Articles | Volume 17, issue 3
https://doi.org/10.5194/gmd-17-1059-2024
https://doi.org/10.5194/gmd-17-1059-2024
Model evaluation paper
 | 
08 Feb 2024
Model evaluation paper |  | 08 Feb 2024

Constraining the carbon cycle in JULES-ES-1.0

Douglas McNeall, Eddy Robertson, and Andy Wiltshire

Related authors

A rapid-application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and Emissions (PRIME)
Camilla Mathison, Eleanor J. Burke, Gregory Munday, Chris D. Jones, Chris J. Smith, Norman J. Steinert, Andy J. Wiltshire, Chris Huntingford, Eszter Kovacs, Laila K. Gohar, Rebecca M. Varney, and Douglas McNeall
Geosci. Model Dev., 18, 1785–1808, https://doi.org/10.5194/gmd-18-1785-2025,https://doi.org/10.5194/gmd-18-1785-2025, 2025
Short summary
Correcting a bias in a climate model with an augmented emulator
Doug McNeall, Jonny Williams, Richard Betts, Ben Booth, Peter Challenor, Peter Good, and Andy Wiltshire
Geosci. Model Dev., 13, 2487–2509, https://doi.org/10.5194/gmd-13-2487-2020,https://doi.org/10.5194/gmd-13-2487-2020, 2020
Short summary
The impact of structural error on parameter constraint in a climate model
Doug McNeall, Jonny Williams, Ben Booth, Richard Betts, Peter Challenor, Andy Wiltshire, and David Sexton
Earth Syst. Dynam., 7, 917–935, https://doi.org/10.5194/esd-7-917-2016,https://doi.org/10.5194/esd-7-917-2016, 2016
Short summary
The mechanisms of North Atlantic CO2 uptake in a large Earth System Model ensemble
P. R. Halloran, B. B. B. Booth, C. D. Jones, F. H. Lambert, D. J. McNeall, I. J. Totterdell, and C. Völker
Biogeosciences, 12, 4497–4508, https://doi.org/10.5194/bg-12-4497-2015,https://doi.org/10.5194/bg-12-4497-2015, 2015
Short summary
The potential of an observational data set for calibration of a computationally expensive computer model
D. J. McNeall, P. G. Challenor, J. R. Gattiker, and E. J. Stone
Geosci. Model Dev., 6, 1715–1728, https://doi.org/10.5194/gmd-6-1715-2013,https://doi.org/10.5194/gmd-6-1715-2013, 2013

Related subject area

Climate and Earth system modeling
Implementing deep soil and dynamic root uptake in Noah-MP (v4.5): impact on Amazon dry-season transpiration
Carolina A. Bieri, Francina Dominguez, Gonzalo Miguez-Macho, and Ying Fan
Geosci. Model Dev., 18, 3755–3779, https://doi.org/10.5194/gmd-18-3755-2025,https://doi.org/10.5194/gmd-18-3755-2025, 2025
Short summary
Reducing time and computing costs in EC-Earth: an automatic load-balancing approach for coupled Earth system models
Sergi Palomas, Mario C. Acosta, Gladys Utrera, and Etienne Tourigny
Geosci. Model Dev., 18, 3661–3679, https://doi.org/10.5194/gmd-18-3661-2025,https://doi.org/10.5194/gmd-18-3661-2025, 2025
Short summary
FLAME 1.0: a novel approach for modelling burned area in the Brazilian biomes using the maximum entropy concept
Maria Lucia Ferreira Barbosa, Douglas I. Kelley, Chantelle A. Burton, Igor J. M. Ferreira, Renata Moura da Veiga, Anna Bradley, Paulo Guilherme Molin, and Liana O. Anderson
Geosci. Model Dev., 18, 3533–3557, https://doi.org/10.5194/gmd-18-3533-2025,https://doi.org/10.5194/gmd-18-3533-2025, 2025
Short summary
SURFER v3.0: a fast model with ice sheet tipping points and carbon cycle feedbacks for short- and long-term climate scenarios
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
Geosci. Model Dev., 18, 3081–3129, https://doi.org/10.5194/gmd-18-3081-2025,https://doi.org/10.5194/gmd-18-3081-2025, 2025
Short summary
NMH-CS 3.0: a C# programming language and Windows-system-based ecohydrological model derived from Noah-MP
Yong-He Liu and Zong-Liang Yang
Geosci. Model Dev., 18, 3157–3174, https://doi.org/10.5194/gmd-18-3157-2025,https://doi.org/10.5194/gmd-18-3157-2025, 2025
Short summary

Cited articles

Al-Taweel, Y.: Diagnostics and Simulation-Based Methods for Validating Gaussian Process Emulators, Ph.D. thesis, University of Sheffield, https://doi.org/10.13140/RG.2.2.18140.23683, 2018. a
Andrianakis, I., Vernon, I. R., McCreesh, N., McKinley, T. J., Oakley, J. E., Nsubuga, R. N., Goldstein, M., and White, R. G.: Bayesian history matching of complex infectious disease models using emulation: a tutorial and a case study on HIV in Uganda, PLoS Comput. Biol., 11, e1003968, https://doi.org/10.1371/journal.pcbi.1003968, 2015. a
Baker, E., Harper, A. B., Williamson, D., and Challenor, P.: Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES, Geosci. Model Dev., 15, 1913–1929, https://doi.org/10.5194/gmd-15-1913-2022, 2022. a
Carnell, R.: lhs: Latin Hypercube Samples, r package version 1.1.3, https://CRAN.R-project.org/package=lhs (last access: 8 November 2021), 2021. a
Carslaw, K., Lee, L., Reddington, C., Pringle, K., Rap, A., Forster, P., Mann, G., Spracklen, D., Woodhouse, M., Regayre, L., and Pierce, J. R.: Large contribution of natural aerosols to uncertainty in indirect forcing, Nature, 503, 67–71, https://doi.org/10.1038/nature12674, 2013. a, b
Download
Short summary
We can run simulations of the land surface and carbon cycle, using computer models to help us understand and predict climate change and its impacts. These simulations are not perfect reproductions of the real land surface, and that can make them less effective tools. We use new statistical and computational techniques to help us understand how different our models are from the real land surface, how to make them more realistic, and how well we can simulate past and future climate.
Share