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Abstract. Land surface models are an important tool in the
study of climate change and its impacts, but their use can
be hampered by uncertainties in input parameter settings and
by errors in the models. We apply uncertainty quantifica-
tion (UQ) techniques to constrain the input parameter space
and corresponding historical simulations of JULES-ES-1.0
(Joint UK Land Environment Simulator Earth System), the
land surface component of the UK Earth System Model,
UKESM1.0. We use an ensemble of historical simulations
of the land surface model to rule out ensemble members
and corresponding input parameter settings that do not match
modern observations of the land surface and carbon cycle. As
JULES-ES-1.0 is computationally expensive, we use a cheap
statistical proxy termed an emulator, trained on the ensemble
of model runs, to rule out parts of the parameter space where
the simulator has not yet been run. We use history matching,
an iterated approach to constraining JULES-ES-1.0, running
an initial ensemble and training the emulator, before choos-
ing a second wave of ensemble members consistent with his-
torical land surface observations. We successfully rule out
88 % of the initial input parameter space as being statistically
inconsistent with observed land surface behaviour. The result
is a set of historical simulations and a constrained input space
that are statistically consistent with observations. Further-
more, we use sensitivity analysis to identify the most (and
least) important input parameters for controlling the global
output of JULES-ES-1.0 and provide information on how pa-
rameters might be varied to improve the performance of the
model and eliminate model biases.
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1 Introduction

Land surface models are widely used for the study and pro-
jection of climate change and its impacts, but differences be-
tween the models and the systems they represent can limit
their effectiveness (Fisher and Koven, 2020). These differ-
ences can be caused by fundamental errors or a lack of
knowledge of real-world processes or by the simplifications
and compromises required to build and run the computa-
tionally expensive computer models that we use to simu-
late those processes. Uncertainty quantification (UQ) meth-
ods have been developed in order to identify and quantify the
differences between the models and the real world, how to
minimise those differences, and how to assess their impact
on the use of models in policy advice.

Complex land surface models contain a large number of
tuneable input parameters – numbers which represent sim-
plifications of processes which are either unnecessary or too
computationally expensive to include in a simulation. The
value of a particular input parameter can materially affect the
output of a model, but it is often unclear exactly how until
the corresponding simulations are run. Input parameters may
represent some real-world quantity, and so a modeller may
have a belief about the correct value of that input parameter
that they are able to represent with a probability distribution.
As processes interact within a model, input parameters can
rarely be tuned in isolation to each other. For many climate
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applications, a goal is to choose the ranges of input param-
eters so that the model behaves in a manner consistent with
our understanding of the behaviour of the true system and
that is consistent with our knowledge of the value that those
input parameters have in the real world. The input parameters
of such a model are said to be constrained, and any simula-
tions of future behaviour will be constrained by our choice
of input settings to be consistent with our best understanding
of the system.

As we have uncertainty about the structure and the be-
haviour of the true system, through a lack of knowledge or
through uncertain observations, the value of the valid con-
figurations of input parameters or their associated probabil-
ity distributions is uncertain. In practice, modellers often use
constrained ranges of input parameters to run collections of
model evaluations termed ensembles, crudely representing
uncertainty about the behaviour of the true system.

Perturbed parameter ensembles (PPEs) are useful for the
evaluation of complex and computationally expensive cli-
mate models, including land surface models. A PPE is a col-
lection of simulator runs, where input parameters are sys-
tematically varied, in line with a set of principles consistent
with our knowledge and experiment objectives. PPEs allow
a quantification of the relationship between the model input
parameters and its output. They can therefore be used for the
quantification and propagation of uncertainty in parameter
constraint, in sensitivity of the model outputs to perturba-
tions, and can give hints as to the size and location of model
structural errors.

PPEs are now standard practice in the study of climate
models for uncertainty quantification, climate and impacts
projection (e.g. Sexton et al., 2021; Edwards et al., 2019),
parameterisation improvement (Couvreux et al., 2021), sen-
sitivity analysis (SA) (Carslaw et al., 2013), or as part
of a strategy for model development and bias correction
(e.g. Williamson et al., 2015; McNeall et al., 2016, 2020;
Hourdin et al., 2017.

The size of PPEs is often limited by the computational ex-
pense of the complex models that they are used for, and so
there is a natural tension between model complexity, reso-
lution and the length of simulations, and the number of en-
semble members available for parameter uncertainty quan-
tification. A cheap surrogate model (sometimes termed meta-
model or emulator) is useful to maximise the utility of an
ensemble in these situations. Emulators are statistical mod-
els or machine learning algorithms, usually trained on a PPE
that has been carefully designed to cover input space effec-
tively. Gaussian process emulators, used in this study, have
an advantage in that they are naturally flexible and natively
include uncertainty estimates as to their error, but simpler lin-
ear model and more complex machine learning approaches
are possible and can be effective.

1.1 Experiment structure

In this paper, we develop a comprehensive PPE of JULES-
ES-1.0 (Joint UK Land Environment Simulator Earth Sys-
tem) and compare it with observations to find a set of en-
semble members that are broadly consistent with historical
behaviour of the land surface. Our focus in on global totals
of carbon-cycle-relevant quantities, which are of direct inter-
est for carbon budget assessments such as the Global Car-
bon Budget project (Friedlingstein et al., 2022). The ensem-
ble is designed to be a flexible basis for a number of initial
analyses and provide a foundation for further exploration in
uncertainty quantification of both historical and future pro-
jections of the land surface and carbon cycle. We would like
an ensemble with members that fully represent and sample
the spread of uncertainty we have in historical land surface
characteristics and behaviour. We would also like an ensem-
ble large enough to effectively train an emulator, in order to
perform a number of analyses.

Our approach could be regarded as a top-down initial ex-
ploration, in that we choose a large number (32) of parame-
ters to vary simultaneously; we perturb them by a large mar-
gin due to the relatively weak beliefs we have about their true
values and a desire to explore a broad range of model sensi-
tivities; and we focus on the model performance at global
levels, averaged over long time periods. The approach is
data-led in that it relies on comparison with data to winnow
out poor simulations and their corresponding parameter set-
tings. An equally useful complementary approach might be
bottom-up – focusing on smaller numbers of parameters from
individual processes within the land surface, perturbing those
parameters by smaller amounts, and focusing on regional or
local details and seasonal time periods. However, we decided
on the exploratory top-down approach in which we risked a
large number of ensemble members not producing a recog-
nisable carbon cycle but with the view we would benefit most
in our understanding of our model behaviours and sensitivi-
ties.

We use iterated refocusing, or history matching, to sequen-
tially constrain our model. We first run an exploratory en-
semble in Sect. 1.2 and remove any members (and their cor-
responding input parameter configurations) which produce
obviously bad or no output in Sect. 2.1. We use the remain-
ing members to build a Gaussian process emulator and then
run a second-wave ensemble with members chosen from in-
put parameter regions calculated to have a good chance of
producing model output consistent with observations. The
formal part of this process uses a Gaussian process emula-
tor and history matching to find the regions of input space
that stand a good chance of producing realistic model output.
Details of this process are outlined in Sect. 2.4. The inten-
tion is that any further work on building ensembles in the
future could go ahead from the basis that model variants get
the global overview correct and go on to further constrain the
model by focusing on finer details. This would avoid being
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over-focused on finer regional or temporal details at the ex-
pense of large-scale behaviour. We apply our observational
constraints to the new set of simulations, leaving a set of his-
torical model runs broadly consistent with modern observa-
tions of the carbon cycle.

Next, we use all valid ensemble members from both waves
to build a new set of more accurate Gaussian process em-
ulators and find the best estimate of the input space where
the model is likely to produce output that matches reality in
Sect. 2.7.2.

Our next analysis uses Gaussian process emulators to pro-
duce several different types of sensitivity analysis, with the
aim of quantifying the relationship between inputs and model
outputs and robustly identifying the most (and least) impor-
tant parameters for the outputs of interest. This analysis is
found in Sect. 3.

Finally, we discuss how these results help us learn about
the model in Sect. 4 and offer some conclusions in Sect. 5.

1.2 Experiment set-up

The aim of the experiment is to iteratively constrain the land
surface model by subjecting it to increasingly demanding
comparisons with reality. The experiment consists of two cy-
cles of running a simulator ensemble, followed by constraint.
Each of these cycles is termed a wave. The first wave is ex-
ploratory, and the design of the second wave is informed by
the outcome of the first. We outline some of the technical
details of setting up the experiment in this section.

We wish to isolate the effects of uncertain parameters on
the land surface, rather than evaluating the effects of climate
biases or interactions with other components of the UK Earth
System Model, UKESM1.0. We therefore run the first en-
semble of JULES-ES-1.0 with each member driven by the
same historical climate data – a reanalysis from the Global
Soil Wetness project Phase 3 (Kim, 2017). The simulations
include land use change and rising atmospheric CO2, follow-
ing the LS3MIP protocol (van den Hurk et al., 2016) spun-
up to a pre-industrial state in 1850 by cycling the 1850–1869
climate but with fixed 1850 CO2 concentrations. A total of
1000 years of spin-up is performed, and then each member
is run transiently through to 2014. Each ensemble member
has a different configuration of 32 input parameters, iden-
tified as potentially important in influencing land surface
dynamics (see Table A1 in the Appendix for a full list of
perturbed parameters). The parameters were perturbed ran-
domly, in a maximin Latin hypercube configuration (McKay
et al., 1979), shown to be an effective space-filling design
for building accurate emulators (Urban and Fricker, 2010).
Parameter ranges were defined by the model developers as
being likely to at least produce output from the model. We
identify model variants, and their associated input configu-
rations, where the model produces output that is consistent
– within uncertain limits – with modern observations of the
carbon cycle. We use Gaussian process emulators trained in-

dividually on each type of model output of interest to allow
us to visualise and explore these relationships as if we had a
much larger ensemble.

1.3 Land surface model

We use JULES-ES-1.0, the current Earth system (ES) con-
figuration of the Joint UK Land Environment Simulator
(JULES). JULES-ES forms the terrestrial land surface com-
ponent of the UK Earth System model, UKESM1.0 (Sel-
lar et al., 2019). JULES simulates the exchange of heat,
water, and momentum between the land surface and the
atmosphere, as well as biogeochemical feedbacks through
carbon, methane, and biogenic volatile organic compounds
(BVOCs). This JULES-ES configuration is based on JULES
GL7 (Wiltshire et al., 2020), with interactive vegetation via
the TRIFFID dynamic vegetation model (Cox, 2001), nutri-
ent limitation via the nitrogen scheme (Wiltshire et al., 2021),
and updated plant physiology (Harper et al., 2018). JULES-
ES includes four land classes, natural, non-vegetated, pas-
ture and cropland, to represent land use change. It has 13
plant functional types (PFTs): 9 natural PFTs compete for
space in the natural fraction and 2 in each of the cropland
and pasture land, respectively, also compete for space. Non-
vegetated surfaces are represented as urban, lake, ice, and
bare-soil surface tiles. Urban, lake, and ice fractions remain
constant, while bare soil is a function of vegetation dynam-
ics. Vegetation coverage is a function of productivity, dis-
turbance, and intra-PFT competition for space. The bare-soil
fraction is the remainder of the grid box after competition.
Land use change is implemented via ancillary files of crop
and pasture coverage, and TRIFFID dynamically removes
PFT coverage to assign space to a new land cover class. Dur-
ing land abandonment, the space is allocated to bare soil and
TRIFFID, colonising the available land. This configuration
includes the nitrogen cycle (see Wiltshire et al., 2021), and
the availability of nitrogen limits the assimilation of carbon
and the turnover of soil carbon. In the crop land classes, per-
fect fertiliser application is assumed, such that crop PFTs are
assumed not to be nitrogen-limited.

1.4 First-wave design

We set the budget for the initial exploratory ensemble (des-
ignated wave00) to 499 members (plus standard member),
a little over 10 members per input parameter recommended
as a rule of thumb by Loeppky et al. (2009), even allowing
for a proportion of the ensemble to be held out for emulator
validation purposes.

The initial ensemble must explore the limits of parameter
space and ensure that any future constrained ensemble would
be interpolating and not extrapolating from the initial design.
We therefore asked model developers to set ranges on the pa-
rameter perturbations to be as wide as possible, while still
having a good chance of running and at least providing out-
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put. We elicited reasonable multiplication factors from the
modeller, based on the uncertainty for each parameter, and an
estimate of the limits of the parameters at which the model
would even run (see Fig. 1). The multiplication factors were
perturbed in a space-filling design, in order to best cover in-
put space and help build Gaussian process emulators, which
can have problems if design points are spaced too closely.
We chose a maximin Latin Hypercube design using the R
package Latin Hypercube Samples or LHS (Carnell, 2021).
The design chosen was the Latin hypercube with the largest
minimum distance from a set of 10 000 generated candidates.

Many of the input parameters have different values for the
13 different PFTs in JULES. If each of these were perturbed
independently, there would potentially be an intolerably large
input space. Even accounting for the fact that many of the
input settings would not be available (for example, perturb-
ing some input values too far would effectively turn one PFT
into another), the input space would still be of a very high
dimension. In addition, each input setting would need care-
ful thought from the modeller, and the resulting input space
would be highly non-cuboid and complex. This would re-
quire a very large input of time and effort from both mod-
ellers and statisticians.

To combat this explosion of dimensions and effort, we
chose the pragmatic option to perturb each of the PFTs to-
gether by a multiplication factor for each parameter. This
choice was computationally convenient for a top-down, glob-
ally averaged experiment, but we see great potential for op-
timising the values of these parameters for individual PFTs
in further work (a good example is Baker et al., 2022). Many
of the multiplication factors varied the parameter range be-
tween half (0.5) and double (2) the parameter standard value.
Some parameters were a switch and thus were set at zero or
one. When the design was generated on a 0–1 axis, the design
points were simply rounded to zero or one in this parameter.

2 Sequential constraint

Our iterated refocusing experiment uses a combination of
formal and informal methods to sequentially constrain input
parameter space and model behaviour, dependent on both ex-
pertise and expectation of the modellers, and on a more for-
mal comparison with observational data. An important aim
for the initial ensemble is primarily to train a good surro-
gate model, and therefore, we require relatively smooth out-
put across the inputs space, without discontinuities or highly
nonlinear behaviour that might bias an emulator. Our initial
constraint procedures set out to achieve this.

Our initial (wave00) ensemble of 499 members is sequen-
tially constrained to “level 0” by removing 24 ensemble
members which do not run (see Sect. 2.1); to “level 1” by
removing the 50 remaining ensemble member outside of the
threshold in F0 (parameter 8) identified in Sect. 2.1; and to
“level 1a” by removing the 64 remaining members outside

Figure 1. Parameter multiplication factor ranges the initial ensem-
ble (wave00) design.

the threshold in b_wl_io (parameter 4). This leaves us with a
wave00 “level 1a” ensemble of 361 members that at least run
and have a minimally functioning carbon cycle.

2.1 Failure analysis

We analyse the ensemble to remove ensemble members and
corresponding parts of the parameter space that very obvi-
ously cannot hope to produce a useful simulation of the car-
bon cycle. First, we map ensemble members where the sim-
ulator failed to complete a simulation, perhaps due to numer-
ical error (termed “failed”). Second, we identify parts of pa-
rameter space where important parts of the carbon cycle are
completely missing – that is, basic carbon cycle quantities are
at or close to zero at the end of the run (termed “zero-carbon
cycle”). For this second class, we choose a threshold of mean
modern global net primary production (NPP) close to zero
(< 10−5). The nature of perturbed parameter ensembles is
that there is often a setting of some parameters that makes up
for a poor choice of a particular parameter, and so outright
and easily identifiable thresholds for failure in the marginal
range of a particular parameter are rare. However, careful vi-
sualisation and analysis can give the modeller a good idea of
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regions of parameter space that can be removed or parame-
ters that the model is particularly sensitive to.

In Fig. 2, we see a pairs plot of failed runs (upper-right
panels) and zero-carbon cycle panels (lower-left panels). The
plot shows the two-dimensional projections of run failures
against each pair of inputs, allowing visual identification of
inputs that control failures, and any potential two-way inter-
actions.

For example, we can see that both f0_io and b_wl_io have
important thresholds, beyond which there appears almost no
chance of a functioning carbon cycle. Inside these thresh-
olds, if a run does not fail, it appears to always have a func-
tioning carbon cycle of some sort. An interaction between
the two presents as a nearly blank plot at the intersection of
the parameters on the plot (row 8; column 4), with inputs
identifying zero-carbon runs around the edges of the subplot.
This indicates a region where nearly all non-failing ensem-
ble members have a functioning carbon cycle. High values
of b_wl_io result in the unphysical allometric scaling of veg-
etation height to biomass (e.g. 250 m tall trees).

2.2 First-wave results (level 1a constraint)

The globally averaged carbon cycle and land surface be-
haviour of the level 1a constrained ensemble can be seen in
Fig. 3, and anomalies compared to the average of the first
20 years of the runs can be seen in Fig. 4 in the blue lines.

The ensemble displays a very wide range of both absolute
levels and changes in a selection of carbon cycle and land
surface properties, compared to the model run at standard
settings (black). For example, global total NPP runs from ap-
proximately 0 to over 150 GtC yr−1. Soil carbon stocks are
between 0 and more than 4000 GtC, and vegetation stocks
range from 0 to over 2000 GtC.

A large number of first-wave (wave00) ensemble mem-
bers have a hugely diminished carbon cycle and carbon cy-
cle stocks compared to the standard member. This can be
seen from examining Fig. 3, compared to the values of the
standard member (black lines). In particular, most ensemble
members have a very low tree fraction and a higher bare soil
fraction than the standard member. It seems particularly easy
to kill global forests when perturbing parameters. Vegetation
and soil carbon levels are also very low in many members.

Often, perturbing the parameters affects the overall level
of the carbon cycle property, with its behaviour through time
being only a secondary source of variance at the end of the
model run. That is, the carbon cycle level at the end of the
run is more closely related to its level at the beginning of
the run than it is to its change over time. However, there is
variability in the behaviour of the carbon cycle over time,
as can be seen in Fig. 4. Here, we examine a selection of
the most important carbon cycle properties and examine their
change in behaviour over time or anomaly from the starting
value. We see, for example, that changing the parameters can

Table 1. Increasing levels of constraint applied to simulator output
during the experiment.

Level Constraint

Level 0 Simulation completes
Level 1 F0< 0.9
Level 1a B_WL_IO> 0.15
Level 2 NPP, NBP, cVeg, and cSoil

make soil and vegetation carbon increase or decrease over
the simulated century and a half of the model run.

2.3 Level 2 constraints

We can constrain both the historical behaviour of the model
and the model parameter input space by comparison of the
model behaviour with the expectations of the model devel-
opers. Those expectations are set by the knowledge of inde-
pendent observations of the real world or, when unavailable,
by first principles and model simulations from independent
groups.

A simple way to constrain the historical behaviour of the
carbon cycle is by removing from the ensemble those model
runs (and their corresponding input parameter settings) that
lead to seemingly implausible values of basic carbon cycle
quantities in the modern era. In this way, we are left with a
subset of simulations and their corresponding input parame-
ter sets that are consistent with our understanding of the true
carbon cycle.

We choose a small number of broad constraints that
the model must adhere to in order to be considered a
valid and useful simulation. The constraints are four ba-
sic carbon cycle properties, globally averaged over the fi-
nal 20 years of the simulations, near the beginning of the
21st century (1995–2014). They are net biome production
(NBP; nbp_nlim_lnd_sum), net primary production (NPP;
npp_nlim_lnd_sum), and the land surface stocks of soil and
vegetation carbon (respectively, cSoil or cSoil_lnd_sum and
cVeg or cVeg_lnd_sum). We choose generous limits on what
might be called valid, roughly in line with the range of the
CMIP5 Earth system model multi-model ensemble of oppor-
tunity. These constraints are outlined in Table 2. We desig-
nate these limits the level 2 constraints.

Only a very small proportion of ensemble members (38
out of 499) conform to the basic level 2 constraints expected
of a useful model by our modeller. We would like to have a
larger number of ensemble members in this range so that any
emulator we build has enough detail to be useful and so that
we can accurately map out viable input space. We wish to
run more ensemble members within a valid input space, and
so we formally history match to the level 2 space, in order
to generate an input design for a second wave of ensemble
members. We describe this process in Sect. 2.4.
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Figure 2. Two-dimensional projections of the input parameter values in a normalised input space of the ensemble members that failed or had
a zero-carbon cycle.

Table 2. Output limits to be met over the last 2 decades of simula-
tion to match level 2 constraints.

Constraint Minimum Maximum

NBP 0 GtC yr−1 10 GtC yr−1

NPP 35 GtC yr−1 80 GtC yr−1

Soil carbon stock 750 GtC 3000 GtC
Vegetation carbon stock 300 GtC 800 GtC

2.4 History matching

History matching is a process whereby we formally compare
the output of the model to observations of the real system and
reject the parts of input parameter space where the model is
not expected to plausibly simulate reality. Crucially, history
matching recognises uncertainty both in the observations of
the system and the model being used to simulate it. We use
history matching to constrain the input space of the model,
in order to both learn about inputs, and to find an input space
which could credibly be used for future projections.

History matching has been used to great effect for con-
straining complex and computationally expensive simula-

tors in a number of fields, including oil reservoir modelling
(Craig et al., 1996, 1997), galaxy formation (Vernon et al.,
2010, 2014), infectious diseases (Andrianakis et al., 2015),
and climate modelling (Williamson et al., 2013, 2015; Mc-
Neall et al., 2020).

History matching measures the statistical distance be-
tween an observation of a real-world process and the pre-
dicted output of the climate model at an input parameter set-
ting. An input where the model output is deemed too far from
the corresponding observation is considered implausible and
is ruled out. Remaining inputs are conditionally accepted as
not ruled out yet (NROY), recognising that further informa-
tion about the model or observations might yet rule them as
implausible.

A vector representing the outputs of interest of the true
land surface properties is denoted y. Observations of the sys-
tem are denoted z, and we assume that they are made with
uncorrelated and independent errors ε, such that

z= y+ ε. (1)

The climate simulator is represented as an unknown de-
terministic function g(.) that runs at a vector of inputs x.
As a statistical convenience, we imagine a best set of inputs
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Figure 3. Time series of absolute carbon cycle quantities in the JULES ensemble at increasingly strict levels of constraint. The initial
ensemble (wave00) is shown in blue, and the second ensemble (wave01) is shown in red. Ensemble members complying with the level 2
constraints are shown in yellow, and the ensemble member with standard parameter settings is shown in black.

x∗, which minimises the model discrepancy, δ, which rep-
resents the structural difference between the model and re-
ality. In practice, this minimises the difference between cli-
mate model output g(x) and available observations z. We can
therefore relate observations to inputs with

z= g(x∗)+ δ+ ε. (2)

The statistical distance between the simulator, run at a par-
ticular set of inputs x, and reality is measured using implau-
sibility I :

I 2
= |z−E[g(x)]|2/(Var[g(x)] +Var[δ] +Var[ε]). (3)

This equation recognises that there is uncertainty in the
output of the simulator and that this is estimated by an emu-
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Figure 4. Time series of carbon cycle anomaly quantities in the JULES ensemble at increasingly strict levels of constraint. The initial
ensemble (wave00) is shown in blue, and the second ensemble (wave01) is shown in red. Ensemble members complying with the level 2
constraints are shown in yellow, and the ensemble member with standard parameter settings is shown in black.

lator. In this study, we use a Gaussian process emulator, de-
scribed in Appendix C. Distance between the best estimate of
the emulator and the observations must be normalised by un-
certainty in the emulator Var[g(x)], in the observational error
Var[ε], and in the estimate of model discrepancy Var[δ].

We reject any input as implausible where I > 3, after
Pukelsheim’s three-sigma rule; that is, for any unimodal dis-

tribution, 95 % of the probability mass will be contained
within 3 standard deviations of the mean (Pukelsheim, 1994).

2.5 Second-wave (wave01) design

We wish to generate design points for the second wave
(wave01), which we believe will generate output that is not
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implausible; that is, where I < 3 according to Eq. (3). As
seen in the first wave (wave00), randomly sampling from
across a priori plausible input space generates a large num-
ber of ensemble members which do not look like reality. Our
strategy to increase the proportion which generates realis-
tic output is to use the Gaussian process emulator to predict
model output, generate a large number of potential candi-
dates for new design points, and then history match to reject
candidates we believe will lead to implausible output.

After building a Gaussian process emulator for each of the
four modern value constraint outputs (NBP, NPP, cSoil, and
cVeg), we generate a large number (50 000) of samples uni-
formly from the a priori not implausible input space. We cal-
culate I for each of these samples and for each of the four
outputs.

To calculate I , we set our observation as the midpoint of
the tolerated range set by the modeller (see Table 2) and as-
sume that the limits correspond to the 95 % range of an im-
plied distribution (i.e. the range of the limits is assumed to
cover 4 standard deviations of uncertainty in the assumed dis-
tribution). We assume that the expected model discrepancy
is zero and that the uncertainty in the model discrepancy is
also vanishingly small. In effect, this means that most of the
uncertainty budget comes from the emulator and the obser-
vations.

From the subset of samples where I < 3 (i.e. NROY) for
all four outputs, we sample 500 potential design candidates
and calculate the minimum distance between them in in-
put space. We do this 500 times and choose the set with
the largest minimum distance. This is to ensure that no two
points are too close together, which can cause numerical er-
rors when re-building the Gaussian process emulators. This
set is then used to run the second-wave ensemble (wave01).

2.6 Second-wave results

A summary of the output of the second wave in the mod-
ern constraint variables can be seen in Fig. 5, compared to
the same output from the first wave, constrained to level 1a.
There is no simple relationship which allows us to calculate
the number of ensemble members of the second wave that
we expect to fall within the constraints. As history matching
proceeds, input spaces can become very small, complex, and
even discontinuous, resulting in difficulties in using standard
Monte Carlo techniques to sample from them (Williamson
and Vernon, 2013), even with guidance from the history
matching process. The majority of the second-wave ensem-
ble members fall outside of our level 2 constraints, but we see
that the proportion of ensemble members in the second wave
that match the constraints is much higher than in our initial
ensemble. Of the 500 new members, we keep back 100 for
validation purposes in future studies. Of the remaining 400,
128 (32 %) conform to all four constraints, compared with 27
out of 499 (7.4 %) of the initial ensemble.

We find that the majority of ensemble members in the sec-
ond wave fall within any one individual constraint. It is only
when these constraints are combined that the majority are
ruled out. A possible cause of the relatively small number of
ensemble members that fall into all of the level 2 constraints
is one or more poor emulators. We investigate this possibility
in Appendix D2 and conclude that this is likely the emula-
tor for cVeg consistently predicting slightly low, particularly
for the higher (and more realistic) values of cVeg. The av-
erage value of NBP, NPP, cSoil, and cVeg has moved up in
the second wave. There are no ensemble members that fail
to run in the second wave, and there are not any that have
a zero-carbon world; but there are 10 that have numerical
problems and unusual values in their time series, and these
are excluded from our analysis. We do not know if these fail-
ures are caused by numerical problems at those settings or
occur stochastically, and this has an impact on the validity of
the emulator across parameter space. An examination of the
pairs plot of the input space of these suggests that certain pa-
rameter settings may cause these failures, but a sample of 10
is too small to make conclusive statements. A further study,
with a significantly larger or differently targeted ensemble
would be needed to settle this question.

2.7 Induced constraints

In this section, we examine how imposing the level 2 con-
straints in NPP, NBP, cVeg, and cSoil automatically con-
strains both the input parameter space and the range of other
outputs of the ensemble.

2.7.1 Constraints in model outputs

A summary of the induced constraints can be seen in Fig. 6,
calculated as the proportion of the range of the initial ensem-
ble covered by the level-2-constrained ensemble in the 20-
year mean at the end of the time series. We see considerable
induced constraints in output, particularly in soil respiration
(26 %), bare-soil fraction anomaly (29.9 %), soil respiration
anomaly (40.5 %), and C4 plant fraction (43.9 %), which all
reduce the ensemble range to less than 50 % of the original
range.

While a useful measure, this is somewhat prone to outliers
in the initial ensemble, and so examining the time series in
Figs. 3 and 4 is recommended to give more context.

We see time series of the second-wave ensemble in Fig. 3
and anomaly time series in Fig. 4. The raw wave01 ensem-
ble is coloured red, and the subset of ensemble members
that conform to the level 2 constraints is coloured yellow.
We can see a considerable constraint (as expected) in the
time series of the constraint variables (NPP, NBP, cSoil, and
cVeg). However, we also see constraints of varying magni-
tude across all other outputs.

Ignoring outliers, significant induced constraints are also
visible in the leaf area index (LAI), crop harvest carbon flux
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Figure 5. Histograms of ensemble output for the constraint outputs, namely global mean NBP, NPP, cVeg, and cSoil, in wave00 (blue) and
wave01 (red). Shaded grey region indicates the constraints. Colours are semi-transparent, so darker purple indicates where the histograms
overlap.

(fHarvest), tree fraction (treefrac), and others. Our hypothe-
sis is that our cVeg constraint enforces a minimum level of
tree cover and therefore excludes high cover of other PFTs
and bare soil. Such a constraint also seems to exclude low
values of LAI. Our NPP constraint likely excludes low har-
vest flux and low values of soil respiration (RH).

Present-day constraints act to constrain historical anoma-
lies in some of the variables, suggesting that uncertainty in
some future projections might also be reduced. We see, for
example, that constraining present-day levels of the carbon
cycle variables induces a constraint (narrows the range of
anomalies) in NPP trends, soil moisture trends, and carbon
flux due to harvest but not overall NBP trends, which are
made up of other elements. The anomalies in cSoil are con-
strained slightly, and the biggest historical losses of vegeta-
tion carbon (and corresponding increase in bare-soil fraction)
are ruled out. Many (but not all) of the ensemble members
that gain shrub fraction during the run are ruled out, particu-
larly those that gain the most. Ensemble members with high

C4 grasses loss are ruled out. However, changes in vegetation
carbon, leaf area index, and land use are constrained less.

In all cases, both for absolute values and anomaly values,
the standard member lies well within the level-2-constrained
ensemble, indicating that the standard member is consistent
with observations. However, the standard member is often
not central in the ensemble, suggesting that there may be sets
of parameters which better represent the central tendency of
our ensemble.

Further details are seen in Fig. 7, which plots two-
dimensional projections of each pair of modern value model
outputs against each other. The initial ensemble is shown in
red, with the ensemble members passing the level 2 con-
straints (NROY) shown in blue. This plot gives valuable in-
sight into how outputs vary together in the ensemble and how
the constraints rule out large portions of output space, with
the initial ensemble spread over a much wider output space
than the constrained ensemble. For example, many corners
of output space are ruled out, including for example simulta-
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Figure 6. Proportion of the range of all output spanned by the
level-2-constrained ensemble. The outputs are absolute values of
the global mean values for 1995–2014 (a) and the anomaly of those
values from the 1850–1870 values (b).

neously low values of soil respiration (rh_lnd_sum) and land
use change carbon flux (fLuc_lnd_sum) or simultaneously
low values of tree fraction (treeFrac_lnd_mean) and shrub
fraction (shrubFrac_lnd_mean).

2.7.2 Constraining input space with an emulator

Rejecting implausible ensemble members based on their out-
puts gives a corresponding constraint on input space and sets
limits for the parameter space where the model can be said to
be behaving consistently with observations. Using the orig-
inal ensemble members produces a useful but rough con-
straint outline of this valid input space. With only 38 ensem-
ble members in the first wave, we were able to outline the
valid 32 dimensional input space only very approximately.

Using an emulator helps us visualise and quantify the con-
straint of input space when we constrain output space. After
training an emulator on the relationship between model in-
puts and outputs, we can use that emulator in place of the
full simulator JULES-ES-1.0, examining in more detail the
inputs where the emulator predicts that the simulated outputs
would match our constraints. Because the emulator is orders
of magnitude cheaper to evaluate, we can take many thou-
sands of samples from the input space and predict whether
the simulator would match the constraints. This means that
diagrams that summarise the input spaces can show densities
of input points with a much higher resolution. The trade-off
is that the emulator does not perfectly predict simulator out-

put, and so visualisations of constrained input space are ap-
proximate. However, we judge that the emulator is accurate
enough to provide useful insights, given the error and valida-
tion studies in Appendix D.

We fit a Gaussian process emulator to each of the mod-
ern constraint outputs, using the 751 members of both en-
semble waves that have a non-zero-carbon cycle. We take
105 samples uniformly from across the original normalised
input space and reject all emulated members where the cor-
responding mean predicted output does not conform to the
level 2 constraints.

We calculate the proportion of space that conforms to the
level 2 constraints as approximately the proportion of sam-
ples that conform. A large number of samples ensures that
the sampling uncertainty is small. Approximately 12 % of the
initial input space conforms to all four level 2 constraints,
meaning that our constraints have rejected approximately
88 % of initial input space as being incompatible with mod-
ern carbon cycle observations.

We plot two-dimensional projections of the density of ac-
cepted points in Fig. 8, colour coded by relative density. Blue
areas show regions where there is a high concentration of ac-
cepted points, and we would expect a high probability of a
model run at this input location producing a valid carbon cy-
cle. Red areas in the diagram show regions of the input space
where very few ensemble members are accepted as being
consistent with observations. A red point marks the position
of the standard set of parameters.

The diagram shows that some combinations of inputs have
markedly smaller regions with a high relative chance of an
input being accepted as consistent with observations. For
example, only the region of simultaneously low f0_io and
g_area_io has a relatively high chance of being accepted as
being consistent with observations. Simultaneously high val-
ues of these parameters do not tend to give acceptable model
output, and this corner of the input space can be ruled out.

Marginal histograms are plotted on the diagonal of the di-
agram, giving an indication of how many emulated ensem-
ble members are accepted across their entire marginal range.
For example, it is clear that low values of alpha_io are al-
most never accepted. It is possible to find some combination
of the other parameters which compensates for low values
of alpha_io, however, and so the absolute marginal range of
alpha_io is not reduced. This does not mean that the input
space is not constrained; it only means that we have con-
strained the joint space of parameters but not the marginal
space.

It is worth noting that the default parameter (red dot) ap-
pears mainly in the blue regions of the diagram and produces
output itself which is consistent with constraints. The fact
that it is near the border of the acceptable input parame-
ter space for some inputs gives the modeller an indication
of which direction the default parameter could be moved
in, while keeping the model output consistent with observa-
tions. For example, the parameter alpha_io could be safely
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Figure 7. Two-dimensional projections of each pair of modern value model outputs. The initial ensemble is shown in red, with the ensemble
members passing the level 2 constraints (not ruled out yet, NROY) shown in blue.

increased, but decreasing its value would lower the chance
of acceptable model output.

3 Sensitivity analysis

Global sensitivity analysis calculates the impact of changes
in input parameters on simulator outputs, when inputs are
perturbed across the entire valid input space. This is in con-
trast to a local sensitivity analysis, which calculates the im-
pacts of small deviations from a set of default values. The
two types of analysis are useful in different contexts. In our
case, we have large uncertainties relating to a number of in-
puts, model processes, and observations, and so a global sen-
sitivity analysis as a form of screening of important input
parameters is appropriate.

We use a set of Gaussian process emulators, fit to each
of the JULES-ES-1.0 land surface summary outputs, to per-
form two types of global sensitivity analysis. We use the
set of Gaussian process emulators, fit to each of the outputs

used for our level 2 constraint, for a third kind of sensitivity
analysis. Each type of sensitivity analysis tells us different
things about the relationship between the inputs and outputs
of JULES-ES-1.0. At the end of this section, we summarise
the results of all three types of sensitivity analysis in order to
suggest which inputs might be prioritised in any future ex-
periment.

Our aim is to give the modeller quantitative information
on which inputs affect which outputs, to direct the effort for
reducing model biases and errors, and to indicate regions of
parameter space where the model might perform better. We
might identify parameters which have a direct impact on the
model output that does not conform to observations, identify
groups of parameters within a poorly performing process, or
help modellers sample uncertainty in other model applica-
tions.
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Figure 8. Two-dimensional projections of the density of input parameter candidates that conform to level 2 constraints. Blue regions have
a higher density of points and red regions lower. Marginal histograms indicate the marginal density. Red points mark the standard input
parameter value.

3.1 Global one-at-a-time sensitivity

A one-at-a-time (OAAT) sensitivity gives a simple and easy-
to-interpret measure of the impact of each input on a variety
of outputs but does not include the effects of any interactions
between inputs (for example, a non-linear change in model
outputs as two or more inputs vary together).

An OAAT analysis can be completed with a relatively
small number of model runs; for example, a low, middle,
and high run for each parameter in our 32-input-dimension
example would take fewer than 100 runs. However, using
an emulator allows us to better characterise the response of
the model across the entire range of each parameter, which
would take many more dedicated runs if completed using just
the model.

We fit a Gaussian process emulator to each global sum-
mary output, both as a modern value (mean of 1995–2014)
and as an anomaly (change since 1850–1869). We use the

751 members from both wave00 and wave01 that conform
to the level 1a constraints, making as wide an input space as
possible without significant model failure.

We sample from the input space in a one-at-a-time fash-
ion; each input is sampled uniformly across its input space,
with all other inputs held at standard values (note that these
are often not the central value when normalised to the 0–1
range). The variance of the mean emulated output as each in-
put is varied is then used as a measure of the sensitivity of
that output to the corresponding input. Variance is used as
opposed to magnitude of change, as we expect some model
outputs not to rise or fall monotonically as an input varies.

Different model outputs are clearly sensitive to different
model inputs, and so we also seek ways of summarising sen-
sitivity across model outputs. One method is simply to find
the mean effect across model outputs. Sensitivities are nor-
malised so that they lie in a [0− 1] range for each output.
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Figure 9. One-at-a-time sensitivity summary for global summary
modern value output. Panel (a) shows the relationship between each
individual input and output. Panel (b) shows the average of the sen-
sitivity measures by which the inputs are ranked.

Summary measures for each input are then averaged across
all outputs, and the plotted inputs are ranked by their aver-
age influence across all outputs. Individual sensitivities and
summaries can be seen in Fig. 9 for the modern value and in
Fig. 10 for the change over the historic period of the ensem-
ble. The right-hand side of each diagram shows the average
of the sensitivity measures by which the input parameters are
ranked in their influence. We see that for both the modern
value and anomaly only half or fewer of the inputs have dis-
cernible impact on global outputs by this measure.

3.2 Sensitivity of constraint outputs

We add detail to our one-at-at-time sensitivity of important
outputs, namely those that we use for constraining JULES-
ES-1.0 in Fig. 11. We plot the emulated mean of the each
of four outputs – NBP, NPP, vegetation carbon, and soil car-
bon – as each parameter is increased from its minimum to
maximum range. Uncertainty bounds from the emulator pre-
dictions are not plotted, in order to more clearly see the es-
timated main effect of each parameter, but uncertainty esti-
mates for the emulators can be seen in Appendix D1.1.

Figure 10. One-at-a-time sensitivity summary for global summary
anomaly (change since 1850–1870) output. Panel (a) shows the re-
lationship between each individual input and output. Panel(b) shows
the average of the sensitivity measures by which the inputs are
ranked.

For each input, we can see the default value as a verti-
cal dashed line. This plot indicates how deficiencies in the
model output might be corrected by altering individual pa-
rameters. For example, the fact that many ensemble members
have low-vegetation carbon might be countered by increas-
ing alpha_io or nmass_io or reducing g_area_io or tleaf_io.
Of course, these alterations will not be without impact on
other model outputs, causing changes which might be coun-
tered elsewhere or must be weighted against improvements
in a particular output.

3.3 FAST sensitivity analysis

We use Fourier Amplitude Sensitivity Test (FAST) as a fur-
ther measure of global sensitivity of the model outputs to its
inputs. The test is administered as the FAST99 algorithm of
Saltelli et al. (1999), through the R package Sensitivity (Pu-
jol et al., 2015). Again, this algorithm requires a large num-
ber of model runs, and so we use emulated model outputs
in place of dedicated model runs (as previously used in Mc-
Neall et al., 2020, 2016; Carslaw et al., 2013). This comes
at the cost of a risk of inaccuracy, as the emulated model
outputs will not perfectly reproduce the true model runs at
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Figure 11. One-at-a-time sensitivity summary for global summary of the modern value of the constraint variables (NBP, NPP, cVeg, and
cSoil).

the corresponding inputs. However, the emulator is shown to
work adequately for the model outputs in Appendix D.

A FAST gives both first-order and interaction effects; we
sum these together to calculate a total sensitivity index and
to make showing the results across a large number of out-
puts simpler. Individual results for FAST can be seen in Ap-
pendix F, and the summarised results are used in our analysis
in Sect. 3.5

3.4 Monte Carlo filtering

Monte Carlo filtering (MCF) is a type of sensitivity analy-
sis that integrates well with our aim of constraining model
behaviour, given a large ensemble using ensemble member

rejection or history matching. The idea of MCF is to identify
inputs that have an influence on whether the behaviour of
the model falls within or outside acceptable bounds. This is
done by splitting samples of model behaviour into those that
do or do not meet some constraint and then summarising the
difference between the cumulative distributions of the corre-
sponding input variables. The larger the difference between
the cumulative distributions, the more influence the parame-
ter has on whether the model passes the constraint.

A description of MCF and its uses can be found in Pianosi
et al. (2016). McNeall et al. (2020) use MCF to estimate pa-
rameter sensitivity in the land surface model element of a
climate model of intermediate complexity.
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We use a Gaussian process emulator to allow a much larger
set of samples from the input space, in order to make the
MCF process more efficient, at the cost of inaccuracy if the
emulator is poor. We train a Gaussian process emulator on
each of the four constraint outputs, using the 751 ensem-
ble members from both wave00 and wave01 that pass the
level 1a constraints. We draw a large sample of 10 000 pa-
rameter combinations, which are uniformly from the level 1a
input parameter distributions. We use the emulator to esti-
mate the true model output for each of the four constrain-
ing variables, namely NPP, NBP, cVeg, and cSoil, at these
parameter values. We perform a two-sample Kolmogorov–
Smirnov (KS) test on the cumulative distributions of those
input samples, where the mean of the emulator predicts that
the model would be within or outside of the modeller’s level
2 constraints. We use this KS statistic as an indicator of the
sensitivity of the model output to each input. We summarise
the sensitivity in Fig. 12.

3.5 Screening input variables by ranking

Which parameters would we include in a subset of param-
eters for a new ensemble? One way to choose might be to
exclude those parameters which are inactive; i.e. those that
have a small or no effect on any model output of interest un-
der any of our tested measures of sensitivity. For this ensem-
ble, we screen out these inactive inputs by ranking the inputs
using each of the sensitivity measures. We can test OAAT and
FAST SA for both modern value and anomaly for the entire
set of inputs. We can test the MCF for the set of constraint
outputs that we measure against real-world observations (or
modellers’ expectations).

A conservative strategy excludes only those inputs that are
consistently ranked lowest; that is, those that have the lowest
minimum ranking (or those with highest value of the rank).
While we might choose a number of strategies for weighting
outputs to prioritise input sensitivity, a good start might be
to focus on the constraint outputs and later moving towards
other output comparisons. We see, for example, in Table 3
that 17 of the parameters never appear in the top 10 most
important inputs for any measure. Depending on our criteria
for any new design, we would preferentially disregard inputs
that never achieved a high rank.

Using different measures of sensitivity makes our deci-
sions more robust. However, a potential problem with the ap-
proach is that all of the sensitivity analyses share a Gaussian
process emulator and so will be sensitive to any errors or bi-
ases in that shared emulator. It is crucial that model develop-
ers are satisfied with the performance of the emulator across
the relevant parts of input parameter space and its associated
outputs.

Figure 12. Monte Carlo filter sensitivity summary for a global sum-
mary of the modern value of the constraint variables (NBP, NPP,
cVeg, and cSoil). Panel (a) shows the relationship between each
individual input and output. Panel (b) shows the average of the sen-
sitivity measures by which the inputs are ranked.

4 Discussion

In this section, we discuss the results of the constraint process
and the sensitivity analysis and what they tell us about the
model.

4.1 Lessons learnt

As an exploratory and no-regrets analysis, a key outcome of
this experiment is to identify the lessons learnt from it, if we
would do things differently if we did the experiment again,
and what we might take from it to future experiments.

First, would we use the top-down or data-led approach,
where we perturb all inputs simultaneously, across wide pa-
rameter ranges, and constrain with global mean output again?
If we did, could it be improved? This approach provides a
rapid and efficient first look at how model parameters influ-
ence global output. It is useful for an initial screening of the
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Table 3. Summary sensitivity ranks for all carbon cycle outputs, modern value, and anomaly, for three different types of sensitivity analysis.

OAAT_modern_value FAST_modern_value OAAT_anomaly FAST_anomaly MCF_modern_value min_rank

alpha_io 1 1 2 1 1 1
lai_max_io 3 5 1 3 7 1
b_wl_io 2 2 5 2 6 2
fd_io 5 4 3 5 2 2
g_area_io 4 6 4 6 3 3
n_inorg_turnover 7 3 8 4 4 3
r_grow_io 9 8 12 7 5 5
lma_io 6 7 9 12 20 6
tleaf_of_io 8 11 6 16 8 6
a_wl_io 10 9 7 9 13 7
bio_hum_cn 29 26 14 8 18 8
hw_sw_io 17 15 19 15 9 9
kaps_roth 14 13 20 14 10 10
lai_min_io 15 14 10 11 12 10
nmass_io 11 10 13 10 11 10
tupp_io 16 18 11 13 16 11
dqcrit_io 12 12 18 17 19 12
rootd_ft_io 13 16 16 20 15 13
nr_io 20 21 23 28 14 14
g_wood_io 22 22 15 19 21 15
f0_io 18 17 17 18 26 17
l_vg_soil 23 25 25 32 17 17
g_root_io 19 19 22 22 24 19
retran_l_io 26 20 24 24 22 20
dz0v_dh_io 21 24 21 21 25 21
gs_nvg_io 24 23 29 23 27 23
knl_io 27 28 31 30 23 23
sorp 25 31 27 31 28 25
tlow_io 30 29 30 25 30 25
retran_r_io 28 27 26 27 29 26
sigl_io 31 32 32 26 31 26
dcatch_dlai_io 32 30 28 29 32 28

parameters and to see which inputs broadly do or do not af-
fect our outputs of interest. It reduces the chances that there
may be some unidentified parts of input space where the
model would perform better; perhaps we have some discrep-
ancy that can easily be resolved through tuning? The top-
down approach might help us set parameter boundaries in
situations where strong prior knowledge about what the pa-
rameters should be is not there.

However, the approach has its limitations and inefficien-
cies. First, as we see in Sect. 2.2, many runs fail to com-
plete or have highly unrealistic output (e.g. zero-carbon cy-
cle) in the initial ensemble. Only a very small number (less
than 10 %) came within the generously wide observational
constraints on output. This was perhaps inevitable, given the
approach of halving and doubling the most unknown inputs.
Furthermore, the halving and doubling approach leaves the
standard member far from the centre of the ensemble, which
can perhaps lead to an overemphasis on parts of the input
parameter space that were, in hindsight, unlikely to produce
good output.

A more careful initial expert elicitation of input parame-
ters might help to target more realistic uncertainty bounds
for these parameters, although at a cost of more human time
spent on the elicitation process and a higher chance of miss-
ing good (but a priori unlikely) parts of parameter space.
While these kind of experiments can effectively trade the
computation and analysis time for set-up time, the optimal
balance of these is often unclear until after the experiment.

With so many free parameters, there are often ways to off-
set any model discrepancy that can be attributed to a certain
parameter by adjusting another parameter. In this case, it be-
comes hard to rule out the marginal limits of a parameter
when there is always another parameter whose impact can
offset it. This means that it is difficult to advise modellers on
hard constraints for their input parameters. Many constraints
will be joint; that is, they will depend on the plausible setting
of other parameters. We often see, with this kind of set-up,
a constraint that has ruled out the large majority (88 %) of
input space as inconsistent with the observations yet has not
completely ruled out any marginal input space for individual
parameters.
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How could this problem be addressed? One way of shrink-
ing down marginal space might be to add more data com-
parisons, thus increasing the chance that a parameter will be
deemed implausible in a history matching exercise, for exam-
ple. A problem with adding more data until much of the input
space is ruled out, however, is that the chance of an unidenti-
fied but significant model discrepancy goes up, particularly if
some parts of the climate model are deemed more important
and may have had more development attention than others.
In this scenario, a significant model error could lead to ana-
lysts unjustifiably ruling out parameter space that should be
retained.

A counteraction to this problem might be found in a se-
quential approach. Perhaps this can be done by targeting par-
ticular outputs (and inputs) that are deemed more important
in order to get right, before proceeding to data observation
comparisons where relationships are more uncertain. The
later data observation comparisons would carry less weight,
and a modelling judgement could be made as to the cut-off
point where the analysis continued to add value. Our sensitiv-
ity analysis might also help here; narrowing down the most
important inputs to perturb in a repeat (or continuation) of the
experiment could significantly simplify the input parameter
space under investigation.

Another strategy might be a simple vote system of con-
straints, whereby an input is excluded if a number of model
outputs fail to meet expectations at a particular input, or a
more involved history matching process. A number of mul-
tivariate approaches to history matching have been taken in
the past, usually either using a maximum value of implau-
sibility or using a mean squared error approach to calculate
an overall implausibility of an input (see, e.g., Vernon et al.,
2010).

5 Conclusions and further work

In this study, we were able to produce a perturbed parameter
ensemble of land surface simulations and associated parame-
ter sets using JULES-ES-1.0, consistent with our understand-
ing and observations of the true behaviour of the land surface
and considerably more tightly constrained than an initial en-
semble.

An initial design, purposely chosen to produce a wide
range of ensemble behaviour, generated only a very small
number of members (37/499) that would conform to a set of
four basic constraints on global carbon cycle and land sur-
face properties. In this first wave (wave00) of model simula-
tions, there were identifiable marginal limits for parameters
b_wl_io and f0_io that caused the simulation to fail or to
produce zero-carbon-cycle climates. These limits were quite
near the initial design limits and removing outliers therefore
did not shrink input space much.

We were able to train Gaussian process emulators of global
mean summaries of many land surface properties, with mean

absolute errors all less than 10 % of the span of the ensemble.
After using the emulators to predict outputs that would fall
within reasonable constraints in the four key outputs, a much
higher proportion (128 of 400 members) of a second wave of
simulations complied with the constraints. Emulator perfor-
mance improved for most outputs after adding data from the
second wave to the training set, particularly for those mem-
bers that passed the level 2 constraints. This means that anal-
yses will be more accurate and have less uncertainty than
they would have when training with only the initial ensemble.
When constraining input space to level 2, using the four basic
observational constraints and the emulator removed 88 % of
initial input parameter space, but marginal ranges were hard
to constrain. There were induced constraints of varying de-
grees when the ensemble output was constrained by using the
four carbon cycle observations.

We used three types of global sensitivity analysis to iden-
tify the most (and least) important parameters. A number of
inputs which have very little impact on global output were
identified and would be recommended to be excluded from
further analyses in order to simplify the input space and im-
prove emulator performance. Detailed information on the re-
lationship between individual parameters and global mean
outputs will be useful to modellers identifying ways to im-
prove the simulator. A focus on the key uncertain parameters
will be useful for modellers and to inform future improve-
ments of JULES ahead of the next generation Earth system
models.

The potential of observations to further constrain input
parameter space could and should be explored. Both more
waves of simulations – further improving emulators and re-
ducing uncertainty – and new observations of unconstrained
outputs could be tried. Care must be taken to ensure that
adding more observations does not unduly increase the
chances of including an unidentified simulator discrepancy.

We might identify parts of the parameter space where
the model does better at reproducing observations, rather
than simply removing parts of the parameter space where
the model does poorly. Regions that produce more realistic
carbon vegetation (cVeg), for example, or airborne fraction
could be targeted in an optimisation or calibration routine. A
simple analysis could illustrate parts of the input parameter
space that do better than the standard ensemble member.

Finally, we could use sensitivity analysis and uncertainty
quantification to quantify the impact that observations of the
land surface might have on the uncertainty of future projec-
tions and the parameters by which that uncertainty is man-
ifest. A useful extension to this study would identify which
observations would best constrain future projections of the
carbon cycle and by how much.

In summary, we have successfully constrained the input
space and corresponding output space for simulating the car-
bon cycle with the JULES-ES model. As part of the pro-
cess, we gained lots of valuable insight into the threshold be-
haviour associated with certain parameters and the marginal
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impact of parameter settings. This information is extremely
useful in arriving at a single parameter set for the full com-
plexity Earth system model for which only a single parameter
set is realisable. Ultimately, the analyses used here could be
extended, and applied to future experiments, to better under-
stand and constrain terrestrial carbon cycle feedbacks – a key
uncertainty in setting carbon budgets necessary to meet the
Paris Agreement climate goals.

Appendix A: Parameters

A set of input parameters and their descriptions can be seen
in Table A1.

Table A1. Uncertain input parameters in JULES-ES-1p0.

Parameter Description

alpha_io Quantum efficiency (mol CO2 per mol PAR photons).
lai_max_io Maximum leaf area index (LAI).
b_wl_io Allometric exponent relating the target woody biomass to the leaf area index.
fd_io Scale factor for dark respiration.
g_area_io Disturbance rate (/360 d).
n_inorg_turnover Parameter controlling the lifetime of the inorganic N pool.
r_grow_io Growth respiration fraction.
lma_io Leaf mass per unit area (kgLeaf m−2).
a_wl_io Allometric coefficient relating the target woody biomass to the leaf area index (kgC m−2).
bio_hum_cn Parameter controlling ratio of carbon to nitrogen for microbial biomass (BIO) and long-lived humified (HUM) pools.
nmass_io Top leaf nitrogen content per unit mass (kgN kgLeaf−1).
kaps_roth Specific soil respiration rate for the RothC submodel for each soil carbon pool.
hw_sw_io Ratio of N stem to N heartwood (kgN kgN−1) from the TRY database.
tleaf_of_io Temperature below which leaves are dropped (K).
dqcrit_io Critical humidity deficit (kg H2O per kg air).
lai_min_io Minimum leaf area index (LAI).
tupp_io Upper temperature for photosynthesis (◦C).
retran_l_io Fraction of retranslocated leaf N.
rootd_ft_io Parameter determining the root depth (m).
l_vg_soil Switch for van Genuchten soil hydraulic model.
dz0v_dh_io Rate of change of vegetation roughness length for momentum with height.
f0_io Maximum ratio of internal to atmospheric CO2 concentration.
sigl_io Specific density of leaf carbon (kgC m−2 of leaf).
g_root_io Turnover rate for root biomass (out of 360 d).
gs_nvg_io Surface conductance (m s−1).
retran_r_io Fraction of retranslocated root N.
g_wood_io Turnover rate for woody biomass (out of 360 d).
nr_io Root nitrogen concentration (kgN kgC−1).
knl_io Parameter for decay of nitrogen through the canopy as a function of LAI.
sorp Parameter controlling the leaching of inorganic N through the soil profile.
dcatch_dlai_io Rate of change of canopy capacity with LAI (kg m−2).
tlow_io Lower temperature for photosynthesis (◦C).
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Appendix B: Outputs

A set of land surface and carbon cycle outputs of JULES-ES-
1.0 and their descriptions can be seen in Table B1.

Table B1. Uncertain input parameters in JULES-ES-1p0. n/a – not applicable

Output Description Units

npp_nlim_lnd_sum Net primary production on land as carbon mass flux kg m−2 s−1

nbp_lnd_sum Carbon mass flux out of atmosphere due to net biospheric production on land kg m−2 s−1

cSoil_lnd_sum Carbon mass in model soil pool kg m−2

cVeg_lnd_sum Carbon mass in vegetation kg m−2

lai_lnd_mean Leaf area index n/a
rh_lnd_sum Total heterotrophic respiration on land as carbon mass flux kg m−2 s−1

fLuc_lnd_sum Net carbon mass flux into atmosphere due to land use change kg m−2 s−1

fHarvest_lnd_sum Carbon mass flux into atmosphere due to crop harvesting kg m−2 s−1

treeFrac_lnd_mean Fractional cover of each surface type %
baresoilFrac_lnd_mean Bare-soil percentage area coverage %
shrubFrac_lnd_mean Percentage cover by shrub %
c3PftFrac_lnd_mean Percentage cover by C3 plant functional type %
c4PftFrac_lnd_mean Percentage cover by C4 plant functional type %

Appendix C: The emulator

As a summary univariate output of the simulator, land surface
model JULES-ES-1.0, the term y is treated as an uncertain
function f () of the input vector x so that y = f (x).

We produce a predictive distribution for y at any simu-
lator input vector, conditional on the points already run or
the design (Y,X). We use a kriging function, or a Gaussian
process (GP) regression emulator, from the package DiceK-
riging (Roustant et al., 2012) in the statistical programming
environment R (R Core Team, 2016).

The GP regression is specified hierarchically with a sepa-
rate mean and covariance function. For prediction purposes,
we assume that the trend is a linear function of the inputs x
and adjust with a GP.

f (x)= h(x)T β +Z(x),

where h(x)T β is a mean function, and the residual process Z
is a zero-mean stationary GP. The covariance kernel c of Z

Cov(Z,Z′)= σ 2c(x,x′)

can be specified in a number of different ways: we use the
default option of a Matern v = 5/2 function so that

c(x,x′)=

(
1+

√
5|x− x′|
θ

+
5|x− x′|2

3θ2

)

exp

(
−

√
5|x− x′|
θ

)
,

where θ describes the characteristic length scales (or rough-
ness parameters), which are a measure of how quickly infor-
mation about the function is lost moving away from a design
point in any dimension.

These, along with other hyperparameters, are estimated
via maximum likelihood estimation from the training set
(Y,X), so the approach is not fully Bayesian. We use uni-
versal kriging with no nugget term, meaning that there is
zero uncertainty for model outputs in the training set, and
the mean prediction is forced through those points.

Details of the universal kriging process used can be found
in Sect. 2.1, the kernel in Sect. 2.3, and examples of trend
and hyperparameter estimation in Sect. 3 of Roustant et al.
(2012).

Appendix D: How good is the emulator?

We assess the quality of the Gaussian process emulator for a
number of outputs that we use for constraining the parame-
ters of JULES.

Although there are a large number of possible metrics for
validating emulators (see, e.g., Al-Taweel, 2018), we prefer
those that give the modeller information about the perfor-
mance of the emulator in terms of the output of the model
and the context of the entire ensemble. As such, we wish to
relate the performance directly to the model output and to
metrics that make sense and are important to the modeller.
Although the uncertainty estimate of a particular the emula-
tor prediction is important, it takes a secondary role to the
performance of the posterior mean prediction in our work.
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Figure D1. Leave-one-out summaries of emulator fits for modern value carbon cycle quantities. The first wave (wave00) is blue, and the
second wave (wave01) is red.

D1 Leave-one-out metrics

We use a leave-one-out prediction metric to initially assess
the quality of our Gaussian process emulators. For each of
the outputs of interest, each of the 361 ensemble members
which form the level-1a-constrained ensemble is removed in
turn. A Gaussian process emulator is trained in its absence
and then the withheld ensemble member is predicted. We re-
peat the process while adding the 390 successful members
of the second wave (wave01), in order to assess the value of
adding extra training points for the emulator.

Figures D1 and D2 show summary plots of the actual value
against the predicted value (the mean of the Gaussian pro-
cess), and associated uncertainty (±2 standard deviations)
for each output, for both modern values and anomaly, or
for change in the output over the duration of the simulation.
For each output, we include a summary of the performance
across the ensemble in the form of the proportional mean ab-
solute error (PMAE), which we define as the mean absolute
error in the prediction when that error is expressed as a frac-
tion of the range of the ensemble. The PMAE is calculated
when all 751 members are used to train each GP emulator.
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Figure D2. Leave-one-out summaries of emulator fits for modern value anomaly carbon cycle quantities. The first wave (wave00) is blue,
and the second wave (wave01) is red.

For the modern value, we find that the PMAE ranges from
between around 3 % and around 8 % of the range of the en-
semble, with the emulator for fLuc_lnd_sum performing best
(PMAE= 3.05 %) and shrubfrac_lnd_sum performing worst
(PMAE= 8.25 %).

For the anomaly output, we find a similar range, with the
emulator for fLuc_lnd_sum anomaly scoring a PMAE of
3.07 % and the poorest performance of c4PftFrac_lnd_mean
anomaly scoring a PMAE of 6.59 % (Fig. D2).

We see the value of including the extra ensemble members
in the training set in Fig. D3. For both the modern value and
anomaly outputs, we plot PMAE using the emulators trained

with the 361 wave00 level 1a ensemble with those trained,
including the former plus the 390 wave01 ensemble. Points
below the diagonal line show an improvement in the perfor-
mance of the emulator for that output. Not all emulators show
an increase in performance using this metric, but the vast ma-
jority do.

D1.1 Assessing emulator variance

To assess emulator variance, we produced rank histograms
(Hamill, 2001) for the emulators of the 13 modern value out-
puts, both for absolute (Fig. D4) and for anomaly (Fig. D5)
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Figure D3. Proportional mean absolute error (PMAE) summaries
for selected JULES modern value (a) and anomaly (b) outputs. Hor-
izontal axes show PMAE using only wave00 level-1a-constrained
outputs, while vertical axes show the same summary using wave00
and wave01 outputs. Outputs below the diagonal line show an over-
all improvement in emulator performance.

outputs. Leave-one-out tests were conducted for the 751 en-
semble members of wave00 (level 1a) and wave01 combined.
For each ensemble member, 1000 predictions were simulated
from the prediction distribution and ranked, and the rank of
the observation was compared. A well-calibrated prediction
produces a uniform distribution of the ranks across ensemble
members. A domed shape in the histogram indicates that un-
certainty is overestimated (i.e. we do better in the prediction
than we think), and a U shape indicates that uncertainty is
underestimated.

We see that most emulators have well-calibrated un-
certainty estimates, without obvious deviations from uni-

Table D1. Confusion matrix for leave-one-out emulator predictions
of whether the true model outputs conform to the level 2 output
constraints. Correct predictions are on the diagonal of the table.

Model
Out In

Emulator Out 309 14
In 14 24

form histograms. Exceptions are perhaps apparent in out-
puts fLuc_lnd_sum, fHarvest_lnd_sum, and cVeg_lnd_sum,
which show a distribution weighted near the centre of the
histogram. In all of these cases, this indicates a mild overes-
timate of uncertainty, which is less concerning than an under-
estimate of uncertainty. In this case, we can be more confi-
dent of the behaviour of the mean of the emulator prediction
than our uncertainty estimate would indicate.

D2 Predicting members that satisfy level 2 constraints

A useful measure of the practical utility of our emulator is
the accuracy with which we can predict if a given input con-
figuration will produce model output that conforms to a set of
constraints. Here, we focus on the accuracy of our emulator
for predicting ensemble members that conform to our reason-
able level 2 constraints. These ensemble members produce
output that is reasonable in a very broad way; i.e. roughly
consistent with a functioning carbon cycle, our observations
of the world, and the CMIP6 ensemble but not directed at a
particular set of observations.

We perform a leave-one-out cross-validation on the out-
puts that we use for the level 2 constraint, namely the
modern-day value of the global sum of NBP, NPP, soil car-
bon, and vegetation carbon. We show the results of the leave-
one-out posterior mean predictions in Fig. D6. If we treat the
posterior mean predictions as model runs and constrain them
using the same thresholds as the level 2 results, then we can
convert them into a binary forecast for whether they are in
or out of the constraint. While this loses some information, it
is a useful summary. We predict 24 ensemble members cor-
rectly as being in the constraints and 309 correctly as being
out. We predict 14 incorrectly as being out when they should
be in (false negative) and 14 incorrectly as being in when they
should be out. A contingency table summarising these results
is presented in Table D1. We use the R verification package
(NCAR – Research Applications Laboratory, 2015) to calcu-
late a number of skill scores, including the equitable threat
score (ETS), which we calculate at 0.34, and the Heidke skill
score (HSS), which we calculate at 0.51. These scores (as
well as the raw numbers) indicate that we have a predictive
system, which could well be improved.

Studying Fig. D6, we see that a possible culprit for many
of the constraint prediction errors is the relatively poor qual-
ity of the emulator for vegetation carbon (cVeg). That emula-
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Figure D4. Rank histogram to test the emulator uncertainty estimate for 13 modern value 1 outputs, covering the absolute values of major
land surface and carbon cycle outputs of JULES-ES-1.0. A uniform distribution indicates a well-calibrated uncertainty estimate. A domed
shape indicates overestimated uncertainties, while a U shape indicates underestimated uncertainties.

tor predicts a relatively large number of ensemble members
to have a lower vegetation carbon compared to we see in real-
ity (and many close to zero) when the true vegetation is high.
This leads to a number of false negatives. Conversely, when
the vegetation carbon is relatively low, there are a small num-
ber being over-predicted, leading to false positives. This is
not a consistent bias, so we cannot simply add a discrepancy
value all across the input space; more subtlety is required in
order to improve the emulator and predictions.

We try a number of strategies to improve the emulator, in-
cluding transformation of the cVeg output by taking logs or
using the square root. These can considerably improve the
emulator for low values of the output. Unfortunately, we do
not believe that the very low values are realistic and are there-
fore not very informative about higher values. Indeed, trans-
forming the output has the impact of making the leave-one-
out scores for the ensemble members that conform to level 2
constraints worse.

We try a number of different covariance types and optimi-
sation methods within the emulator fitting process for cVeg,
but none improves the performance for level-2-conforming
ensemble members.

It appears that the initial design for the experiment was
set too wide, with many ensemble members having unreal-
istically low carbon vegetation values. This meant that this
emulator is difficult to build, output is not smooth, and the
constraint may well benefit from an iteration of the history
matching, getting the initial ranges more close to being cor-
rect, and having a smoother output.
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Figure D5. Rank histogram to test the emulator uncertainty estimate for 13 modern value outputs, covering the anomaly values of major land
surface and carbon cycle outputs of JULES-ES-1.0. A uniform distribution indicates a well-calibrated uncertainty estimate. A domed shape
indicates overestimated uncertainties, while a U shape indicates underestimated uncertainties.
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Figure D6. Leave-one-out predictions of the status of the initial ensemble members that are either in or out of the level 2 constraints in NBP,
NPP, cVeg, and cSoil.

Appendix E: Impact of uncertainty on the sensitivity
analysis

We use visualisation to assess the impact of emulator uncer-
tainty on the one-at-a-time sensitivity analysis in Fig. E1 (for
modern value) and Fig. E2 (for modern value anomaly out-
puts of JULES-ES-1.0).

Each row in the matrix of plots is an output, and each col-
umn is an input, so each individual plot shows an emulated
estimate of how an output varies across an input when each
input is varied independently. The emulator mean predic-
tion is shown as a black line, and the emulator uncertainty
is shown as a grey shaded area. Each row is normalised to
the largest range of variability, so the reader can see the im-
pact of each input in for each particular output. This plot al-
lows the reader to see the magnitude of the variability relative
to the emulator uncertainty. For some outputs (for example,
treefrac_lnd_sum), the variability is much larger than the un-
certainty. For some (for example, cVeg_lnd_sum), the uncer-
tainty is relatively larger. However, it is possible in all out-
puts to identify the input parameters with the largest impact
on outputs.
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Figure E1. Impact of emulator uncertainty on the sensitivity analysis for modern value outputs.
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Figure E2. Impact of emulator uncertainty on the sensitivity analysis for modern value anomaly outputs.
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Appendix F: FAST sensitivity analysis details

Summaries of FAST sensitivity analysis for both modern
value and anomaly outputs of JULES-ES-1.0 can be found
in Figs. F1 and F2, respectively.

Figure F1. FAST sensitivity analysis summary for modern value
outputs.
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