$	[1],[2]
	XO ₂	$K_{\infty} = 8.8E-12*(300/T)$	
		0.85	
$O_3 + C_2 H_4$	$HCHO + 0.22 HO_2 + 0.12 OH + 0.24$	1.2E-14*exp(-2630/T)	[5]
	CO + 0.52 HCOOH		
OH + CH ₃ COCHO	$XO_2 + C_2O_3$	1.5E-11	[6]
OH + C10H16	$1.22HO_2 + 1.25XO_2 + 0.25XO_2N +$	1.2E-11*exp(440/T)	[3],[7]
	1.22HCHO + 5.0PAR + 0.47ALD2 + 0.47CO		
O ₃ + C10H16	$0.570H + 0.28HO_2 + 0.76XO_2 +$	6.3E-16*exp(-580/T)	[3],[7]
	0.18XO ₂ N + 1.8HCHO + 0.211CO +		
	6.0PAR + 0.21ALD2 + 0.39C2O3 + 0.39CH3O2		
NO ₃ + C10H16	0.47NO ₂ + 0.75HO ₂ + 1.03XO ₂ +	1.2E-12*exp(490/T)	[3,7]
	0.25XO ₂ N + 0.47ALD2 +		
	0.53ORGNTR + 0.47CO + 6.0PAR		
OH + ISOP	0.4 ISPD + 0. 7 XO ₂ + 0.629 HCHO +	2.7E-11*exp(390/T)	[4,12]
	$0.5 \text{ HO}_2 + 0.088 \text{ XO}_2 \text{N}$		
O ₃ + ISOP	0.65 ISPD + 0.6 HCHO + 0.066 CO + 0.2 C ₂ O ₃ + 0.15 ALD2 + 0.35 PAR +	1.04E-14*exp(-1995/T)	[3],[7]
	0.066 HO ₂ + 0.2 XO ₂ + 0.266 OH		
NO ₃ + ISOP	0.2 ISPD + 0.8 HO ₂ + 0.8 ORGNTR +	3.15E-12*exp(-450/T)	[3],[7]
5	0.8 ALD2 + 2.4 PAR + 0.2 NO ₂ +		
	xo ₂		
OH + ISPD	1.565PAR + 0.167HCHO + 0.503HO ₂	Average of:	[1],[7]
	+ 0.334CO + 0.168CH ₃ COCHO +	1.86E-11*exp(175/T) 2 6E 12*exp(610/T)	
	$0.273ALD2 + 0.498C_2O_3 + 0.713XO_2$	2.012-12 exp(010/1)	
$O_3 + ISPD$	0.114C ₂ O ₃ + 0.15HCHO + 0.85	Average of:	[3],[7]
	CH ₃ COCHO + 0.154HO ₂ + 0.268OH	8.5E-16*exp(-1520/T)	
	$+ 0.064 XO_2 + 0.02 ALD2 + 0.36 PAR +$	$1.4E-13 \exp(-2100/1)$	
	0.225CO		

NO ₃ + ISPD	0.357ALD2 + 0.282HCHO +	Average of:	[3],[7]
	$1.282PAR + 0.925HO_2 + 0.643CO +$	6.0E-16	
	0.85 ORGNTR + 0.075 C ₂ O ₃ +	3.4E-15	
	$0.075 \text{XO}_2 + 0.15 \text{HNO}_3$		
OH + CH3COCH3	ACO2	8.8E-12*exp(-1320/T)+	[3],[7]
		1.7E-14*exp(423/T)	
ACO2+HO2	ROOH		[3],[7]
ACO2+CH3O2	0.5 CH3OH + 0.5HO2 +0.7ALD2 +		[6],[7]
	0.2C2O3 + 0.5CH3COCHO		
ACO2+NO	$\frac{NO2 + C2O3 + HCHO + HO2}{NO2 + VO}$	5 OF 12* (2(0/T)	[6],[7]
OH + OKGNIK	$NO_2 + XO_2$	5.9E-13*exp(-360/1)	[/]
$NO + XO_2$	NO ₂	2.6E-12*exp(365/T)	[1]
$XO_2 + XO_2$		1.6E-12*exp(-2200/T)	[1]
XO2+XO2N		6.8E-14	[1]
XO2N+XO2N		6.8E-14	[1],[6]
$NO + XO_2N$	ORGNTR	2.6E-12*exp(365/T)	[1]
$HO_2 + XO_2$	ROOH	7.5E-13*exp(700/T)	[1]
PAR + RXPAR		8E-11	[8]
$HO_2 + XO_2N$	ROOH	8E-12*exp(-2060/T)	[1]
DMS + OH	so ₂	1.1E-11*exp(-240/T)	[1]
DMS + OH	0.75 SO ₂ + 0.25 MSA	1.0E-39*exp(5820/T)	[2]
		5.0E-30*exp(6280/T)	
$DMS + NO_3$	so ₂	1.9E-13*exp(520/T)	[10]
$OH + SO_2$	SO4 ²⁻	$K_0 = 3.3E - 31^* (300/T)^{4.3}$	[2]
		$K_{\infty} = 1.6E-12*(300/T)$	
OH + NH ₃	NH ₂	1.7E-12*exp(-710/T)	[2]
$NO + NH_2$		4.0E-12*exp(450/T)	[2]
$NO_2 + NH_2$		2.1E-12*exp(650/T)	[2]
$HO_2 + NH_2$		3.4E-11	[2]
$O_2 + NH_2$		6.0E-21	[2]
$O_3 + NH_2$		4.3E-12*exp(-930/T)	[2]

- 38 Table A3 Photolysis reactions in as applied in C-IFS (CB05). The reaction products O₂ and
- 39 H₂O are not shown. The stoichiometry of each photolytic reaction is taken from Yarwood et
- 40 al. (2005) except for the photolysis of O_2 . The absorbtion coefficients and quantum yields are
- 41 taken from [1] Sander et al. (2011), [2] Matsumi et al. (2002) and [3] Atkinson et al. (2006).
- 42 Further details are given in Williams et al., (2013).

Stoichiometry		Reference
$O_3 + hv \rightarrow$	O(¹ D)	[1,2]
$NO_2 + hv \rightarrow$	$NO + O_3$	[1]
$H_2O_2 + hv \rightarrow$	20H	[1]
$HNO_3 + hv \rightarrow$	$OH + NO_2$	[1]
$HNO_4 + hv \rightarrow$	$HO_2 + NO_2$	[1]
$N_2O_5 + hv \rightarrow$	$NO_2 + NO_3$	[1]
HCHO + $hv \rightarrow$	СО	[3]
HCHO + $hv \rightarrow$	$CO + 2HO_2$	[3]
$CH_3OOH + hv \rightarrow$	$HCHO + HO_2 + OH$	[1]
$NO_3 + hv \rightarrow$	$NO_2 + O_3$	[1]
$NO_3 + hv \rightarrow$	NO	[1]
$PAN + hv \rightarrow$	$C_2O_3 + NO_2$	[1]
$ORGNTR + hv \rightarrow$	NO ₂ + 0.51 XO ₂ + 0.3ALD2 + 0.9 HO ₂ + 0.74 C ₂ O ₃ +	[3]
	$0.74 \text{ CH}_3\text{O}_2 + 1.98\text{RXPAR}$	
$ALD2 + hv \rightarrow$	$HCHO + XO_2 + CO + 2HO_2$	[3]
$CH_3COCHO + hv$	$C_2O_3 + HO_2 + CO$	[1]
\rightarrow		
$ROOH + hv \rightarrow$	OH+0.5 XO ₂ +0.74C ₂ O ₃ +0.74 CH ₃ O ₂ +0.3 ALD2 +	[1]
	0.9HO ₂ +1.98 RXPAR	
$\text{ISPD} + hv \rightarrow$	0.333CO + 0.067 ALD2 + 0.9 HCHO + 0.832 PAR +	[3]
	$1.033 \text{ HO}_2 + 0.7 \text{ XO}_2 + 0.967 \text{ C}_2\text{O}_3$	
$O_2 + hv \rightarrow$	2O(³ P)	[1]
$CH_3COCH_3 + hv \rightarrow$	$CO + 2CH_3O_2$	[3]
$CH_3COCH_3 + hv \rightarrow$	$C_2O_3 + CH_3O_2$	[3]

45 Table A4 Loss because of dry deposition for 2008 in Tg and as time scale in days with	1 respect
--	-----------

46 to tropospheric burden.

Species	Annual Dry Deposition Loss Tg	Dry deposition time scale in days
NH3	37	1
SO2	78	3
NO3_A	6	4
ISPD	28	6
СНЗСОСНО	4	7
HNO3	50	7
NO2	17	8
НСНО	35	8
НСООН	4	10
SO4	15	10
H2O2	106	10
С2Н5ОН	1	11
ROOH	25	16
СНЗОН	74	23
ONIT	13	29
ALD2	1	30
СНЗООН	23	53
МСООН	31	64
PAN	7	105
HO2NO2	0	110
03	1124	121
N2O5	0	184

- Table A5 Loss because of wet deposition for 2008 in Tg and as time scale in days with respect to tropospheric burden.

Species	Annual Wet Deposition Loss	Wet deposition time
	Tg	scale in days
NO3_A	14	2
SO4	76	2
NH4	22	2
СН3СОСНО	9	3
HNO3	90	4
H2O2	260	4
Pb	0	11
НСНО	22	13
ONIT	30	13
НСООН	3	13
HO2	1	16
SO2	11	19
МСООН	64	31
MSA	0	35
ROOH	6	68
HO2NO2	1	91
СНЗООН	10	119
C2H5OH	0	163
СНЗОН	7	232
NH3	0	832

55 56

Figure 1 Tropospheric ozone volume mixing ratios (ppb) over the Western-US (right) and Eastern-US (middle) and Canada (left) averaged in the pressure range 1000-700 hPa (bottom), 700-400 hPa (middle) and 400-200 hPa (top) observed by ozonesondes (black) and simulated by C-IFS (red), MOZ (blue) and REAN (green) in 2008

57

Figure 2 Tropospheric ozone volume mixing ratios (ppb) in the Tropics over Atlantic-Africa region (left) and Eastern Pacific and Indian Ocean (right) and equatorial Americas (middle) averaged in the pressure range 1000-700 hPa (bottom), 700-400 hPa (middle) and 400-200 hPa (top) observed by ozonesondes (black) and simulated by C-IFS (red), MOZ (blue) and REAN (green) in 2008.

Figure 3 Bias of CO total column with respect to retrieval MOPITT V6 for April 2008 of C-IFS (left), MOZ (middle) and REAN (right).

Figure 4 Bias of CO total column with respect to retrieval MOPITT V6 for August 2008
of C-IFS (left), MOZ (middle) and REAN (right)