Articles | Volume 8, issue 1
Geosci. Model Dev., 8, 21–42, 2015
https://doi.org/10.5194/gmd-8-21-2015
Geosci. Model Dev., 8, 21–42, 2015
https://doi.org/10.5194/gmd-8-21-2015

Model evaluation paper 14 Jan 2015

Model evaluation paper | 14 Jan 2015

High-resolution air quality simulation over Europe with the chemistry transport model CHIMERE

E. Terrenoire et al.

Related authors

Modelling street level PM10 concentrations across Europe: source apportionment and possible futures
G. Kiesewetter, J. Borken-Kleefeld, W. Schöpp, C. Heyes, P. Thunis, B. Bessagnet, E. Terrenoire, H. Fagerli, A. Nyiri, and M. Amann
Atmos. Chem. Phys., 15, 1539–1553, https://doi.org/10.5194/acp-15-1539-2015,https://doi.org/10.5194/acp-15-1539-2015, 2015
Short summary
Modelling NO2 concentrations at the street level in the GAINS integrated assessment model: projections under current legislation
G. Kiesewetter, J. Borken-Kleefeld, W. Schöpp, C. Heyes, P. Thunis, B. Bessagnet, E. Terrenoire, A. Gsella, and M. Amann
Atmos. Chem. Phys., 14, 813–829, https://doi.org/10.5194/acp-14-813-2014,https://doi.org/10.5194/acp-14-813-2014, 2014

Related subject area

Atmospheric sciences
OpenIFS@home version 1: a citizen science project for ensemble weather and climate forecasting
Sarah Sparrow, Andrew Bowery, Glenn D. Carver, Marcus O. Köhler, Pirkka Ollinaho, Florian Pappenberger, David Wallom, and Antje Weisheimer
Geosci. Model Dev., 14, 3473–3486, https://doi.org/10.5194/gmd-14-3473-2021,https://doi.org/10.5194/gmd-14-3473-2021, 2021
Short summary
Regional CO2 inversions with LUMIA, the Lund University Modular Inversion Algorithm, v1.0
Guillaume Monteil and Marko Scholze
Geosci. Model Dev., 14, 3383–3406, https://doi.org/10.5194/gmd-14-3383-2021,https://doi.org/10.5194/gmd-14-3383-2021, 2021
Short summary
The Detailed Emissions Scaling, Isolation, and Diagnostic (DESID) module in the Community Multiscale Air Quality (CMAQ) modeling system version 5.3.2
Benjamin N. Murphy, Christopher G. Nolte, Fahim Sidi, Jesse O. Bash, K. Wyat Appel, Carey Jang, Daiwen Kang, James Kelly, Rohit Mathur, Sergey Napelenok, George Pouliot, and Havala O. T. Pye
Geosci. Model Dev., 14, 3407–3420, https://doi.org/10.5194/gmd-14-3407-2021,https://doi.org/10.5194/gmd-14-3407-2021, 2021
Short summary
Evaluation of the dynamic core of the PALM model system 6.0 in a neutrally stratified urban environment: comparison between LES and wind-tunnel experiments
Tobias Gronemeier, Kerstin Surm, Frank Harms, Bernd Leitl, Björn Maronga, and Siegfried Raasch
Geosci. Model Dev., 14, 3317–3333, https://doi.org/10.5194/gmd-14-3317-2021,https://doi.org/10.5194/gmd-14-3317-2021, 2021
Short summary
Implementing a sectional scheme for early aerosol growth from new particle formation in the Norwegian Earth System Model v2: comparison to observations and climate impacts
Sara M. Blichner, Moa K. Sporre, Risto Makkonen, and Terje K. Berntsen
Geosci. Model Dev., 14, 3335–3359, https://doi.org/10.5194/gmd-14-3335-2021,https://doi.org/10.5194/gmd-14-3335-2021, 2021
Short summary

Cited articles

Altshuller, A. P.: Atmospheric concentrations and distributions of chemical substances, in: the Acidic Deposition Phenomenon and its Effects, US Environmental Protection Agency, Washington, DC, 1982.
Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sandler, R., Schöpp, W., Wagner, F., and Winiwarter, W.: Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications, Environ. Model. Softw., 26, 1489–1501, 2011.
Amato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J., Perez, N., and Hopke, P. K.: Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2, Atmos. Environ., 43, 2770–2780, 2009.
Ansari, A. S. and Pandis, S. N.: Response of Inorganic PM to Precursor Concentrations, Environ. Sci. Technol., 32, 2706–2714, 1998.
Appel, K. W., Gilliam, R. C., Davis, N., and Zubrow, A.: Overview of the Atmospheric Model Evaluation Tool (AMET) v1.1 for evaluating meteorological and air quality models, Environ. Model. Softw., 26, 434–443, 2011.
Download
Short summary
The model reproduces the temporal variability of NO2, O3, PM10, PM2.5 better at rural than urban background stations. The fractional biases show that the model performs slightly better at RB sites than at UB sites for NO2, O3 and PM10. At UB sites, CHIMERE reproduces PM2.5 better than PM10. This is primarily the result of an underestimation of coarse particulate matter (PM) associated with uncertainties on SOA chemistry and their precursor emissions, dust and sea salt.