Articles | Volume 8, issue 1
https://doi.org/10.5194/gmd-8-21-2015
https://doi.org/10.5194/gmd-8-21-2015
Model evaluation paper
 | 
14 Jan 2015
Model evaluation paper |  | 14 Jan 2015

High-resolution air quality simulation over Europe with the chemistry transport model CHIMERE

E. Terrenoire, B. Bessagnet, L. Rouïl, F. Tognet, G. Pirovano, L. Létinois, M. Beauchamp, A. Colette, P. Thunis, M. Amann, and L. Menut

Related authors

Impact of present and future aircraft NOx and aerosol emissions on atmospheric composition and associated direct radiative forcing of climate
Etienne Terrenoire, Didier A. Hauglustaine, Yann Cohen, Anne Cozic, Richard Valorso, Franck Lefèvre, and Sigrun Matthes
Atmos. Chem. Phys., 22, 11987–12023, https://doi.org/10.5194/acp-22-11987-2022,https://doi.org/10.5194/acp-22-11987-2022, 2022
Short summary
Modelling street level PM10 concentrations across Europe: source apportionment and possible futures
G. Kiesewetter, J. Borken-Kleefeld, W. Schöpp, C. Heyes, P. Thunis, B. Bessagnet, E. Terrenoire, H. Fagerli, A. Nyiri, and M. Amann
Atmos. Chem. Phys., 15, 1539–1553, https://doi.org/10.5194/acp-15-1539-2015,https://doi.org/10.5194/acp-15-1539-2015, 2015
Short summary
Modelling NO2 concentrations at the street level in the GAINS integrated assessment model: projections under current legislation
G. Kiesewetter, J. Borken-Kleefeld, W. Schöpp, C. Heyes, P. Thunis, B. Bessagnet, E. Terrenoire, A. Gsella, and M. Amann
Atmos. Chem. Phys., 14, 813–829, https://doi.org/10.5194/acp-14-813-2014,https://doi.org/10.5194/acp-14-813-2014, 2014

Related subject area

Atmospheric sciences
The sensitivity of aerosol data assimilation to vertical profiles: case study of dust storm assimilation with LOTOS-EUROS v2.2
Mijie Pang, Jianbing Jin, Ting Yang, Xi Chen, Arjo Segers, Batjargal Buyantogtokh, Yixuan Gu, Jiandong Li, Hai Xiang Lin, Hong Liao, and Wei Han
Geosci. Model Dev., 18, 3781–3798, https://doi.org/10.5194/gmd-18-3781-2025,https://doi.org/10.5194/gmd-18-3781-2025, 2025
Short summary
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025,https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025,https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary

Cited articles

Altshuller, A. P.: Atmospheric concentrations and distributions of chemical substances, in: the Acidic Deposition Phenomenon and its Effects, US Environmental Protection Agency, Washington, DC, 1982.
Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sandler, R., Schöpp, W., Wagner, F., and Winiwarter, W.: Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications, Environ. Model. Softw., 26, 1489–1501, 2011.
Amato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J., Perez, N., and Hopke, P. K.: Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2, Atmos. Environ., 43, 2770–2780, 2009.
Ansari, A. S. and Pandis, S. N.: Response of Inorganic PM to Precursor Concentrations, Environ. Sci. Technol., 32, 2706–2714, 1998.
Appel, K. W., Gilliam, R. C., Davis, N., and Zubrow, A.: Overview of the Atmospheric Model Evaluation Tool (AMET) v1.1 for evaluating meteorological and air quality models, Environ. Model. Softw., 26, 434–443, 2011.
Download
Short summary
The model reproduces the temporal variability of NO2, O3, PM10, PM2.5 better at rural than urban background stations. The fractional biases show that the model performs slightly better at RB sites than at UB sites for NO2, O3 and PM10. At UB sites, CHIMERE reproduces PM2.5 better than PM10. This is primarily the result of an underestimation of coarse particulate matter (PM) associated with uncertainties on SOA chemistry and their precursor emissions, dust and sea salt.
Share