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Abstract. A modified version of CHIMERE 2009, includ-

ing new methodologies in emissions modelling and an urban

correction, is used to perform a simulation at high resolu-

tion (0.125◦× 0.0625◦) over Europe for the year 2009. The

model reproduces the temporal variability of NO2, O3, PM10,

PM2.5 better at rural (RB) than urban (UB) background sta-

tions, with yearly correlation values for the different pollu-

tants ranging between 0.62 and 0.77 at RB sites and between

0.52 and 0.73 at UB sites. Also, the fractional biases (FBs)

show that the model performs slightly better at RB sites

than at UB sites for NO2 (RB=−33.9 %, UB=−53.6 %),

O3 (RB= 20.1 %, UB= 25.2 %) and PM10 (RB=−5.50 %,

UB=−20.1 %). The difficulties for the model in reproduc-

ing NO2 concentrations can be attributed to the general un-

derestimation of NOx emissions as well as to the adopted

horizontal resolution, which represents only partially the spa-

tial gradient of the emissions over medium-size and small

cities. The overestimation of O3 by the model is related

to the NO2 underestimation and the overestimated O3 con-

centrations of the lateral boundary conditions. At UB sites,

CHIMERE reproduces PM2.5 better than PM10. This is pri-

marily the result of an underestimation of coarse particulate

matter (PM) associated with uncertainties in secondary or-

ganic aerosol (SOA) chemistry and its precursor emissions

(Po valley and Mediterranean basin), dust (south of Spain)

and sea salt (western Europe). The results suggest that future

work should focus on the development of national bottom-

up emission inventories including a better account for semi-

volatile organic compounds and their conversion to SOA, the

improvement of the CHIMERE urban parameterization, the

introduction into CHIMERE of the coarse nitrate chemistry

and an advanced parameterization accounting for windblown

dust emissions.

1 Introduction

Regional chemistry transport models (CTMs) are powerful

tools widely used to assess and investigate air quality issues.

The application field of CTMs is broad: understanding the

atmospheric physico-chemical processes (Bessagnet et al.,

2010; Hodzic et al., 2010; Jiménez-Guerrero et al., 2011),

assessment of emission control scenarios (Coll et al., 2009;

Kiesewetter et al., 2014), past and future regional air pollu-

tion trends (Colette et al., 2011), chemical weather forecast

cooperation (Balk et al., 2011; Kukkonen et al., 2011; Coper-

nicus (http://www.copernicus.eu/)) and natural hazard emer-

gency response (Colette et al., 2011; Matthias et al., 2012).

A review of the major air quality modelling forecast systems

operating in Europe is given by Menut and Bessagnet (2010).

CTMs were used initially to simulate gas phase tro-

pospheric pollutant concentrations within the lower tro-

posphere; a coarse horizontal resolution was sufficient to

achieve this objective. During the past decade, air quality

legislation has focused more and more on particulate mat-

ter (PM) concentrations and CTMs have been equipped with
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aerosol modules. High PM concentrations are usually ob-

served in urban areas (EEA, 2012), leading to a need for

CTM applications at urban scale. A large number of stud-

ies highlight the need to perform simulations at high resolu-

tion in order to assess the urban air pollutant concentration

patterns, especially for PM compounds (Queen and Zhang,

2008; Stroud et al., 2011; Wolke et al., 2012; Fountoukis et

al., 2013).

A list of long-term European model evaluation studies

that took place during the past decade can be found in Pay

et al. (2012a). However, the simulations performed in these

studies adopted a coarse (0.25 to 0.5◦) horizontal resolution

(Tarrason et al., 2006; Matthias, 2008; Stern et al., 2008;

Kim et al., 2011; Sollazo et al., 2012; Pay et al., 2012a;

Pirovano et al., 2012; Zhang et al., 2013) and the evalua-

tion was generally done using a limited set of measurement

stations. Examples of model validation can also be found

for higher resolution applications (0.1◦× 0.1◦) but over lim-

ited domains, covering an urban area or a country (Hodzic

et al., 2005; Tombette and Sportisse, 2007; Flaounas et al.,

2009; Chemel et al., 2010; Pay et al., 2012b). Therefore,

there is a clear need for evaluating high-resolution simula-

tions (< 0.1◦× 0.1◦) performed over large domains, such as

continental areas.

To fill this gap, a high-resolution air quality simulation

was performed over most of Europe and evaluated for the

year 2009 using the CHIMERE model (Menut et al., 2013).

For this study, the CHIMERE model was improved in or-

der to simulate air quality at the urban scale. The evalua-

tion process was conducted over a comprehensive spatial and

temporal data set in order to effectively quantify the model

accuracy. The aims of the study are threefold: (i) to get an

accurate picture of air quality at the urban scale using air

quality modelling; (ii) to test an original set of emissions and

an urban meteorological correction; (iii) to evaluate compre-

hensively the simulation using the largest set of monitoring

stations available over Europe.

The analysis was performed for sulfur dioxide (SO2), ni-

trogen dioxide (NO2), ozone (O3), PM10 (particulate matter

with an aerodynamic diameter ≤ 10 µm), PM2.5 (particulate

matter with an aerodynamic diameter ≤ 2.5 µm) and partic-

ulate matter (PM) compounds such as sulfate, nitrate, total

nitrate (nitric acid + nitrate), ammonium and total ammonia

(ammonia + ammonium).

The paper is organized as follows. Section 2 is devoted

to the description of CHIMERE and the methodology used

to prepare the anthropogenic emissions as well as the set of

observations selected for the evaluation. Section 3 describes

and analyses comprehensively the ability of the model to re-

produce the concentrations of the different selected pollu-

tants. Finally, Sect. 4 summarizes the main findings raised

by the study and gives suggestions for future work related to

high-resolution regional modelling.

2 Methods

2.1 Model description

CHIMERE is a regional CTM that has undergone several ex-

tensive evaluations (Bessagnet et al., 2010; Vautard et al.,

2007a; Van Loon et al., 2007). It calculates the concentra-

tions of the main chemical species (SO2, NO2, O3, PM10,

PM2.5) that are involved in the physico-chemistry of the

lower troposphere. CHIMERE has been described in detail

in several papers: Schmidt et al. (2001) for the dynamics and

the gas phase module; Bessagnet et al. (2009) for the aerosol

module and Vautard et al. (2005, 2007b) for further model

developments including the introduction of a mineral dust

emission module and a convection scheme into CHIMERE.

The version used in this study is CHIMERE 2009 with

specific modifications described in the following paragraphs

of this section. The aerosol model species are the primary

particle material (PPM), secondary inorganic aerosol (SIA;

sulfate, nitrate and ammonium) based on the ISORROPIA

thermodynamic equilibrium model (Nenes et al., 1998), sec-

ondary organic aerosol (SOA, whose formation is repre-

sented according to a single-step oxidation of the relevant an-

thropogenic and biogenic precursors), sea salt and dust (non-

African mineral dust is not included). The particles’ size dis-

tribution ranges from 39 nm to 10 µm and the particles are

distributed into eight bins (0.039, 0.078, 0.156, 0.312, 0.625,

1.25, 2.5, 5 and 10 µm). Vertically, the domain is divided

in eight hybrid-sigma layers from the ground to 500 hPa.

Gas phase tropospheric chemistry is represented using the

reduced MELCHIOR chemical mechanism (120 reactions

and 44 gaseous species) and the dry and wet depositions are

taken into account. For the study, a nested domain (328× 416

grid boxes) that covers most of Europe from 10.43750◦W

to 30.43750◦ E in longitude and 35.90620 to 61.83375◦ N

in latitude with a horizontal resolution of 0.125◦× 0.0625◦

(8 km× 8 km) is designed (Fig. 1). Boundary conditions for

the mother domain were derived from monthly mean cli-

matology based on the Laboratoire de Météorologie Dy-

namique Zoom – Interaction avec la Chimie et les Aérosols

(LMDz4-INCA3) model for gaseous species (Hauglustaine

et al., 2004) and the Goddard Chemistry Aerosol Radia-

tion and Transport (GOCART) model for aerosols (Ginoux

et al., 2001). A complete and high-resolution set of both

biogenic and anthropogenic emissions are needed in order

to perform the CHIMERE computations. Emissions of six

biogenic CHIMERE species (isoprene, α-pinene, β-pinene,

limonene, ocimene and NO) were calculated using the Model

of Emission of Gases and Aerosols from Nature (MEGAN

v.2.04, Guenther et al., 2006). Wildfire emissions are also

taken into account and issued from the Global Fire Emissions

Database version 3 (Kaiser et al., 2012). Modelled concentra-

tions for comparison with observations are extracted from the

lowest vertical level, which extends from the ground to about
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E. Terrenoire et al.: High-resolution air quality simulation over Europe 23

 748 

Figure 1: AirBase RB (green squares), AirBase UB (blue dots) and EMEP stations (red triangles) 749 
used for the model performance evaluation. 750 
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Figure 1. AirBase rural background (RB; green squares), AirBase

urban background (UB; blue dots) and EMEP stations (red trian-

gles) used for the model performance evaluation.

20 m. A detailed description of CHIMERE can be found in

Menut et al. (2013).

2.2 Meteorology

Meteorological data needed by CHIMERE are derived from

the fields of the Integrated Forecast System (IFS) runs at

the European Centre for Medium-range Weather Forecasts

(ECMWF). The choice of feeding CHIMERE directly with

the IFS data stems from the results of a sensitivity analysis

where the performance of the Weather Research and Fore-

casting (WRF) limited area model and the IFS was evaluated

against observations (not shown here). The analysis shows

evidence of a systematic overestimation of the wind speed

by WRF, a feature confirmed by several other studies (Mass

and Ovens, 2011; Jimenez and Dudhia, 2012; Vautard et al.,

2012). Another reason for the direct use of ECMWF-IFS

fields is that it avoids an ad hoc meteorological numerical

weather calculation (e.g. WRF), thus reducing the computa-

tional cost. For more details about the comparison between

ECMWF-IFS and WRF performance, the reader is referred

to Miglietta et al. (2012).

IFS adopts a 0.25◦ horizontal grid spacing from surface

up to 0.1 hPa (91 levels in total). It provides standard me-

teorological variables (temperature, wind components, spe-

cific humidity, pressure, sensible and latent heat fluxes) that

need to be vertically and horizontally interpolated on the

CHIMERE grid (eight levels). Some additional variables are

also diagnosed by CHIMERE from the available fields, such

as friction velocity and vertical wind speed, which are used

to complete the description of vertical transport and turbulent

diffusion.

However, the main limitation of such data is that the IFS

regional scale data cannot sufficiently represent the urban

scale meteorology observed in the urban boundary layer.

This is crucial, as the urban canopy affects the wind circula-

tion and the urban energy balance (Sarrat et al., 2006), which

directly impact the transport and the vertical diffusion of pri-

mary pollutants over cities (e.g. O3, NO2 and PM). Usually,

operational meteorological observations are performed out-

side urban areas (e.g. airport) for representativeness reasons.

Several studies have shown large differences between urban

and rural winds (Fisher et al., 2006), showing a wind speed

ratio (rural/urban) of up to 2. Another study, focused on Lis-

bon (Portugal), showed that modelled wind speed ratio inside

the canopy and at the top of the urban sub-layer was within

the range 0.1 to 0.6 (Solazzo et al., 2010).

The vertical diffusion (diffusion coefficient, Kz) is used in

CHIMERE to compute the vertical turbulent mixing in the

boundary layer following the parameterization of Troen and

Mahrt (1986). In order to integrate the influence of the urban

canopy on meteorology, the wind speed, as well as the Kz, is

modified within the CHIMERE version used for this study.

The wind speed and the Kz are divided by a factor of 2 over

the urban areas (urban cells) in the lowest CHIMERE layer

as described in Bessagnet et al. (2012). The grid cells’ land

use classification was derived from the GlobCover (Bicheron

et al., 2008) land cover database covering the period Decem-

ber 2004–June 2006.

In order to estimate the potential impact of the urban cor-

rection, a sensitivity test was performed for January 2009.

Figure 2 shows the results of the simulation without the

urban correction for NO2, O3, PM10 and PM2.5. Concentra-

tions are normalized by the values obtained in the actual base

case that include the urban correction. A rather large impact

over all major European cities is observed for the four pollu-

tants. For NO2, a decrease in concentrations ranging from a

few % (suburban areas) up to 45 % (e.g. Paris, London, Lis-

bon and Glasgow) is observed when the urban correction is

not applied. Conversely an increase of O3 concentration is

observed over both the large cities (10 to 120 % in the city

centre) and medium-size cities (10 to 30 %), essentially due

to a decrease of NO2 titration. Likewise NO2, the concen-

trations of both PM10 and PM2.5 decrease from a few % to

a maximum of 43 % in cities such as Paris, London and Ka-

towice in the south of Poland. Finally, the yearly box-whisker

plots time series (Figs. S1 to S4 in the Supplement) show that

the median of the modelled concentrations increases for NO2

(0.6 ppb), PM10 (0.8 µg m−3) and PM2.5 (0.4 µg m−3) at ur-

ban background (UB) stations when using the urban correc-

tion while it decreases for O3 (0.8 ppb). At UB stations, on

average, the impact of the urban correction is positive (reduc-

ing the bias) but small.

www.geosci-model-dev.net/8/21/2015/ Geosci. Model Dev., 8, 21–42, 2015
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Figure 2. Concentration from the simulation without the urban correction normalized by the simulation including the urban correction (in

%) for NO2, O3, PM10 and PM2.5.

2.3 Anthropogenic emissions

Five main steps can be identified in the anthropogenic emis-

sion pre-processing: (1) the horizontal and vertical spatial re-

gridding of the raw emissions to comply with the CHIMERE

grid, (2) the temporal disaggregation, (3) the chemical speci-

ation, (4) the hourly disaggregation and (5) the surface flux

calculation within CHIMERE.

The anthropogenic emissions CHIMERE pre-processor

transforms raw yearly anthropogenic emissions (t/year/cells)

into a CHIMERE compliant spatialized emissions data

set available for PPM, NO, NO2, CO, SO2, CH4 and

the 10 following non-methane volatile organic com-

pounds (NMVOCs): Ethane, n-butane, ethene, propene, oxy-

lene, formaldehyde, acetaldehyde, methyl, ethyl-ketone and

ethanol.

2.3.1 Spatial regridding of anthropogenic emissions

The raw emission data of the main air pollutants (NMVOC,

NOx, CO, SO2, NH3, PPM) are provided per activity sector,

according to level 1 of the Selected Nomenclature for Air

Pollution (SNAP). They come from three different databases:

– the Netherlands Organisation for Applied Scientific Re-

search (TNO) emission inventory at 0.125◦× 0.0625◦

for 2007 from the Modelling Atmospheric Composition

Change (MACC) project (Kuenen et al., 2011; Denier

van der Gon et al., 2010),

– the European Monitoring and Evaluation Programme

(EMEP) 0.5◦× 0.5◦ emission inventory for 2009

(Vestreng et al., 2007),

– the emission data set available in the Greenhouse Gas

and Air Pollution Interactions and Synergies (GAINS)

database (Amann et al., 2011).

The large point sources from the fine-scale TNO-MACC

emission data for 2007 were added to surface emissions in

order to deal with only gridded emissions.

The spatialization of the anthropogenic emissions de-

pends on the SNAP sector. The TNO-MACC emissions

were used as a proxy variable to regrid EMEP 0.5◦× 0.5◦

emission data (Kuenen et al., 2011) for the SNAP activ-

ity sectors 3, 7, 8, 9 and 10. For SNAP sectors 1, 4,

5 and 6, emissions were distributed over artificial land

use corresponding to the European Pollutant Emission

Register (EPER) industries (eea.europa.eu/data-and-maps/

data/eper-the-european-pollutant-emission-register-4). For

PM2.5, the GAINS national emissions totals were considered

more reliable (Z. Klimont, personal communication, 2012)

and used for the following countries: Czech Republic, Bosnia

and Herzegovina, Belgium, Belarus, Spain, France, Croa-

tia, Ireland, Lithuania, Luxembourg, Moldova, Macedonia,

Geosci. Model Dev., 8, 21–42, 2015 www.geosci-model-dev.net/8/21/2015/
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Table 1. Vertical emissions profiles (%) for each SNAP category.

Injection height (m) 20 92 184 324 522 781 1106

SNAP 1 0 0 0.25 51 45.3 3.25 0.2

SNAP 2 100 0 0 0 0 0 0

SNAP 3 6 16 75 3 0 0 0

SNAP 4 5 15 70 10 0 0 0

SNAP 5 2 8 60 30 0 0 0

SNAP 6 100 0 0 0 0 0 0

SNAP 7 100 0 0 0 0 0 0

SNAP 8 100 0 0 0 0 0 0

SNAP 9 0 0 41 57 2 0 0

SNAP 10 100 0 0 0 0 0 0

SNAP 11 100 0 0 0 0 0 0

Netherlands, Serbia and Montenegro and Turkey. Moreover,

additional factors were applied on Polish regions (x4 or x8)

to compensate for the lack of PM2.5 emissions due to the

domestic heating activity in the available inventory. Finally,

emissions from SNAP 2 were disaggregated according to

population density. The goal of this approach is to better cap-

ture the spatial variability of the SNAP 2 sources. The popu-

lation data were provided by the Joint Research Centre (JRC)

over a regular grid at 0.083◦× 0.083◦ horizontal resolution.

For the elaboration of the SNAP 2 emissions, a distinction

is made between gaseous and PPM species to better reallo-

cate the anthropogenic biomass burning emissions (SNAP 2)

over the rural areas. According to the French National Spa-

tialised Emission Inventory (INS), (Ministère de l’Ecologie

et du Développement Durable, 2009), available at municipal-

ity level and derived using the bottom-up approach, there is

clear evidence that PPM2.5 (PPM with an aerodynamic di-

ameter ≤ 2.5 µm) emissions per inhabitant sharply decrease

when the population density increases (Fig. 3). This is due

to the increase of the relative contribution of wood burning

in the fuel mixture moving from urban centres to rural ar-

eas (e.g. due to an increase in domestic fireplaces). This ef-

fect is noticeable only for PPM2.5, because biomass burning

sources contribute to a very large fraction of PM emissions

in SNAP2, while they have less influence than other fuels

on gas phase pollutants (INS, Ministère de l’Ecologie et du

Développement Durable, 2004).

The vertical repartition of the emissions into the differ-

ent levels of the CTM is known to be of great importance

(Bieser et al., 2011). It was calculated for each SNAP sector

following the calculation of Bieser et al. (2011) (Table 1). A

new layer (0–20 m) was added to the current implementation

compared to the original EMEP configuration. For SNAP 2,

6, 7, 8 and 10 all the emissions are released into the first level

of the model.

As an illustration, Fig. 4 shows the spatial distribution

of the total annual PPM2.5 emissions from SNAP 2 derived

from the hybrid emission inventory used for this study. Com-

pared to the original method, SNAP 2 emissions around the

medium-size and large cities increase when the population

proxy is used. This is because when the Land Use (LU) proxy

Figure 3. Evolution of PPM2.5 residential emissions per inhabi-

tant (kg/inhab/year) as a function of population density (source:

French National Emission Inventory). The red curve is the corre-

sponding logarithmic regression used in the CHIMERE emission

pre-processor.

 

Figure 4. Total annual primary particle material emission with

aerodynamic diameter ≤ 2.5 µm from SNAP 2 for the year 2009

(g km−2).

is used, emissions from each type of LU cell have the same

weight, thus giving rise to a flatter distribution than using

population density. Considering for example an EMEP cell

(0.5◦× 0.5◦) including a big city as well as a small town,

emissions are modulated in the same way over urban cells of

both areas if the LU approach is followed, whereas most of

the emissions are allocated just in the big city if population

is used.

2.3.2 Emission temporal modulation

Time disaggregation was done on the basis of the Generation

and Evaluation of Emission (GENEMIS) project data using

monthly, daily and hourly coefficients depending on the ac-

tivity sector (Society et al., 1994).

www.geosci-model-dev.net/8/21/2015/ Geosci. Model Dev., 8, 21–42, 2015
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However, for SNAP 2, a new temporal profile derived ac-

cording to the degree day concept is used. The degree day

is an indicator used as a proxy variable to express the daily

energy demand for heating (Verbai et al., 2014; Quayle and

Diaz, 1980). The degree day for a day “j” is defined as:

Dj =

{
20− T̄ when 20− T̄ > 0

0 when 20− T̄ ≤ 0,
(1)

where T̄ is the daily mean 2 m temperature. Therefore, a first

guess daily modulation factor could be defined as:

FD =
Dj

D̄
D̄ =

1

N

N∑
j=1

Dj , (2)

where N = 365 days.

Considering that SNAP 2 emissions are not only related

to the air temperature (e.g. emissions due to production of

hot tap water), a second term is introduced in the formula by

means of a constant offset C. To better assess the influence

of this offset, C can be expressed as a fraction of D̄ (degree

day annual average).

Considering:

C = A · D̄, (3)

where A is defined by user (A= 0.1 for this application), we

can express

D′j =Dj +A · D̄ (4)

and

D̄′j =
1

N

N∑
j=1

D′j =
1

N

N∑
j=1

(
Dj +A · D̄

)
j

= D̄+A · D̄ = (1+A) · D̄. (5)

The daily modulation factor (F ′j ) is therefore defined as:

F ′j =
D′j

D̄′j
. (6)

Note that F ′j is mass conservative over the year and re-

places the original monthly and daily modulation factors.

The choice of A is left to the user to express the relative

weight of hot water production with respect to heating. For

this application, we set A= 0.1 in order to replicate as much

as possible the original CHIMERE temporal profiles during

the warmer season.

As an illustration, Fig. 5 shows the 2009 daily modula-

tion factors applied to the SNAP 2 emissions at three loca-

tions that are both geographically and climatically different:

Katowice (Poland), Paris (France) and Madrid (Spain). The

highest factors for the three locations occur during the winter

period and the lowest ones during the summer, as expected.

Figure 5. Daily modulation factors (Fj ) applied for the SNAP 2

emissions over the city of Katowice, Paris and Madrid for the year

2009.

This means, for example, that during the cold periods the

emission from SNAP 2 can be up to three times more intense

(e.g. beginning of January for Madrid or end of February for

Paris) than during the spring or the autumn periods. It is in-

teresting to note that in Katowice during the beginning of the

year the factors are relatively lower than at the two other lo-

cations, meaning that over this period the difference between

the daily mean and the annual mean temperatures is lower in

Katowice than at the two other locations. This does not mean

that temperature in Katowice during January was higher than

Madrid and Paris, but simply that the latter ones experience

a higher variability than Katowice between January and the

summer season. Indeed, it is worth noting that in Katowice

the modulation factor during the summer is often greater than

0.1, indicating that in several cases, the daily temperature in

Katowice is lower than 20 ◦C. Conversely, at the end of the

year, all locations experienced a cold outbreak of the same

intensity relative to their local annual mean temperature.

2.3.3 Chemical speciation

Annual NOx emissions were speciated into NO, NO2 and

HNO2 using the coefficients recommended by the Inter-

national Institute for Applied Systems Analysis (IIASA)

(Z. Klimont, personal communication, 2012, Table 2). For

NMVOC, a speciation was performed over 32 NMVOC Na-

tional Acid Precipitations Assessment Program (NAPAP)

classes (Middleton et al., 1990). Real NMVOC species were

aggregated and assigned to the model species following Mid-

dleton et al. (1990).

2.4 Observation data

Observed data come from two different databases. The first

is AirBase (http://acm.eionet.europa.eu/databases), gather-

ing regulatory data reported by Member States according to

the air quality directive. The second is related to the EMEP

network (http://www.emep.int/). Only stations below 750 m

in altitude with at least 75 % data capture over the year were

Geosci. Model Dev., 8, 21–42, 2015 www.geosci-model-dev.net/8/21/2015/
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Table 2. NOx speciation (%) used in CHIMERE for each SNAP category.

SNAP1 SNAP 2 SNAP3 SNAP4 SNAP5 SNAP6 SNAP7 SNAP8 SNAP9 SNAP 11

NO 95.0 95.0 95.0 95.0 95.0 95.0 83.5 90.0 95.0 95.0

NO2 4.50 4.50 4.50 4.50 4.50 4.50 15.0 9.20 4.50 4.50

HNO2 0.50 0.50 0.50 0.50 0.50 0.50 1.50 0.80 0.50 0.50

selected as we wanted to avoid stations with complex ter-

rain. Figure 1 displays the spatial distribution of the AirBase

(green squares for rural background (RB) and blue dots for

UB) and EMEP network stations (red triangles) used for the

evaluation. The spatial distribution of the stations is homo-

geneous over the populated region of western Europe, while

several gaps are seen in Eastern Europe and in the Balkan

countries. A total of 1009 UB AirBase, 560 RB AirBase

and 85 EMEP stations are used for the evaluation. However,

fewer stations are available for PM2.5 both at UB sites (267)

and especially at RB sites (92). The EMEP network database

includes fewer sites than AirBase, but it is the only European

network providing PM10 speciation data, which are crucial

to investigate the model performance deeper.

At EMEP stations, high-volume Whatman quartz filters

or tapered element oscillating microbalance (TEOM) sam-

plers are use to perform PM10 measurements. The measured

quantities are analysed mainly with the gravimetric method;

however, the micro balance technique is used in some coun-

tries. One should be aware that the reactivity of NO3 and the

volatile character of NH4NO3 results in an underestimation

of the measured concentrations, especially during the sum-

mer. Hence, according to Putaud et al. (2004), an uncertainty

of ±15 % should be considered for major SIA species. De-

tails about the station type classifications and the different

measurement techniques are available through the AirBase

and EMEP websites.

2.5 Data analysis methodology

In this paper, an “operational evaluation” is performed (Den-

nis et al., 2010). The evaluation techniques include statistical

and graphical analyses applied in order to determine the de-

gree of agreement between the model and the observations in

an overall sense. We selected different statistical indicators

for their ability to diagnose the model performance from dif-

ferent perspectives including temporal correlation, bias and

the absolute error between observation and modelled val-

ues. Therefore, along with the observed (OM) and modelled

(MM) mean concentrations, the observed (σ_obs) and mod-

elled (σ_mod) standard deviation, the correlation coefficient

(R), the root mean square error (RMSE), the fractional bias

(FB) and the fractional error (FE) are calculated. Details

about the calculation of the statistics performed using the

Atmospheric Model Evaluation Tool software (AMET) can

be found in Appel et al. (2011). The performance evaluation

was based on yearly and seasonal statistics using the daily

mean values of all stations available for the given typology

(UB and RB).

3 Model results

3.1 Spatio-temporal variability of the modelled

concentrations

In this section, the 2-D annual mean concentration maps of

NO2, O3, PM10 and PM2.5 (Fig. 6) are analysed. On each

map, the observed concentration values at each station are

represented by a coloured dot for both RB and UB stations.

The winter (December–January–February) and the summer

(June–July–August) seasonal means are also drawn to anal-

yse the inter-seasonal variability of the modelled concentra-

tions of NO2 and O3 (Fig. 7), PM10 and PM2.5 (Fig. 8), SOA,

dust and sea salt (Fig. 9), SO2 and sulfate (Fig. 10), and fi-

nally nitrate and ammonium species (Fig. 11).

NO2 concentrations are directly linked to emissions

mainly coming from SNAP 2 (non-industrial combustion

plants), 7 (road traffic) and 8 (other mobile source). There-

fore, Fig. 6 shows that the highest annual mean concentra-

tions are located over urban areas and along ship tracks (At-

lantic Ocean, English Channel, and Mediterranean Sea). Spe-

cific areas with high concentrations are identified: the Po val-

ley, Paris, the Benelux countries, London, southern Poland

(e.g. Katowice), Athens, Madrid and Barcelona. For these

specific areas, as well as over Europe, the concentrations

are much higher during winter than during summer due to

higher emissions and light vertical dispersion (e.g. shallow

boundary layer height, stagnant conditions, thermal inver-

sion) (Fig. 7). Ship tracks in the Mediterranean Sea, along

the coast of Portugal and especially in the English Channel

are characterized by rather high NO2 yearly mean modelled

concentrations, ranging between 2 and 12 ppb. The observa-

tion values represented by the dots show a systematic under-

estimation of the NO2 concentrations over land, with a neg-

ative bias around 4 ppb. Moreover, two main areas located

over the south of Poland (Katowice) and some parts of Ro-

mania (industrial hot spots) show an even larger underestima-

tion (10–20 ppb). Conversely, some areas where the observa-

tions are overestimated are Paris, London, Madrid, Barcelona

and Athens. For these areas, the methodology used to down-

scale the national annual emissions could be the reason for

the overestimation.
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Figure 6: Observed (dots) and modelled annual mean concentrations for NO2 in ppb (top left), O3 in 815 
ppb (top right), PM10 in µg/m3 (bottom left) and PM2.5 in µg/m3 (bottom right). 816 
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Figure 6. Observed (dots) and modelled annual mean concentrations for NO2 in ppb (top left), O3 in ppb (top right), PM10 in µg m−3

(bottom left) and PM2.5 in µg m−3 (bottom right).

Overall, CHIMERE slightly overestimates O3 concentra-

tions over Europe. Figure 6 shows that the highest annual

mean concentrations are located below the 45◦ latitude (from

30 ppb over the coasts to 48 ppb over the sea) where the

strongest photolysis over Europe occurs. The O3 maximum

concentrations are modelled during summer while the winter

seasonal mean is below 30 ppb over most of Europe, reach-

ing values close to zero in the Benelux countries, the Po val-

ley, Germany and Poland. The highest summer concentra-

tions are calculated over and around the Mediterranean Sea,

where lower boundary layer heights (as compared to conti-

nental planetary boundary layer heights), strong photolysis

rates and low dry deposition constitute favourable conditions

for the build-up of high O3 concentrations (up to 56 ppb).

During the warm periods (spring and summer), most of the

capital cities across Europe are characterized by ozone decre-

ments due to the ozone titration by NOx as well as along

shipping routes in northern Europe and the Strait of Gibral-

tar (Fig. 7).

For PM10, the highest modelled concentrations (20–

30 µg m−3) are located south of a line that goes from the

south of Portugal to the north of Poland (Fig. 6). The an-

nual mean concentrations show a slight underestimation over

the continent. However, over cities such as Milan, Paris and

Krakow, CHIMERE overestimates the observations, likely

due to the methodology used to downscale the SNAP2 emis-

sions from biomass burning, which are still too concen-

trated over the centre of the urban areas instead of being

more distributed over the surrounding areas (Timmermans et

al., 2014). In winter, the modelled concentrations are high-

est over the continent (10–30 µg m−3), with lower concen-

trations over central Spain (10 µg m−3). Hot spots are lo-

cated over the large European urban areas and over indus-

trial primary emissions areas (e.g. Romania and Bulgaria).

In summer, the concentrations are strongly influenced by the

amount of dust and boundary conditions in the south part of

the domain (up to 36 µg m−3) and the urban PM10 pattern is

weak except for Katowice, Milan and Paris (28–50 µg m−3)

(Fig. 8). The concentrations over the continent are a factor of

2 lower than the hot spot areas. In winter, much lower con-

centrations are modelled over the Mediterranean Sea (16–

18 µg m−3) due to the lower influence of Saharan dust with

respect to the summer season. Primary emissions from the

large cities and industrial areas have their strongest intensity

during winter. Three hot spots can be identified: the Po valley,

the south of Poland (Katowice region) and the south of Ro-

mania (area of Bucharest). Indeed, very high PM10 concen-

trations are modelled throughout the year over these areas.

The complex topography and the large primary emissions

(SNAP 1, 2 and 7) are the main reasons for the high concen-
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Figure 7. Modelled NO2 and O3 (ppb) concentrations fields calculated for the summer (left) and the winter (right) season.

trations, as well as favourable meteorological conditions for

SIA formation (low vertical and horizontal dispersion, high

level of humidity during the cold seasons) that also play a

major role in the build-up of high PM10 concentrations, es-

pecially in the Po valley.

For PM2.5 (Figs. 6 and 8), the pattern is similar to PM10.

The highest concentrations are calculated over the Po val-

ley during winter (30–60 µg m−3), while for the summer the

highest concentrations are related to dust and are located over

the south of Spain and northern Africa (16–20 µg m−3). In

spring, high concentrations are calculated over the east of

the Mediterranean Sea and are partially linked to the produc-

tion of fine mode aerosol sulfate. The observations show a

good agreement with the modelled concentrations fields, but

a general underestimation is clearly evident over some East-

ern Europe countries such as Poland and Bulgaria, as well as

over the Po valley.

In order to have a better insight into modelled PM compo-

sition over Europe, the modelled concentrations for dust, sea

salt, SOA (Fig. 9) and SIA (Figs. 10 and 11) are examined.

The highest dust concentrations occur in the summer over

north Africa (up to 30 µg m−3) and southern Spain (up to

25 µg m−3). In these regions, dust is by far (90 %) the largest

PM10 component in the summer with a large contribution of

the boundary conditions (largest of all seasons). The accu-

racy of the boundary conditions in this area is therefore of

great importance in order to correctly model the PM10 con-

centrations. For sea salt, the highest values occur during the

winter and are located over the North Sea (up to 13 µg m−3),

where it represents the major part of the PM10 mass. Over

land, a zonal gradient is observed, with a maximum concen-

tration modelled over western Europe (5 µg m−3 over Ire-

land) and the minima over eastern Europe (< 1 µg m−3),

where the influence of oceanic winds carrying sea salt par-

ticles is lower than over the west of Europe. For SOA, the

contrast between summer and winter is striking. In winter,

the concentrations are low (< 1 µg m−3), with a maximum in

the Po valley (4 µg m−3), while during summer the concen-

trations over land range between 0.5 µg m−3 in the western

part of Europe and 8 µg m−3 over the Balkans.

For sulfate (Fig. 10), during winter a sharp zonal gradi-

ent is observed, with modelled minima in western Europe

(2 µg m−3 on average) and maxima in eastern Europe (up to

8 µg m−3). The highest concentrations are located near the

main SO2 industrial and urban emission areas in Romania,

Bulgaria, Bosnia, Serbia, Hungary and south Poland that use

sulfur-rich coal for energy production and domestic heating

(e.g. in the Katowice region). During the summer, sulfate re-

sulting from the gas oxidation of SO2 occurs mainly over

the Mediterranean Sea, where emissions from ships are high

and intense photolysis allows for the production of oxidant

radicals (e.g. OH radical). The stagnant meteorological con-
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Figure 8. Modelled PM10 and PM2.5 (µg m−3) concentrations fields calculated for the summer (left) and the winter (right) seasons.

ditions in summer also favour accumulation and recirculation

of pollutants in the Mediterranean basin.

For ammonium and nitrate (Fig. 11) a strong seasonal vari-

ability is modelled, with lower concentrations in summer

than in winter. Nitrate concentrations correspond less to pre-

cursor emission pattern than sulfate, due to the influence of

a more complex chemical transformation pathway (e.g. the

thermodynamical equilibrium with ammonium). The high-

est modelled concentrations are seen during winter over the

Po valley (up to 15 µg m−3), over the Benelux countries

(6 µg m−3) and in southern Germany (8 µg m−3). Ammo-

nium wintertime concentrations show a wide and rather ho-

mogeneous pattern, covering both western and eastern Eu-

rope, together with a hot spot covering the entire Po val-

ley (up to 5.2 µg m−3), due to abundant emissions and fre-

quent weak circulation conditions. Ammonium concentra-

tions in western Europe are mainly driven by nitrate avail-

ability, whereas in Eastern Europe the ammonium spatial pat-

tern is closely related to the sulfate pattern.

3.2 Model evaluation

Tables 4 and 5 display the different yearly and seasonal statis-

tics for SO2, NO2, O3, PM10, and PM2.5 at RB and UB Air-

Base stations respectively. Table 6 displays the same metrics

computed at EMEP monitoring network sites and also in-

Table 3. Number of stations available per species and network over

the domain of simulation (x= no stations available).

Number of stations Unit

UB RB

AirBase

SO2 524 183 ppb

NO2 770 300 ppb

O3 586 361 ppb

PM10 677 238 µg m−3

PM2.5 267 92 µg m−3

EMEP

PM10 x 21 µg m−3

PM2.5 x 17 µg m−3

Sulfate x 37 µgS m−3

Nitrate x 17 µgN m−3

Total nitrate x 26 µgN m−3

Ammonium x 17 µgN m−3

Total ammonia x 14 µgN m−3

cludes sulfate, nitrate, total nitrate, ammonium and total am-

monia. The daily box-whisker plots time series of SO2, NO2,

O3, PM10 and PM2.5 species computed at RB (Fig. 5s) and
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Figure 9. Modelled SOA, dust and sea salt (µg m−3) concentrations fields calculated for the summer (left) and the winter (right) seasons.

UB (Fig. 6s) stations respectively, as well as sulfate, total ni-

trate and total ammonia calculated using the EMEP stations

data (Fig. 7s), are available in the supplement.

3.2.1 Sulfur dioxide

The model underestimates the SO2 concentrations (factor of

2 for the median values) over the year at RB sites (FB=

−46.0 %). This behaviour contradicts the results of Pay et

al. (2010), showing that the CMAQ model tends to over-

estimate the SO2 concentrations at RB sites over Europe.

The temporal correlation is relatively high over the year

(R = 0.57) and especially in winter (R = 0.67), where some

maxima are correctly represented by the model. The FB is

relatively low in the winter (−30.0 %) compared to the rest

of the year.

At UB stations, the bias between model and observed

values is low (OM= 2.16 ppb; MM= 2.25 ppb). However,

the temporal correlation is relatively constant throughout the

year and rather low (R=0.30 over the year). The model

overestimates the SO2 observed peaks in January, February

and December. Over the year, the 95th observed quantile

(7.1 ppb) is slightly overestimated by the model (8.5 ppb).

Hence, the FB is positive but significantly lower (2.35 %)

than at RB stations.
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Figure 10. Modelled SO2 (ppb) and sulfate (µg m−3) concentrations fields calculated for the summer (left) and the winter (right) seasons.

Figure 11. Modelled nitrate and ammonium (µg m−3) concentrations fields calculated for the summer (left) and the winter (right) season.
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Table 4. Annual and seasonal scores calculated using the whole RB AirBase set of stations. The statistics are: the OM, the MM, the standard

deviation of the observations (σ_obs) and modelled values (σ_mod), the correlation coefficient (R), the RMSE, the FB (%) and FE (%).

NOBS is the number of observations. The units of the statistical indexes for each pollutant are reported in Table 3. R is unitless.

NOBS OM MM σ_obs σ_mod R RMSE FB FE

SO2

Annual 60 740 1.08 0.69 0.80 0.65 0.57 1.27 −46.0 88.0

Spring 15 373 1.43 0.57 1.07 0.47 0.33 2.02 −68.0 103.0

Summer 15 543 1.43 0.43 1.07 0.35 0.25 2.12 −84.0 112.0

Autumn 15 373 1.43 0.58 1.07 0.49 0.25 2.10 −70.0 104.0

Winter 9978 1.63 1.30 1.22 1.18 0.67 1.71 −30.0 80.0

NO2

Annual 98 833 6.55 4.63 5.75 4.37 0.68 4.67 −33.9 53.4

Spring 25 173 5.66 3.94 4.41 3.50 0.63 3.90 −37.9 56.1

Summer 24 168 4.22 3.27 3.15 2.60 0.53 2.97 −26.0 50.4

Autumn 24 929 6.58 5.04 4.97 4.56 0.67 4.20 −29.5 50.4

Winter 16 105 10.23 6.22 8.36 5.59 0.69 7.26 −46.5 59.3

O3

Annual 122 518 28.60 33.45 11.13 8.65 0.77 8.59 20.1 26.3

Spring 31 787 35.12 38.71 9.19 6.35 0.59 8.29 11.9 19.4

Summer 31 865 33.91 37.77 9.30 6.28 0.65 8.05 13.1 19.5

Autumn 30 074 23.50 30.26 9.74 7.12 0.71 9.64 30.6 34.9

Winter 18 941 21.65 27.56 8.68 8.08 0.70 8.82 27.4 33.1

PM10

Annual 77 828 20.67 17.90 14.93 9.65 0.62 12.02 −5.50 37.7

Spring 19 656 21.41 20.01 14.25 9.54 0.60 11.49 2.10 36.0

Summer 19 639 17.17 14.41 8.63 6.54 0.50 8.26 −13.3 35.7

Autumn 19 459 19.28 18.19 12.36 10.16 0.64 9.77 0.30 37.3

Winter 12 374 27.20 18.94 22.45 11.11 0.67 18.95 −20.3 43.6

PM2.5

Annual 27 574 13.69 12.78 12.59 7.96 0.71 8.99 7.50 40.4

Spring 6737 14.80 14.71 12.05 7.44 0.67 8.95 13.2 39.1

Summer 7043 9.87 9.11 5.50 3.74 0.53 4.80 0.40 36.9

Autumn 7151 12.29 12.44 10.29 7.68 0.71 7.31 14.2 42.1

Winter 4186 20.05 15.16 19.78 10.70 0.74 14.73 −8.70 43.5

3.2.2 Nitrogen dioxide

Throughout the year, CHIMERE accurately reproduces the

temporal variability of NO2 at the RB sites (R = 0.68), but

with a large negative bias (FB=−33.9 %), particularly dur-

ing winter (FB=−44.5 %).

At UB stations, although the temporal variability is rather

well reproduced (R = 0.61), the model underestimation is

even larger than at RB sites, both over the entire year (FB=

−53.6 %) and especially during the winter season (FB=

−63.9 %). This poor performance could be explained by the

general underestimation of urban NOx emissions, especially

in the Eastern European cities. Moreover, the yearly mean

UB diurnal cycle (Fig. 8s) shows a rather persistent negative

bias throughout the day (4 ppb in mean). Nevertheless, the

bias is largest during the morning (8 a.m.) and evening traf-

fic (8 p.m.) peaks, indicating a very likely underestimation of

the NOx traffic emissions over urban areas.

At both RB and UB stations, CHIMERE usually per-

forms better in reproducing the temporal variability of the

observed concentrations (e.g. standard deviation and correla-

tion coefficient) than the mean values. Further investigation

of the model behaviour over urban areas performed using the

DELTA tool (Thunis et al., 2012) indicates that the perfor-

mance of CHIMERE is significantly better over large Euro-

pean cities’ (e.g. capitals’) UB stations than over the UB sta-

tions of medium-size and small cities. The bias between ob-

served and modelled concentrations is reduced from 4.58 ppb

when using all UB available stations to 1.31 ppb when fo-

cusing on the largest 30 cities of Europe. Conversely, the
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Table 5. Annual and seasonal scores calculated using the whole UB AirBase set of stations. The indicators and the associated units are

identical to those in Table 4.

NOBS OM MM σ_obs σ_mod R RMSE FB FE

SO2

Annual 165 710 2.16 2.25 1.88 2.12 0.30 4.64 2.35 91.0

Spring 44 543 3.19 2.06 2.88 1.86 0.23 6.26 −27.0 96.0

Summer 45 044 3.19 1.16 2.87 0.99 0.23 6.23 −59.0 105.0

Autumn 44 543 3.19 2.01 2.88 1.86 0.18 6.47 −29.0 99.0

Winter 14 403 3.65 3.87 3.29 3.38 0.30 7.33 8.00 86.0

NO2

Annual 264 005 13.15 8.57 8.14 8.09 0.61 8.48 −53.6 66.6

Spring 67 205 12.34 7.91 6.93 7.71 0.59 8.02 −57.8 70.4

Summer 65 960 8.97 6.64 5.14 6.53 0.51 6.34 −44.0 63.7

Autumn 65 665 13.39 9.13 7.52 8.40 0.64 8.05 −51.7 64.0

Winter 42 984 18.65 10.77 9.98 9.15 0.64 11.37 −63.9 70.5

O3

Annual 190 716 24.90 30.71 10.95 9.43 0.73 9.62 25.2 33.4

Spring 51 219 30.31 35.30 9.21 7.91 0.56 9.54 16.9 25.9

Summer 51 195 31.08 35.29 9.36 7.28 0.62 8.60 14.9 22.7

Autumn 46 215 19.80 27.46 9.07 7.90 0.64 10.60 36.9 43.0

Winter 28 040 17.02 24.18 7.91 8.83 0.62 10.28 35.6 45.5

PM10

Annual 226 954 29.27 22.56 22.98 16.61 0.52 21.29 −20.1 40.8

Spring 57 618 28.65 24.03 18.59 13.89 0.50 17.33 −12.2 37.5

Summer 56 778 21.50 16.62 11.05 7.81 0.47 11.18 −22.4 38.6

Autumn 57 100 28.47 23.09 21.05 16.34 0.56 18.78 −16.8 39.8

Winter 36 494 41.45 26.59 34.55 23.83 0.47 34.88 −36.6 50.8

PM2.5

Annual 79 664 17.52 15.07 14.65 10.29 0.65 11.39 −6.40 37.8

Spring 20 200 17.28 16.59 12.53 8.36 0.59 10.16 5.20 36.1

Summer 20 093 11.91 10.05 6.13 4.28 0.46 5.94 −11.5 36.8

Autumn 20 932 16.46 14.65 12.43 9.74 0.69 9.26 −4.00 37.5

Winter 11 344 27.53 19.67 23.01 14.97 0.61 19.87 −24.6 43.3

adopted horizontal resolution which increases the dilution of

the emitted pollutants is not able to accurately simulate the

spatial gradient of the emissions over medium-size and small

cities, giving rise to the underestimation of the observed con-

centrations.

3.2.3 Ozone

Similarly to NO2, the daily temporal variability of O3 con-

centrations is well reproduced at both RB (R = 0.77) and

UB sites (R = 0.73). The comparison of modelled and ob-

served concentrations quantiles shows that the highest values

are well reproduced while lower quantiles are overestimated

(Figs. 5s and 6s). Throughout the year, the modelled val-

ues show a rather homogeneous bias which is higher at UB

(FB= 25.2 %) than at RB sites (20.1 %) and is likely linked

to the NOx underestimation that is larger at UB than at RB,

thus limiting the O3 titration by NO2. The yearly mean diur-

nal cycle (Fig. 9s) shows a larger positive bias (9 ppb) during

the morning (7 a.m.) than during the afternoon ozone peak

(5 ppb in mean). This tendency is likely also related to the

lack of O3 titration by NO2 due to the previously described

larger underestimation of NO2 in the morning (e.g. 8 a.m.).

The FB of O3 has a seasonal variation, with a low pos-

itive FB in the summer (14.9 %) and the highest overesti-

mations during the autumn at RB (FB= 30.6 %) and UB

sites (FB= 36.9 %).Data from the remote Valentia observa-

tory station (51.94◦ N; 10.24◦W), located in Ireland at the

western lateral boundary of the domain, show that the back-

ground concentrations are slightly overestimated throughout

the year (2.4 ppb for the median), with a maximum during the

autumn (12 ppb for the median). The lateral boundary condi-
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Table 6. Annual and seasonal scores calculated using the RB EMEP stations. The indicators and the associated units are identical to those in

Table 4.

NOBS OM MM σ_obs σ_mod R RMSE FB FE

PM10

Annual 6579 16.72 15.91 11.03 7.56 0.56 9.29 2.90 35.4

Spring 1697 18.26 18.11 12.08 8.47 0.49 10.83 7.20 35.2

Summer 1648 14.66 13.86 7.46 6.42 0.46 7.31 −2.30 32.1

Autumn 1620 15.25 15.93 8.80 7.75 0.65 6.98 9.80 35.3

Winter 1056 20.48 15.47 14.88 7.12 0.68 12.33 −14.4 39.4

PM2.5

Annual 4858 11.69 10.90 9.62 5.35 0.68 7.22 8.60 42.0

Spring 1242 13.27 12.71 10.48 5.74 0.62 8.28 12.3 41.6

Summer 1202 8.69 8.60 4.55 3.39 0.36 4.58 5.80 39.1

Autumn 1217 10.00 10.32 7.12 4.78 0.67 5.30 15.7 42.7

Winter 767 16.32 11.78 13.76 6.43 0.77 10.72 −11.6 45.7

Sulfate

Annual 10596 0.73 1.07 0.62 0.67 0.50 0.72 42.4 55.3

Spring 2830 0.75 1.19 0.54 0.56 0.57 0.67 53.7 60.8

Summer 2576 0.69 0.79 0.42 0.39 0.46 0.44 20.1 42.5

Autumn 2461 0.67 1.02 0.50 0.69 0.51 0.71 45.2 56.6

Winter 1872 0.88 1.22 0.96 0.84 0.52 0.95 43.4 57.6

Nitrate

Annual 4647 0.64 0.32 1.49 0.53 0.28 1.47 −103.5 116.2

Spring 1201 0.88 0.38 2.38 0.62 0.24 2.36 −95.0 107.8

Summer 1148 0.46 0.08 1.47 0.19 0.13 1.50 −156.1 157.1

Autumn 1141 0.49 0.28 0.59 0.44 0.48 0.58 −99.4 113.3

Winter 763 0.76 0.54 0.72 0.68 0.67 0.61 −68.4 90.2

Total nitrate

Annual 7327 0.60 0.37 0.62 0.40 0.56 0.56 −55.1 71.6

Spring 1907 0.68 0.43 0.65 0.42 0.67 0.54 −50.7 66.8

Summer 1844 0.46 0.23 0.62 0.21 0.16 0.66 −66.5 75.1

Autumn 1742 0.55 0.35 0.42 0.35 0.62 0.39 −56.8 72.3

Winter 1209 0.77 0.51 0.73 0.55 0.66 0.62 −49.5 73.5

Ammonium

Annual 5427 1.01 1.14 1.63 0.81 0.43 1.47 27.1 50.6

Spring 1409 1.25 1.31 2.45 0.81 0.35 2.30 31.9 51.6

Summer 1373 0.71 0.67 1.37 0.40 0.24 1.33 7.50 42.5

Autumn 1287 0.80 1.11 0.81 0.75 0.59 0.77 39.7 56.0

Winter 902 1.37 1.47 1.29 0.97 0.77 0.83 21.1 49.3

Total ammonia

Annual 4036 1.49 1.55 1.29 1.06 0.60 1.07 6.00 43.7

Spring 1036 1.66 1.91 1.30 1.26 0.58 1.20 14.3 43.2

Summer 1027 1.50 1.30 1.30 0.84 0.58 1.08 −10.7 35.9

Autumn 1005 1.43 1.54 1.34 1.02 0.61 1.08 10.8 44.9

Winter 629 1.47 1.41 1.28 0.96 0.69 0.93 −1.80 48.2
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tions provided by LMDz-INCA overestimate the observed

background concentrations during the autumn for the year

2009 (Chen et al., 2003; Szopa et al., 2009; Van Loon et al.,

2007). The overestimation of O3 during the cold season is

therefore attributed to the overestimation of the background

concentrations at the boundaries of the domain.

3.2.4 PM10 and PM2.5

The model reproduces the temporal variability of PM10 ob-

servations throughout the year (R = 0.62 and 0.56, respec-

tively) at both RB AirBase and EMEP stations. Interestingly,

by contrast to the AirBase RB stations (FB=−5.5 %), the

PM10 concentrations are overestimated at EMEP RB sta-

tions (FB= 2.90 %). The lowest FBs are observed during

autumn for AirBase (FB= 0.30 %) and summer for EMEP

(FB=−2.30 %), while the highest FB occurs during the

winter for both networks (FB=−20.30 % for the AirBase

and −14.40 % for EMEP sites). It should be noted that such

differences in model performance point out that RB stations

of EMEP and AirBase networks are characterized by a dif-

ferent representativeness, with the latter more influenced by

local emissions. This is confirmed by comparing the statis-

tics of the observed PM10 and PM2.5 data, with the observed

mean and standard deviation at EMEP RB sites always lower

than at AirBase RB sites.

At UB stations, the performance of the model for PM10 is

good over the year (FB=−20.1 %). The FB is lower during

spring (−12.2 %) than in winter (−36.6 %) and R is high-

est during the autumn (0.56) and lowest during summer and

winter (0.47). Overall, using the AirBase network, the model

agrees better, in terms of correlation at RB, than at UB sites

(0.62 and 0.52 respectively) and more precisely during win-

ter (0.67 and 0.47, respectively).

Throughout the year, the model correctly reproduces the

temporal variation of the PM2.5 concentrations at both RB

AirBase (R = 0.71) and EMEP (R = 0.68) sites and the

highest correlation coefficient is observed during the win-

ter (0.74 and 0.77, respectively). Similar to PM10, at EMEP

sites, the yearly mean FBs show that the model overesti-

mates PM2.5 concentrations (7.50 % at AirBase and 8.6 % at

EMEP sites). The highest overestimation is observed during

the autumn (FB=+14.2 % at AirBase and FB=+15.7 %

at EMEP sites). However, during winter the model under-

estimates the RB concentrations (−8.7 % at AirBase and

−11.6 % at EMEP sites).

At UB sites, the model captures the temporal varia-

tion throughout the year (R = 0.65) and the FB is rather

low (FB=−6.4 %). The highest FB is observed during the

winter season (−24.6 %), while according to the RMSE

(5.94 µg m−3), the best model performance takes place dur-

ing the summer period, thus confirming the findings of

Hodzic et al. (2005).

The intra-annual variability of model performances shows

that CHIMERE has more difficulty in reproducing the PM

concentration levels during winter, especially at the UB sta-

tions (RMSE= 34.88 µg m−3 for PM10 and 19.87 µg m−3 for

PM2.5), when models generally are not able to correctly

simulate the stable meteorological conditions that lead to

high PM episodes (Stern et al., 2008). For both networks,

CHIMERE performed better in reproducing the low PM10

concentrations as shown by the low quantiles indicated on

the daily box-whisker plots time series (Figs. 5s and 6s).

Moreover, the comparison of PM10 and PM2.5 model perfor-

mance shows that the highest yearly mean correlation coef-

ficient is calculated for PM2.5 at UB (0.65) and RB AirBase

sites (0.71). This indicates that CHIMERE reproduces the

temporal variability of PM2.5 across Europe better than the

PM10 on a yearly basis. The better performance of the model

for PM2.5 at UB stations confirms that the underestimation

of PM10 is likely due to an underestimation of PM coarse,

as reported in other studies (Nopmongcol et al., 2012; Kim

et al., 2011; Matthias et al., 2008). The modelled concentra-

tion fields described in Sect. 3.1 show that sea salt and dust

(coarse particles) can represent a significant part of the PM10

mass. Indeed, the dust in summer in south Spain and the sea

salt during the winter over the North Sea, can reach, respec-

tively, 90 and 80 % of the PM10 masses. In these cases, the

underestimation of PM coarse is reinforced in these parts of

Europe. Conversely, the statistical indicators also show that

the overestimation of PM2.5 is larger than that of PM10 at

RB stations and is likely due to the corresponding overesti-

mation of sulfate, the effect of which is less visible in the

PM10 scores due to the compensating underestimation of the

PM coarse.

PM2.5 and PM10 speciation data are available for several

EMEP sites. In winter, as reported by Bessagnet et al. (2014)

an important lack of organic compounds in models is respon-

sible for large underestimate of models. As the model perfor-

mance for PM10 is reflected by the quality of the reproduc-

tion of its different components, we also looked at the ca-

pacity of the model to reproduce three main inorganic PM10

compounds: sulfate, nitrate and ammonium.

3.2.5 Sulfate

Sulfuric acid is produced from the oxidation of sulfur oxides,

and in turn forms sulfate particles. Secondary sulfate aerosol

occurs predominantly in the accumulation mode (Altshuller,

1982) (diameter between 0.1 and 1.0 µm). Oxidant and SO2

availability are the limiting factors for sulfate formation. In

2009, the 37 stations available over Europe indicate that the

highest concentrations of sulfate are measured during win-

ter and spring. This tendency is reproduced by the model

(R = 0.57 during spring and 0.52 during the winter) but some

maxima are overestimated, especially during spring, autumn

and winter. Consequently, the FB is rather low during sum-

mer (FB= 20.1 %) but indicates a large overestimation dur-

ing spring (FB= 53.7 %). CHIMERE results are in contrast

with the findings of CALIOPE (Pay et al., 2012a) and CMAQ
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(Matthias et al., 2008), which tend to underestimate the sul-

fate surface concentrations over Europe throughout the year.

The CHIMERE seasonal trend is in agreement with the

study of Baker and Scheff (2007) over North America, but

again in opposition with the results obtained by the CMAQ

model over Spain (Pay et al., 2012a). In this case, the high-

est sulfate concentrations occur in summer due to high oxi-

dation of SO2 during this period. A possible explanation of

the CHIMERE overestimation can be inferred by looking at

the remote station of Valentia (Ireland), where CHIMERE

overestimates the observed yearly mean concentration by

0.40 µg m−3. The discrepancy detected at this station is com-

parable to yearly mean bias calculated at RB stations over

the whole domain (0.34 µg m−3), thus suggesting that the

general overestimation of sulfate can be related to the cor-

responding overestimation of the sulfate at the boundaries of

the domain.

3.2.6 Particulate and total nitrate

Ammonia (NH3) and nitric acid (HNO3) are the two main

gaseous precursors than can react together to form ammo-

nium nitrate (NH4NO3), depending on the temperature and

the relative humidity (RH) (Ansari and Pandis, 1998). HNO3

can be produced through homogeneous reaction of NO2 with

OH radical (daytime), reaction of NO3 with aldehydes or hy-

drocarbons (daytime) or hydrolysis of N2O5 in the tropo-

sphere (night time) (Richards, 1983; Russell et al., 1986).

During the cold seasons (spring, autumn and winter), the

equilibrium of the NH4NO3 system shifts towards the aerosol

phase. At low RH, NH4NO3 is solid but if RH overcomes

the deliquescence threshold it turns to the aqueous phase

(NH+4 +NO−3 ) (Bauer et al., 2011).

Sulfuric acid plays a crucial role in the formation of nitrate

and ammonium. Sulfate tends to react preferentially with

NH3 to form (NH4)2SO4. Two regimes can be identified: the

ammonia poor and the ammonia rich regimes (Bauer et al.,

2011). In the first case, there is not enough NH3 to neutralize

the available sulfate. In the second case, sufficient ammonia

is present to neutralize the sulfate and the remaining ammo-

nia is available to react with nitrate to produce NH4NO3.

During cold periods, the formation of NH4NO3 is

favoured and the associated low dispersive conditions en-

hance nitrate during these periods. Hence, the highest mea-

sured and modelled concentrations are observed during the

winter period. The smallest FB is observed during this season

(−68.4 %) and a rather high R value (0.67) is calculated, in-

dicating that the temporal variability of nitrate concentrations

is well reproduced by CHIMERE during this period. How-

ever, it is also shown that the nitrate is largely underestimated

throughout the year (FB=−103.5 %). Several explanations

concerning the general underestimation of nitrate can be con-

sidered. First, the previously described overestimation of sul-

fate in poor ammonia regimes could contribute to the un-

derestimation. Second, coarse nitrate chemistry is not repre-

sented in the CHIMERE version used for the study, leading to

an underestimation of the coarse mode nitrate aerosol. Typi-

cal reactions involved in the coarse nitrate chemistry include

the neutralization of acidic aerosol particles (NO−3 ) by dif-

ferent basic positive ions such as Ca2+ and Mg2+. Na+ and

Cl− are also involved along coastal areas, where high sea salt

(NaCl) concentrations are observed (Zhuang et al., 1999 and

Kouyoumdjian and Saliba, 2006). A coarse nitrate formation

scheme was implemented in CHIMERE as part of a research

project by Hodzic et al. (2006), which showed that it can

increase the nitrate model concentrations up to 3 µg m−3, es-

pecially in southern Europe, where coarse nitrates can repre-

sent the major part of the nitrate total mass. Hence, the intro-

duction of a coarse nitrate formation scheme into CHIMERE

could help reduce the bias between observed and modelled

nitrate. Throughout the year, the total nitrate concentrations

(R = 0.56 and FB=−55.1 %) are much better reproduced

than the nitrate alone (R = 0.28 and FB=−103.5 %). This

result is consistent with the NO2 underestimation previously

discussed, thus confirming a possible lack in NOx emis-

sions. Finally, nitrate and total nitrate observed mean val-

ues are more similar than the corresponding modelled con-

centrations. This means that in the observations the equi-

librium between HNO3 and nitrate is shifted more towards

the aerosol phase than in the model. This is probably related

to the higher availability of modelled sulfate (overestimated

by CHIMERE), limiting the conversion of HNO3 into the

aerosol phase, hence explaining the worsening in model per-

formance when aerosol nitrate alone is considered.

3.2.7 Particulate and total ammonia

Along with sulfate, ammonium is the best SIA compound re-

produced by CHIMERE. The FB shows a rather low overes-

timation throughout the year (27.1 %). The lowest FB is ob-

served during the warm season (7.5 %). This overestimation

is very likely driven by the corresponding overestimation of

the sulfate. The highest R index is calculated during winter

(0.77), indicating that the temporal variability of the ammo-

nium concentrations are better reproduced in this season than

during the rest of the year. A similar tendency is seen when

using the CMAQ model over Spain and the UK (Pay et al.,

2012b; Chemel et al., 2010).

Similarly, the total ammonia is also reproduced well by

CHIMERE, with a very low bias observed during win-

ter (FB=−1.8 %). The performance degrades during sum-

mer, when the model underestimates observations (FB=

−10.7 %). In contrast to the total nitrate, total ammonia is

rather well reproduced throughout the year (FB= 6.0 %),

suggesting that the yearly NH3 emissions are well estimated.

However, the temporal profile of NH3 still needs to be im-

proved. In that sense, recent work concerning the improve-

ment of the temporal variability, as well as the magnitude

and the spatial distribution of NH3 emissions from the agri-

cultural sector, has been done for France (Hamaoui-Laguel
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et al., 2014). Unfortunately, a robust monthly time-profile for

the NH3 emission from fertilizer is yet to be finalized for Eu-

rope (Menut and Bessagnet, 2010) before its implementation

in the model.

4 Summary and conclusions

A high-resolution air quality CHIMERE simulation

(8 km× 8 km) over most of Europe was performed and

evaluated for SO2, NO2, O3, PM10, PM2.5 and SIA using

both RB and UB available stations for the year 2009.

The model reproduces the temporal variability of NO2,

O3, PM10, PM2.5 better at RB than at UB stations, with

yearly correlation values for the different pollutants ranging

between 0.62 and 0.77 at RB sites and between 0.52 and

0.73 at UB sites. Similarly, FBs show that the model

performs slightly better at RB sites than at UB sites for

NO2 (RB=−33.9 %, UB=−53.6 %), O3 (RB= 20.10 %,

UB= 25.2 %) and PM10 (RB=−5.50 %, UB=−20.1).

The difficulty for the model in reproducing NO2 concen-

tration is likely to be due to the general underestimation of

NOx emissions, especially during the traffic daily peaks, as

well as a horizontal resolution that is not high enough to rep-

resent correctly the spatial gradients of the emissions over

medium and small cities. Moreover, O3 is overestimated, im-

plying that NOx titration is not a limiting effect. The NO2

bias at UB sites is larger than at RB sites, so it can reasonably

be assumed that NOx emissions are underestimated. Finally,

the total nitrate bias is comparable to the NO2 bias, at least

at UB stations, which represent about 70 % of the available

sites. This indicates that the chemical pathway of oxidized

nitrogen from NO to HNO3 is correctly balanced with re-

spect to observed values, suggesting that the limiting factor

in nitrate production is the availability of NO2 and in turn of

NOx emissions.

The overestimation of O3 by the model is related to the

NO2 underestimation, as well as to the high O3 lateral bound-

ary conditions concentrations, especially during the autumn

season. Also, PM10 and PM2.5 show a less relevant under-

estimation than other pollutants, indicating that meteorology

cannot be considered the only reason for model discrepan-

cies.

At UB sites, CHIMERE performs better at reproducing the

PM2.5 compared to the PM10. The degradation of model per-

formance when moving from PM2.5 to PM10, which was also

found in Pirovano et al. (2012), can surely be partially ex-

plained by uncertainties on SOA chemistry and their precur-

sor emissions (Po valley and Mediterranean basin) as well

as the underestimation of dust (south of Spain) and sea salt

(western Europe) concentrations. However, the main reasons

are likely to lie also in some missing or underestimated pro-

cesses such as road dust resuspension (Amato et al., 2009),

windblown dust (Yin et al., 2005; Park et al., 2010), espe-

cially over the Mediterranean area (Putaud et al., 2004), and

finally PM coarse chemistry (e.g. nitrate), as discussed in

Sect. 3.2.4.

Therefore, different areas of work have been identified and

suggested as next steps to improve the model performance in

the future:

– improvement of the CHIMERE urban parameteriza-

tions to better account for the urban effect on meteo-

rology over medium and small cities,

– introduction of coarse nitrate chemistry and an ad-

vanced parameterization accounting for windblown dust

emissions,

– continued development of national bottom-up emission

inventories, as has been done for France (INS) and

Spain (Baldasano et al., 2011), to merge them into the

existing European emission inventory.

– continuous improvement on emission inventories to bet-

ter account for semi-volatile organic compounds and

their conversion to SOA, particularly for residential and

traffic emissions.

Supplementary data associated with this paper can be

found in the online version.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-21-2015-supplement.
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