Articles | Volume 17, issue 7
https://doi.org/10.5194/gmd-17-3041-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-3041-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CLASH – Climate-responsive Land Allocation model with carbon Storage and Harvests
Climate System Modelling, Finnish Meteorological Institute, P.O. BOX 503, 00101 Helsinki, Finland
Nadine-Cyra Freistetter
Climate System Modelling, Finnish Meteorological Institute, P.O. BOX 503, 00101 Helsinki, Finland
Aapo Rautiainen
Climate System Modelling, Finnish Meteorological Institute, P.O. BOX 503, 00101 Helsinki, Finland
Environmental and Natural Resource Economics, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
Laura Thölix
Climate System Modelling, Finnish Meteorological Institute, P.O. BOX 503, 00101 Helsinki, Finland
Related authors
Tommi Ekholm, Nadine-Cyra Freistetter, Tuukka Mattlar, Theresa Schaber, and Aapo Rautiainen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-196, https://doi.org/10.5194/gmd-2024-196, 2024
Preprint under review for GMD
Short summary
Short summary
SuCCESs is a model that represents energy, materials, land-use and climate change globally, and can be used to calculate long-term scenarios of these systems up to year 2100. It provides a new way to model how these systems interact, and how they together could work towards reaching global sustainability targets, for example to mitigate climate change. This paper describes how the model works and the results it can produce, and how these compare to results from other models.
Tommi Ekholm, Nadine-Cyra Freistetter, Tuukka Mattlar, Theresa Schaber, and Aapo Rautiainen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-196, https://doi.org/10.5194/gmd-2024-196, 2024
Preprint under review for GMD
Short summary
Short summary
SuCCESs is a model that represents energy, materials, land-use and climate change globally, and can be used to calculate long-term scenarios of these systems up to year 2100. It provides a new way to model how these systems interact, and how they together could work towards reaching global sustainability targets, for example to mitigate climate change. This paper describes how the model works and the results it can produce, and how these compare to results from other models.
Laura Thölix, Leif Backman, Minttu Havu, Esko Karvinen, Jesse Soininen, Justine Trémeau, Olli Nevalainen, Joyson Ahongshangbam, Leena Järvi, and Liisa Kulmala
EGUsphere, https://doi.org/10.5194/egusphere-2024-1453, https://doi.org/10.5194/egusphere-2024-1453, 2024
Short summary
Short summary
Cities seek carbon neutrality and are interested in the sinks of urban vegetation. Measurements are difficult to do which leads to the need for modeling carbon cycle. In this study, we examined the performance of models in estimating carbon sequestration rates in lawns, park trees, and urban forests in Helsinki, Finland. We found that models simulated seasonal and annual variations well. Trees had larger carbon sequestration rates compared with lawns and irrigation often increased carbon sink.
Terhikki Manninen, Kati Anttila, Emmihenna Jääskeläinen, Aku Riihelä, Jouni Peltoniemi, Petri Räisänen, Panu Lahtinen, Niilo Siljamo, Laura Thölix, Outi Meinander, Anna Kontu, Hanne Suokanerva, Roberta Pirazzini, Juha Suomalainen, Teemu Hakala, Sanna Kaasalainen, Harri Kaartinen, Antero Kukko, Olivier Hautecoeur, and Jean-Louis Roujean
The Cryosphere, 15, 793–820, https://doi.org/10.5194/tc-15-793-2021, https://doi.org/10.5194/tc-15-793-2021, 2021
Short summary
Short summary
The primary goal of this paper is to present a model of snow surface albedo (brightness) accounting for small-scale surface roughness effects. It can be combined with any volume scattering model. The results indicate that surface roughness may decrease the albedo by about 1–3 % in midwinter and even more than 10 % during the late melting season. The effect is largest for low solar zenith angle values and lower bulk snow albedo values.
Shima Bahramvash Shams, Von P. Walden, Irina Petropavlovskikh, David Tarasick, Rigel Kivi, Samuel Oltmans, Bryan Johnson, Patrick Cullis, Chance W. Sterling, Laura Thölix, and Quentin Errera
Atmos. Chem. Phys., 19, 9733–9751, https://doi.org/10.5194/acp-19-9733-2019, https://doi.org/10.5194/acp-19-9733-2019, 2019
Short summary
Short summary
The Arctic plays a very important role in the global ozone cycle. We use balloon-borne sampling and satellite data to create a high-quality dataset of the vertical profile of ozone from 2005 to 2017 to analyze ozone variations over four high-latitude Arctic locations. No significant annual trend is found at any of the studied locations. We develop a mathematical model to understand how deseasonalized ozone fluctuations can be influenced by various parameters.
Kaisa Lakkala, Alberto Redondas, Outi Meinander, Laura Thölix, Britta Hamari, Antonio Fernando Almansa, Virgilio Carreno, Rosa Delia García, Carlos Torres, Guillermo Deferrari, Hector Ochoa, Germar Bernhard, Ricardo Sanchez, and Gerrit de Leeuw
Atmos. Chem. Phys., 18, 16019–16031, https://doi.org/10.5194/acp-18-16019-2018, https://doi.org/10.5194/acp-18-16019-2018, 2018
Short summary
Short summary
Solar UV irradiances were measured at Ushuaia (54° S) and Marambio (64° S) during 2000–2013. The measurements were part of the Antarctic NILU-UV network, which was maintained as a cooperation between Spain, Argentina and Finland. The time series of the network were analysed for the first time in this study. At both stations maximum UV indices and daily doses were measured when spring-time ozone loss episodes occurred. The maximum UV index was 13 and 12 in Ushuaia and Marambio, respectively.
Laura Thölix, Alexey Karpechko, Leif Backman, and Rigel Kivi
Atmos. Chem. Phys., 18, 15047–15067, https://doi.org/10.5194/acp-18-15047-2018, https://doi.org/10.5194/acp-18-15047-2018, 2018
Short summary
Short summary
We analyse the impact of water vapour (WV) on Arctic ozone loss and find the strongest impact during intermediately cold stratospheric winters when chlorine activation increases with increasing PSCs and WV. In colder winters the impact is limited because chlorine activation becomes complete at relatively low WV values, so further addition of WV does not affect ozone loss. Our results imply that improved simulations of WV are needed for more reliable projections of ozone layer recovery.
Laura Thölix, Leif Backman, Rigel Kivi, and Alexey Yu. Karpechko
Atmos. Chem. Phys., 16, 4307–4321, https://doi.org/10.5194/acp-16-4307-2016, https://doi.org/10.5194/acp-16-4307-2016, 2016
C. Vigouroux, T. Blumenstock, M. Coffey, Q. Errera, O. García, N. B. Jones, J. W. Hannigan, F. Hase, B. Liley, E. Mahieu, J. Mellqvist, J. Notholt, M. Palm, G. Persson, M. Schneider, C. Servais, D. Smale, L. Thölix, and M. De Mazière
Atmos. Chem. Phys., 15, 2915–2933, https://doi.org/10.5194/acp-15-2915-2015, https://doi.org/10.5194/acp-15-2915-2015, 2015
Related subject area
Integrated assessment modeling
MESSAGEix-Materials v1.1.0: representation of material flows and stocks in an integrated assessment model
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model
pathways-ensemble-analysis v1.0.0: an open-source library for systematic and robust analysis of pathways ensembles
Carbon Monitor Power-Simulators (CMP-SIM v1.0) across countries: a data-driven approach to simulate daily power generation
Intercomparison of multiple two-way coupled meteorology and air quality models (WRF v4.1.1–CMAQ v5.3.1, WRF–Chem v4.1.1, and WRF v3.7.1–CHIMERE v2020r1) in eastern China
MESSAGEix-GLOBIOM nexus module: integrating water sector and climate impacts
Minimum-variance-based outlier detection method using forward-search model error in geodetic networks
Modelling long-term industry energy demand and CO2 emissions in the system context using REMIND (version 3.1.0)
Bidirectional coupling of the long-term integrated assessment model REgional Model of INvestments and Development (REMIND) v3.0.0 with the hourly power sector model Dispatch and Investment Evaluation Tool with Endogenous Renewables (DIETER) v1.0.2
GCAM-CDR v1.0: enhancing the representation of carbon dioxide removal technologies and policies in an integrated assessment model
The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures
Cyclone generation Algorithm including a THERmodynamic module for Integrated National damage Assessment (CATHERINA 1.0) compatible with Coupled Model Intercomparison Project (CMIP) climate data
A tool for air pollution scenarios (TAPS v1.0) to enable global, long-term, and flexible study of climate and air quality policies
Improved CASA model based on satellite remote sensing data: simulating net primary productivity of Qinghai Lake basin alpine grassland
Pixel-level parameter optimization of a terrestrial biosphere model for improving estimation of carbon fluxes with an efficient model–data fusion method and satellite-derived LAI and GPP data
Climate Services Toolbox (CSTools) v4.0: from climate forecasts to climate forecast information
TIM: modelling pathways to meet Ireland's long-term energy system challenges with the TIMES-Ireland Model (v1.0)
ANEMI_Yangtze v1.0: a coupled human–natural systems model for the Yangtze Economic Belt – model description
Nested leave-two-out cross-validation for the optimal crop yield model selection
GCAM-USA v5.3_water_dispatch: integrated modeling of subnational US energy, water, and land systems within a global framework
GOBLIN version 1.0: a land balance model to identify national agriculture and land use pathways to climate neutrality via backcasting
Globally consistent assessment of economic impacts of wildfires in CLIMADA v2.2
REMIND2.1: transformation and innovation dynamics of the energy-economic system within climate and sustainability limits
Parallel gridded simulation framework for DSSAT-CSM (version 4.7.5.21) using MPI and NetCDF
Estimating global land system impacts of timber plantations using MAgPIE 4.3.5
Gamze Ünlü, Florian Maczek, Jihoon Min, Stefan Frank, Fridolin Glatter, Paul Natsuo Kishimoto, Jan Streeck, Nina Eisenmenger, Dominik Wiedenhofer, and Volker Krey
Geosci. Model Dev., 17, 8321–8352, https://doi.org/10.5194/gmd-17-8321-2024, https://doi.org/10.5194/gmd-17-8321-2024, 2024
Short summary
Short summary
Extraction and processing of raw materials constitute a significant source of CO2 emissions in industry and so are contributors to climate change. We develop an open-source tool to assess different industry decarbonization pathways in integrated assessment models (IAMs) with a representation of material flows and stocks. We highlight the importance of expanding the scope of climate change mitigation options to include circular-economy and material efficiency measures in IAM scenario analysis.
Mengqi Zhao, Thomas B. Wild, Neal T. Graham, Son H. Kim, Matthew Binsted, A. F. M. Kamal Chowdhury, Siwa Msangi, Pralit L. Patel, Chris R. Vernon, Hassan Niazi, Hong-Yi Li, and Guta W. Abeshu
Geosci. Model Dev., 17, 5587–5617, https://doi.org/10.5194/gmd-17-5587-2024, https://doi.org/10.5194/gmd-17-5587-2024, 2024
Short summary
Short summary
The Global Change Analysis Model (GCAM) simulates the world’s climate–land–energy–water system interactions , but its reservoir representation is limited. We developed the GLObal Reservoir Yield (GLORY) model to provide GCAM with information on the cost of supplying water based on reservoir construction costs, climate and demand conditions, and reservoir expansion potential. GLORY enhances our understanding of future reservoir capacity needs to meet human demands in a changing climate.
Lara Welder, Neil Grant, and Matthew J. Gidden
EGUsphere, https://doi.org/10.5194/egusphere-2024-761, https://doi.org/10.5194/egusphere-2024-761, 2024
Short summary
Short summary
Pathways investigating the link between emissions and global warming have been continuously used to inform climate policy. We have developed a tool that can facilitate the systematic and robust analysis of ensembles of such pathways. We describe the structure of this tool and then show an illustrative application of it. The application indicates the usefulness of the tool to the research community and shows how it can be used to establish best-practices.
Léna Gurriaran, Yannig Goude, Katsumasa Tanaka, Biqing Zhu, Zhu Deng, Xuanren Song, and Philippe Ciais
Geosci. Model Dev., 17, 2663–2682, https://doi.org/10.5194/gmd-17-2663-2024, https://doi.org/10.5194/gmd-17-2663-2024, 2024
Short summary
Short summary
We developed a data-driven model simulating daily regional power demand based on climate and socioeconomic variables. Our model was applied to eight countries or regions (Australia, Brazil, China, EU, India, Russia, South Africa, US), identifying influential factors and their relationship with power demand. Our findings highlight the significance of economic indicators in addition to temperature, showcasing country-specific variations. This research aids energy planning and emission reduction.
Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, Guangyi Yang, Mengduo Zhang, and Shengjin Xie
Geosci. Model Dev., 17, 2471–2492, https://doi.org/10.5194/gmd-17-2471-2024, https://doi.org/10.5194/gmd-17-2471-2024, 2024
Short summary
Short summary
A comprehensive comparison study is conducted targeting the performances of three two-way coupled meteorology and air quality models (WRF-CMAQ, WRF-Chem, and WRF-CHIMERE) for eastern China during 2017. The impacts of aerosol–radiation–cloud interactions on these models’ results are evaluated against satellite and surface observations. Further improvements to the calculation of aerosol–cloud interactions in these models are crucial to ensure more accurate and timely air quality forecasts.
Muhammad Awais, Adriano Vinca, Edward Byers, Stefan Frank, Oliver Fricko, Esther Boere, Peter Burek, Miguel Poblete Cazenave, Paul Natsuo Kishimoto, Alessio Mastrucci, Yusuke Satoh, Amanda Palazzo, Madeleine McPherson, Keywan Riahi, and Volker Krey
Geosci. Model Dev., 17, 2447–2469, https://doi.org/10.5194/gmd-17-2447-2024, https://doi.org/10.5194/gmd-17-2447-2024, 2024
Short summary
Short summary
Climate change, population growth, and depletion of natural resources all pose complex and interconnected challenges. Our research offers a novel model that can help in understanding the interplay of these aspects, providing policymakers with a more robust tool for making informed future decisions. The study highlights the significance of incorporating climate impacts within large-scale global integrated assessments, which can help us in generating more climate-resilient scenarios.
Utkan M. Durdağ
Geosci. Model Dev., 17, 2187–2196, https://doi.org/10.5194/gmd-17-2187-2024, https://doi.org/10.5194/gmd-17-2187-2024, 2024
Short summary
Short summary
This study introduces a novel approach to outlier detection in geodetic networks, challenging conventional and robust methods. By treating outliers as unknown parameters within the Gauss–Markov model and exploring numerous outlier combinations, this approach prioritizes minimal variance and eliminates iteration dependencies. The mean success rate (MSR) comparisons highlight its effectiveness, improving the MSR by 40–45 % for multiple outliers.
Michaja Pehl, Felix Schreyer, and Gunnar Luderer
Geosci. Model Dev., 17, 2015–2038, https://doi.org/10.5194/gmd-17-2015-2024, https://doi.org/10.5194/gmd-17-2015-2024, 2024
Short summary
Short summary
We extend the REMIND model (used to investigate climate mitigation strategies) by an industry module that represents cement, chemical, steel, and other industries. We also present a method for deriving scenarios of industry subsector activity and energy demand, consistent with established socioeconomic scenarios, allowing us to investigate the different climate change mitigation challenges and strategies in industry subsectors in the context of the entire energy–economy–climate system.
Chen Chris Gong, Falko Ueckerdt, Robert Pietzcker, Adrian Odenweller, Wolf-Peter Schill, Martin Kittel, and Gunnar Luderer
Geosci. Model Dev., 16, 4977–5033, https://doi.org/10.5194/gmd-16-4977-2023, https://doi.org/10.5194/gmd-16-4977-2023, 2023
Short summary
Short summary
To mitigate climate change, the global economy must drastically reduce its greenhouse gas emissions, for which the power sector plays a key role. Until now, long-term models which simulate this transformation cannot always accurately depict the power sector due to a lack of resolution. Our work bridges this gap by linking a long-term model to an hourly model. The result is an almost full harmonization of the models in generating a power sector mix until 2100 with hourly resolution.
David R. Morrow, Raphael Apeaning, and Garrett Guard
Geosci. Model Dev., 16, 1105–1118, https://doi.org/10.5194/gmd-16-1105-2023, https://doi.org/10.5194/gmd-16-1105-2023, 2023
Short summary
Short summary
GCAM-CDR is a variant of the Global Change Analysis Model that makes it easier to study the roles that carbon dioxide removal (CDR) might play in climate policy. Building on GCAM 5.4, GCAM-CDR adds several extra technologies to permanently remove carbon dioxide from the air and enables users to simulate a wider range of CDR-related policies and controls.
Jarmo S. Kikstra, Zebedee R. J. Nicholls, Christopher J. Smith, Jared Lewis, Robin D. Lamboll, Edward Byers, Marit Sandstad, Malte Meinshausen, Matthew J. Gidden, Joeri Rogelj, Elmar Kriegler, Glen P. Peters, Jan S. Fuglestvedt, Ragnhild B. Skeie, Bjørn H. Samset, Laura Wienpahl, Detlef P. van Vuuren, Kaj-Ivar van der Wijst, Alaa Al Khourdajie, Piers M. Forster, Andy Reisinger, Roberto Schaeffer, and Keywan Riahi
Geosci. Model Dev., 15, 9075–9109, https://doi.org/10.5194/gmd-15-9075-2022, https://doi.org/10.5194/gmd-15-9075-2022, 2022
Short summary
Short summary
Assessing hundreds or thousands of emission scenarios in terms of their global mean temperature implications requires standardised procedures of infilling, harmonisation, and probabilistic temperature assessments. We here present the open-source
climate-assessmentworkflow that was used in the IPCC AR6 Working Group III report. The paper provides key insight for anyone wishing to understand the assessment of climate outcomes of mitigation pathways in the context of the Paris Agreement.
Théo Le Guenedal, Philippe Drobinski, and Peter Tankov
Geosci. Model Dev., 15, 8001–8039, https://doi.org/10.5194/gmd-15-8001-2022, https://doi.org/10.5194/gmd-15-8001-2022, 2022
Short summary
Short summary
The CATHERINA model produces simulations of cyclone-related annualized damage costs at a country level from climate data and open-source socioeconomic indicators. The framework couples statistical and physical modeling of tropical cyclones to bridge the gap between general circulation and integrated assessment models providing a precise description of tropical-cyclone-related damages.
William Atkinson, Sebastian D. Eastham, Y.-H. Henry Chen, Jennifer Morris, Sergey Paltsev, C. Adam Schlosser, and Noelle E. Selin
Geosci. Model Dev., 15, 7767–7789, https://doi.org/10.5194/gmd-15-7767-2022, https://doi.org/10.5194/gmd-15-7767-2022, 2022
Short summary
Short summary
Understanding policy effects on human-caused air pollutant emissions is key for assessing related health impacts. We develop a flexible scenario tool that combines updated emissions data sets, long-term economic modeling, and comprehensive technology pathways to clarify the impacts of climate and air quality policies. Results show the importance of both policy levers in the future to prevent long-term emission increases from offsetting near-term air quality improvements from existing policies.
Chengyong Wu, Kelong Chen, Chongyi E, Xiaoni You, Dongcai He, Liangbai Hu, Baokang Liu, Runke Wang, Yaya Shi, Chengxiu Li, and Fumei Liu
Geosci. Model Dev., 15, 6919–6933, https://doi.org/10.5194/gmd-15-6919-2022, https://doi.org/10.5194/gmd-15-6919-2022, 2022
Short summary
Short summary
The traditional Carnegie–Ames–Stanford Approach (CASA) model driven by multisource data such as meteorology, soil, and remote sensing (RS) has notable disadvantages. We drove the CASA using RS data and conducted a case study of the Qinghai Lake basin alpine grassland. The simulated result is similar to published and measured net primary productivity (NPP). It may provide a reference for simulating vegetation NPP to satisfy the requirements of accounting carbon stocks and other applications.
Rui Ma, Jingfeng Xiao, Shunlin Liang, Han Ma, Tao He, Da Guo, Xiaobang Liu, and Haibo Lu
Geosci. Model Dev., 15, 6637–6657, https://doi.org/10.5194/gmd-15-6637-2022, https://doi.org/10.5194/gmd-15-6637-2022, 2022
Short summary
Short summary
Parameter optimization can improve the accuracy of modeled carbon fluxes. Few studies conducted pixel-level parameterization because it requires a high computational cost. Our paper used high-quality spatial products to optimize parameters at the pixel level, and also used the machine learning method to improve the speed of optimization. The results showed that there was significant spatial variability of parameters and we also improved the spatial pattern of carbon fluxes.
Núria Pérez-Zanón, Louis-Philippe Caron, Silvia Terzago, Bert Van Schaeybroeck, Llorenç Lledó, Nicolau Manubens, Emmanuel Roulin, M. Carmen Alvarez-Castro, Lauriane Batté, Pierre-Antoine Bretonnière, Susana Corti, Carlos Delgado-Torres, Marta Domínguez, Federico Fabiano, Ignazio Giuntoli, Jost von Hardenberg, Eroteida Sánchez-García, Verónica Torralba, and Deborah Verfaillie
Geosci. Model Dev., 15, 6115–6142, https://doi.org/10.5194/gmd-15-6115-2022, https://doi.org/10.5194/gmd-15-6115-2022, 2022
Short summary
Short summary
CSTools (short for Climate Service Tools) is an R package that contains process-based methods for climate forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination, and multivariate verification, as well as basic and advanced tools to obtain tailored products. In addition to describing the structure and methods in the package, we also present three use cases to illustrate the seasonal climate forecast post-processing for specific purposes.
Olexandr Balyk, James Glynn, Vahid Aryanpur, Ankita Gaur, Jason McGuire, Andrew Smith, Xiufeng Yue, and Hannah Daly
Geosci. Model Dev., 15, 4991–5019, https://doi.org/10.5194/gmd-15-4991-2022, https://doi.org/10.5194/gmd-15-4991-2022, 2022
Short summary
Short summary
Ireland has significantly increased its climate mitigation ambition, with a recent commitment to reduce greenhouse gases by an average of 7 % yr-1 in the period to 2030 and a net-zero target for 2050. This article describes the TIMES-Ireland model (TIM) developed to inform Ireland's energy system decarbonisation challenge. The paper also outlines a priority list of future model developments to better meet the challenge, taking into account equity, cost-effectiveness, and technical feasibility.
Haiyan Jiang, Slobodan P. Simonovic, and Zhongbo Yu
Geosci. Model Dev., 15, 4503–4528, https://doi.org/10.5194/gmd-15-4503-2022, https://doi.org/10.5194/gmd-15-4503-2022, 2022
Short summary
Short summary
The Yangtze Economic Belt is one of the most dynamic regions of China. The fast urbanization and strong economic growth in the region pose severe challenges for its sustainable development. To improve our understanding of the interactions among coupled human–natural systems in the Belt and to provide the foundation for science-based policy-making for the sustainable development of the Belt, we developed an integrated system-dynamics-based simulation model (ANEMI_Yangtze) for the Belt.
Thi Lan Anh Dinh and Filipe Aires
Geosci. Model Dev., 15, 3519–3535, https://doi.org/10.5194/gmd-15-3519-2022, https://doi.org/10.5194/gmd-15-3519-2022, 2022
Short summary
Short summary
We proposed the leave-two-out method (i.e. one particular implementation of the nested cross-validation) to determine the optimal statistical crop model (using the validation dataset) and estimate its true generalization ability (using the testing dataset). This approach is applied to two examples (robusta coffee in Cu M'gar and grain maize in France). The results suggested that the simple models are more suitable in crop modelling where a limited number of samples is available.
Matthew Binsted, Gokul Iyer, Pralit Patel, Neal T. Graham, Yang Ou, Zarrar Khan, Nazar Kholod, Kanishka Narayan, Mohamad Hejazi, Son Kim, Katherine Calvin, and Marshall Wise
Geosci. Model Dev., 15, 2533–2559, https://doi.org/10.5194/gmd-15-2533-2022, https://doi.org/10.5194/gmd-15-2533-2022, 2022
Short summary
Short summary
GCAM-USA v5.3_water_dispatch is an open-source model that represents key interactions across economic, energy, water, and land systems in a global framework, with subnational detail in the United States. GCAM-USA can be used to explore future changes in demand for (and production of) energy, water, and crops at the state and regional level in the US. This paper describes GCAM-USA and provides four illustrative scenarios to demonstrate the model's capabilities and potential applications.
Colm Duffy, Remi Prudhomme, Brian Duffy, James Gibbons, Cathal O'Donoghue, Mary Ryan, and David Styles
Geosci. Model Dev., 15, 2239–2264, https://doi.org/10.5194/gmd-15-2239-2022, https://doi.org/10.5194/gmd-15-2239-2022, 2022
Short summary
Short summary
The GOBLIN (General Overview for a Backcasting approach of Livestock INtensification) model is a new high-resolution integrated
bottom-upbiophysical land use model capable of identifying broad pathways towards climate neutrality in the agriculture, forestry, and other land use (AFOLU) sector. The model is intended to bridge the gap between hindsight representations of national emissions and much larger globally integrated assessment models.
Samuel Lüthi, Gabriela Aznar-Siguan, Christopher Fairless, and David N. Bresch
Geosci. Model Dev., 14, 7175–7187, https://doi.org/10.5194/gmd-14-7175-2021, https://doi.org/10.5194/gmd-14-7175-2021, 2021
Short summary
Short summary
In light of the dramatic increase in economic impacts due to wildfires, the need for modelling impacts of wildfire damage is ever increasing. Insurance companies, households, humanitarian organisations and governmental authorities are worried by climate risks. In this study we present an approach to modelling wildfire impacts using the open-source modelling platform CLIMADA. All input data are free, public and globally available, ensuring applicability in data-scarce regions of the Global South.
Lavinia Baumstark, Nico Bauer, Falk Benke, Christoph Bertram, Stephen Bi, Chen Chris Gong, Jan Philipp Dietrich, Alois Dirnaichner, Anastasis Giannousakis, Jérôme Hilaire, David Klein, Johannes Koch, Marian Leimbach, Antoine Levesque, Silvia Madeddu, Aman Malik, Anne Merfort, Leon Merfort, Adrian Odenweller, Michaja Pehl, Robert C. Pietzcker, Franziska Piontek, Sebastian Rauner, Renato Rodrigues, Marianna Rottoli, Felix Schreyer, Anselm Schultes, Bjoern Soergel, Dominika Soergel, Jessica Strefler, Falko Ueckerdt, Elmar Kriegler, and Gunnar Luderer
Geosci. Model Dev., 14, 6571–6603, https://doi.org/10.5194/gmd-14-6571-2021, https://doi.org/10.5194/gmd-14-6571-2021, 2021
Short summary
Short summary
This paper presents the new and open-source version 2.1 of the REgional Model of INvestments and Development (REMIND) with the aim of improving code documentation and transparency. REMIND is an integrated assessment model (IAM) of the energy-economic system. By answering questions like
Can the world keep global warming below 2 °C?and, if so,
Under what socio-economic conditions and applying what technological options?, it is the goal of REMIND to explore consistent transformation pathways.
Phillip D. Alderman
Geosci. Model Dev., 14, 6541–6569, https://doi.org/10.5194/gmd-14-6541-2021, https://doi.org/10.5194/gmd-14-6541-2021, 2021
Short summary
Short summary
This paper documents a framework for accessing crop model input data directly from spatially referenced file formats and running simulations in parallel across a geographic region using the Decision Support System for Agrotechnology Transfer Cropping Systems Model (a widely used crop model system). The framework greatly reduced the execution time when compared to running the standard version of the model.
Abhijeet Mishra, Florian Humpenöder, Jan Philipp Dietrich, Benjamin Leon Bodirsky, Brent Sohngen, Christopher P. O. Reyer, Hermann Lotze-Campen, and Alexander Popp
Geosci. Model Dev., 14, 6467–6494, https://doi.org/10.5194/gmd-14-6467-2021, https://doi.org/10.5194/gmd-14-6467-2021, 2021
Short summary
Short summary
Timber plantations are an increasingly important source of roundwood production, next to harvest from natural forests. However, timber plantations are currently underrepresented in global land-use models. Here, we include timber production and plantations in the MAgPIE modeling framework. This allows one to capture the competition for land between agriculture and forestry. We show that increasing timber plantations in the coming decades partly compete with cropland for limited land resources.
Cited articles
Ahlström, A., Schurgers, G., and Smith, B.: The large influence of climate model bias on terrestrial carbon cycle simulations, Environ. Res. Lett., 12, 014004, https://doi.org/10.1088/1748-9326/12/1/014004, 2017.
Bar-On, Y. M., Phillips, R., and Milo, R.: The biomass distribution on Earth, P. Natl. Acad. Sci. USA, 115, 6506–6511, https://doi.org/10.1073/pnas.1711842115, 2018.
Beyer, R. M., Hua, F., Martin, P. A., Manica, A., and Rademacher, T.: Relocating croplands could drastically reduce the environmental impacts of global food production, Commun. Earth. Environ., 3, 1–11, https://doi.org/10.1038/s43247-022-00360-6, 2022.
Daigneault, A., Baker, J. S., Guo, J., Lauri, P., Favero, A., Forsell, N., Johnston, C., Ohrel, S. B., and Sohngen, B.: How the future of the global forest sink depends on timber demand , forest management, and carbon policies, Global Environ. Chang., 76, 102582, https://doi.org/10.1016/j.gloenvcha.2022.102582, 2022.
Daioglou, V., Doelman, J. C., Wicke, B., Faaij, A., and van Vuuren, D. P.: Integrated assessment of biomass supply and demand in climate change mitigation scenarios, Global Environ. Chang., 54, 88–101, https://doi.org/10.1016/j.gloenvcha.2018.11.012, 2019.
Dietrich, J. P., Bodirsky, B. L., Humpenöder, F., Weindl, I., Stevanović, M., Karstens, K., Kreidenweis, U., Wang, X., Mishra, A., Klein, D., Ambrósio, G., Araujo, E., Yalew, A. W., Baumstark, L., Wirth, S., Giannousakis, A., Beier, F., Chen, D. M.-C., Lotze-Campen, H., and Popp, A.: MAgPIE 4 – a modular open-source framework for modeling global land systems, Geosci. Model Dev., 12, 1299–1317, https://doi.org/10.5194/gmd-12-1299-2019, 2019.
Dong, H., Mangino, J., McAllister, T. A., Hatfield, J. L., Johnson, D. E., Lassey, K. R., Aparecida de Lima, M., Romanovskaya, A., Bartram, D., Gibb, D., and Martin Jr., J. H.: Emissions from Livestock and Manure Management, in: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use, ISBN 4-88788-032-4, 2006.
Ekholm, T.: CLASH parametrization scripts, Zenodo [code], https://doi.org/10.5281/zenodo.8273074, 2023.
Ekholm, T., Rautiainen, A., and Freistetter, N.: CLASH model code, version 2024-01-22, https://doi.org/10.5281/zenodo.10554383, Zenodo [code], 2024.
Erb, K. H., Kastner, T., Plutzar, C., Bais, A. L. S., Carvalhais, N., Fetzel, T., Gingrich, S., Haberl, H., Lauk, C., Niedertscheider, M., Pongratz, J., Thurner, M., and Luyssaert, S.: Unexpectedly large impact of forest management and grazing on global vegetation biomass, Nature, 553, 73–76, https://doi.org/10.1038/nature25138, 2018.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
FAO: The future of food and agriculture – Alternative pathways to 2050, 224 pp., ISBN 978-92-5-130158-6, 2018.
FAO: FAOSTAT Crops and Livestock Products, 2023.
Favero, A. and Mendelsohn, R.: Using Markets for Woody Biomass Energy to Sequester Carbon in Forests, J. Assoc. Environ. Resour. Econ., 1, 75–95, https://doi.org/10.1086/676033, 2014.
Franke, J. A., Müller, C., Elliott, J., Ruane, A. C., Jägermeyr, J., Snyder, A., Dury, M., Falloon, P. D., Folberth, C., François, L., Hank, T., Izaurralde, R. C., Jacquemin, I., Jones, C., Li, M., Liu, W., Olin, S., Phillips, M., Pugh, T. A. M., Reddy, A., Williams, K., Wang, Z., Zabel, F., and Moyer, E. J.: The GGCMI Phase 2 emulators: global gridded crop model responses to changes in CO2, temperature, water, and nitrogen (version 1.0), Geosci. Model Dev., 13, 3995–4018, https://doi.org/10.5194/gmd-13-3995-2020, 2020.
Freistetter, N.-C., Ekholm, T., Rautiainen, A., and Thölix, L.: Demonstration of CLASH – Climate-responsive Land Allocation model with carbon Storage and Harvests – Result data and data analysis scripts, Zenodo [data set], https://doi.org/10.5281/zenodo.10550924, 2024.
Fricko, O., Havlik, P., Rogelj, J., Klimont, Z., Gusti, M., Johnson, N., Kolp, P., Strubegger, M., Valin, H., Amann, M., Ermolieva, T., Forsell, N., Herrero, M., Heyes, C., Kindermann, G., Krey, V., McCollum, D. L., Obersteiner, M., Pachauri, S., Rao, S., Schmid, E., Schoepp, W., and Riahi, K.: The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century, Global Environ. Chang., 42, 251–267, https://doi.org/10.1016/j.gloenvcha.2016.06.004, 2017.
Gavrilova, O., Leip, A., Dong, H., Douglas MacDonald, J., Alfredo Gomez Bravo, C., Amon, B., Barahona Rosales, R., del Prado, A., Aparecida de Lima, M., Oyhantçabal, W., John van der Weerden, T., Widiawati, Y., Bannink, A., Beauchemin, K., and Clark, H.: Emissions from Livestock and Manure Management, in: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use, ISBN 978-4-88788-232-4, 2019.
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., Herrero, M., Kiesecker, J., Landis, E., Laestadius, L., Leavitt, S. M., Minnemeyer, S., Polasky, S., Potapov, P., Putz, F. E., Sanderman, J., Silvius, M., Wollenberg, E., and Fargione, J.: Natural climate solutions, P. Natl. Acad. Sci. USA, 114, 11645–11650, https://doi.org/10.1073/pnas.1710465114, 2017.
Harper, A. B., Powell, T., Cox, P. M., House, J., Huntingford, C., Lenton, T. M., Sitch, S., Burke, E., Chadburn, S. E., Collins, W. J., Comyn-Platt, E., Daioglou, V., Doelman, J. C., Hayman, G., Robertson, E., van Vuuren, D., Wiltshire, A., Webber, C. P., Bastos, A., Boysen, L., Ciais, P., Devaraju, N., Jain, A. K., Krause, A., Poulter, B., and Shu, S.: Land-use emissions play a critical role in land-based mitigation for Paris climate targets, Nat. Commun., 9, 2938, https://doi.org/10.1038/s41467-018-05340-z, 2018.
Havlík, P., Valin, H., Mosnier, A., Frank, S., Lauri, P., Leclère, D., Palazzo, A., Batka, M., Boere, E., Brouwer, A., Deppermann, A., Ermolieva, T., Forsell, N., di Fulvio, F., Obersteiner, M., Herrero, M., Schmid, E., Schneider, U., and Hasegawa, T.: GLOBIOM documentation, International Institute for Applied Systems Analysis, 1–38, 2018.
Hayek, M. N., Harwatt, H., Ripple, W. J., and Mueller, N. D.: The carbon opportunity cost of animal-sourced food production on land, Nat. Sustain., 4, 21–24, https://doi.org/10.1038/s41893-020-00603-4, 2021.
Hickler, T., Smith, B., Prentice, I. C., Mjöfors, K., Miller, P., Arneth, A., and Sykes, M. T.: CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests, Glob. Change Biol., 14, 1531–1542, https://doi.org/10.1111/j.1365-2486.2008.01598.x, 2008.
Hickler, T., Vohland, K., Feehan, J., Miller, P. A., Smith, B., Costa, L., Giesecke, T., Fronzek, S., Carter, T. R., Cramer, W., Kühn, I., and Sykes, M. T.: Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model, Global Ecol. Biogeogr., 21, 50–63, https://doi.org/10.1111/j.1466-8238.2010.00613.x, 2012.
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6, Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, 2020.
Jarmul, S., Dangour, A. D., Green, R., Liew, Z., Haines, A., and Scheelbeek, P. F.: Climate change mitigation through dietary change: a systematic review of empirical and modelling studies on the environmental footprints and health effects of “sustainable diets”, Environ. Res. Lett., 15, 123014, https://doi.org/10.1088/1748-9326/abc2f7, 2020.
Jun, P., Gibbs, M., and Gaffney, K.: CH4 and N2O Emissions from Livestock Manure, in: Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, Intergovernmental Panel on Climate Change, ISBN 4-88788-000-6, 2000.
Keppo, I., Butnar, I., Bauer, N., Caspani, M., Edelenbosch, O., Emmerling, J., Fragkos, P., Guivarch, C., Harmsen, M., Lefevre, J., Le Gallic, T., Leimbach, M., Mcdowall, W., Mercure, J. F., Schaeffer, R., Trutnevyte, E., and Wagner, F.: Exploring the possibility space: taking stock of the diverse capabilities and gaps in integrated assessment models, Environ. Res. Lett., 16, 053006, https://doi.org/10.1088/1748-9326/abe5d8, 2021.
Knight, C. W. and Rentfrow, G.: Understanding Poultry Yields, University of Maine Cooperative Extension Publications, 2223, 2020.
Knorr, W., Kaminski, T., Arneth, A., and Weber, U.: Impact of human population density on fire frequency at the global scale, Biogeosciences, 11, 1085–1102, https://doi.org/10.5194/bg-11-1085-2014, 2014.
Knorr, W., Jiang, L., and Arneth, A.: Climate, CO2 and human population impacts on global wildfire emissions, Biogeosciences, 13, 267–282, https://doi.org/10.5194/bg-13-267-2016, 2016.
Lindeskog, M., Arneth, A., Bondeau, A., Waha, K., Seaquist, J., Olin, S., and Smith, B.: Implications of accounting for land use in simulations of ecosystem carbon cycling in Africa, Earth Syst. Dynam., 4, 385–407, https://doi.org/10.5194/esd-4-385-2013, 2013.
Lindeskog, M., Smith, B., Lagergren, F., Sycheva, E., Ficko, A., Pretzsch, H., and Rammig, A.: Accounting for forest management in the estimation of forest carbon balance using the dynamic vegetation model LPJ-GUESS (v4.0, r9710): implementation and evaluation of simulations for Europe, Geosci. Model Dev., 14, 6071–6112, https://doi.org/10.5194/gmd-14-6071-2021, 2021.
Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton, D., Gutiérrez, J. M., Hagemann, S., Richter, I., Soares, P. M. M., Hall, A., and Mearns, L. O.: Towards process-informed bias correction of climate change simulations, Nat. Clim. Change, 7, 764–773, https://doi.org/10.1038/nclimate3418, 2017.
Mottet, A., de Haan, C., Falcucci, A., Tempio, G., Opio, C., and Gerber, P.: Livestock: On our plates or eating at our table? A new analysis of the feed/food debate, Glob. Food Sec., 14, 1–8, https://doi.org/10.1016/j.gfs.2017.01.001, 2017.
Müller, C., Elliott, J., Chryssanthacopoulos, J., Deryng, D., Folberth, C., Pugh, T. A. M., and Schmid, E.: Implications of climate mitigation for future agricultural production, Environ. Res. Lett., 10, 125004, https://doi.org/10.1088/1748-9326/10/12/125004, 2015.
Olin, S., Schurgers, G., Lindeskog, M., Wårlind, D., Smith, B., Bodin, P., Holmér, J., and Arneth, A.: Modelling the response of yields and tissue C : N to changes in atmospheric CO2 and N management in the main wheat regions of western Europe, Biogeosciences, 12, 2489–2515, https://doi.org/10.5194/bg-12-2489-2015, 2015.
Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J. W., Chen, A., Ciais, P., Tømmervik, H., Nemani, R. R., and Myneni, R. B.: Characteristics, drivers and feedbacks of global greening, Nat. Rev. Earth Environ., 1, 14–27, https://doi.org/10.1038/s43017-019-0001-x, 2020.
Pingoud, K., Ekholm, T., Sievänen, R., Huuskonen, S., and Hynynen, J.: Trade-offs between forest carbon stocks and harvests in a steady state – A multi-criteria analysis, J. Environ. Manage., 210, 96–103, https://doi.org/10.1016/j.jenvman.2017.12.076, 2018.
Poore, J. and Nemecek, T.: Reducing food's environmental impacts through producers and consumers, Science, 360, 987–992, https://doi.org/10.1126/science.aaq0216, 2018.
Rabin, S. S., Melton, J. R., Lasslop, G., Bachelet, D., Forrest, M., Hantson, S., Kaplan, J. O., Li, F., Mangeon, S., Ward, D. S., Yue, C., Arora, V. K., Hickler, T., Kloster, S., Knorr, W., Nieradzik, L., Spessa, A., Folberth, G. A., Sheehan, T., Voulgarakis, A., Kelley, D. I., Prentice, I. C., Sitch, S., Harrison, S., and Arneth, A.: The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions, Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017, 2017.
Rautiainen, A., Lintunen, J., and Uusivuori, J.: Carbon taxation of the land use sector-the economics of soil carbon, Nat. Resour. Model., 30, e12126, https://doi.org/10.1111/nrm.12126, 2017.
Reich, P. and Eswaran, H.: Biomes, in: Terrestrial Ecosystems and Biodiversity, edited by: Wang, Y., CRC Press, Second edition, Boca Raton, Revised edition of: Encyclopedia of natural resources [2014], 75–79, https://doi.org/10.1201/9780429445651, 2020.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., and Tavoni, M.: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, Global Environ. Chang., 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.
Rockström, J., Beringer, T., Hole, D., Griscom, B., Mascia, M. B., Folke, C., and Creutzig, F.: We need biosphere stewardship that protects carbon sinks and builds resilience, P. Natl. Acad. Sci. USA, 118, 1–5, https://doi.org/10.1073/pnas.2115218118, 2021.
Roe, S., Streck, C., Obersteiner, M., Frank, S., Griscom, B., Drouet, L., Fricko, O., Gusti, M., Harris, N., Hasegawa, T., Hausfather, Z., Havlík, P., House, J., Nabuurs, G. J., Popp, A., Sánchez, M. J. S., Sanderman, J., Smith, P., Stehfest, E., and Lawrence, D.: Contribution of the land sector to a 1.5 °C world, Nat. Clim. Change, 9, 817–828, https://doi.org/10.1038/s41558-019-0591-9, 2019.
Roebroek, C. T. J., Duveiller, G., Seneviratne, S. I., Davin, E. L., and Cescatti, A.: Releasing global forests from human management: How much more carbon could be stored?, Science, 380, 749–753, https://doi.org/10.1126/science.add5878, 2023.
Seiler, C., Melton, J. R., Arora, V. K., Sitch, S., Friedlingstein, P., Anthoni, P., Goll, D., Jain, A. K., Joetzjer, E., Lienert, S., Lombardozzi, D., Luyssaert, S., Nabel, J. E. M. S., Tian, H., Vuichard, N., Walker, A. P., Yuan, W., and Zaehle, S.: Are terrestrial biosphere models fit for simulating the global land carbon sink?, J. Adv. Model. Earth Sy., 14, e2021MS002946, https://doi.org/10.1029/2021ms002946, 2022.
Siebert, S., Portmann, F. T., and Döll, P.: Global patterns of cropland use intensity, Remote Sens.-Basel, 2, 1625–1643, https://doi.org/10.3390/rs2071625, 2010.
Siljander, R. and Ekholm, T.: Integrated scenario modelling of energy, greenhouse gas emissions and forestry, Mitig. Adapt. Strat. Gl., 23, 783–802, https://doi.org/10.1007/s11027-017-9759-7, 2018.
Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space, Global Ecol. Biogeogr., 10, 621–637, https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x, 2001.
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model, Biogeosciences, 11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014, 2014.
Sohngen, B. and Mendelsohn, R.: An Optimal Control Model of Forest Carbon Sequestration, Am. J. Agr. Econ., 85, 448–457, 2003.
Sohngen, B., Mendelsohn, R., Sedjo, R., Sohngen, B., Mendelsohn, R., and Sedjo, R.: Forest Management, Conservation, and Global Timber Markets, Am. J. Agr. Econ., 81, 1–13, 1999.
Tavoni, M., Sohngen, B., and Bosetti, V.: Forestry and the carbon market response to stabilize climate, Energ. Policy, 35, 5346–5353, https://doi.org/10.1016/j.enpol.2006.01.036, 2007.
Thölix, L. and Ekholm, T.: LPJ-GUESS model results for parametrizing the CLASH model, Zenodo [data set], https://doi.org/10.5281/zenodo.8272853, 2023.
Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R. F., McMahon, S. M., Medlyn, B. E., Moore, D. J. P., Norby, R. J., Zaehle, S., Anderson-Teixeira, K. J., Battipaglia, G., Brienen, R. J. W., Cabugao, K. G., Cailleret, M., Campbell, E., Canadell, J. G., Ciais, P., Craig, M. E., Ellsworth, D. S., Farquhar, G. D., Fatichi, S., Fisher, J. B., Frank, D. C., Graven, H., Gu, L., Haverd, V., Heilman, K., Heimann, M., Hungate, B. A., Iversen, C. M., Joos, F., Jiang, M., Keenan, T. F., Knauer, J., Körner, C., Leshyk, V. O., Leuzinger, S., Liu, Y., MacBean, N., Malhi, Y., McVicar, T. R., Penuelas, J., Pongratz, J., Powell, A. S., Riutta, T., Sabot, M. E. B., Schleucher, J., Sitch, S., Smith, W. K., Sulman, B., Taylor, B., Terrer, C., Torn, M. S., Treseder, K. K., Trugman, A. T., Trumbore, S. E., van Mantgem, P. J., Voelker, S. L., Whelan, M. E., and Zuidema, P. A.: Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2, New Phytol., 229, 2413–2445, https://doi.org/10.1111/nph.16866, 2021.
Wilfong, A. and O'Quinn, T.: How Much Meat to Expect from Your Animal, Kansas State University Agricultural Experiment Station and Cooperative Extension Service, MF3394, 2018.
Short summary
CLASH is a numerical model that portrays land allocation between different uses, land carbon stocks, and agricultural and forestry production globally. CLASH can help in examining the role of land use in mitigating climate change, providing food and biogenic raw materials for the economy, and conserving primary ecosystems. Our demonstration with CLASH confirms that reduction of animal-based food, shifting croplands and storing carbon in forests are effective ways to mitigate climate change.
CLASH is a numerical model that portrays land allocation between different uses, land carbon...