Articles | Volume 16, issue 10
https://doi.org/10.5194/gmd-16-2851-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-2851-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An internal solitary wave forecasting model in the northern South China Sea (ISWFM-NSCS)
Yankun Gong
State Key Laboratory of Tropical Oceanography, South China Sea
Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301,
China
Xueen Chen
College of Oceanic and Atmospheric Sciences, Ocean University of
China, Qingdao, 266100, China
Jiexin Xu
State Key Laboratory of Tropical Oceanography, South China Sea
Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301,
China
Jieshuo Xie
State Key Laboratory of Tropical Oceanography, South China Sea
Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301,
China
Zhiwu Chen
State Key Laboratory of Tropical Oceanography, South China Sea
Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301,
China
Yinghui He
State Key Laboratory of Tropical Oceanography, South China Sea
Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301,
China
Shuqun Cai
CORRESPONDING AUTHOR
State Key Laboratory of Tropical Oceanography, South China Sea
Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301,
China
Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
Related authors
Yankun Gong, Xueen Chen, Jiexin Xu, Zhiwu Chen, Qingyou He, Ruixiang Zhao, Xiao-Hua Zhu, and Shuqun Cai
Geosci. Model Dev., 18, 5413–5433, https://doi.org/10.5194/gmd-18-5413-2025, https://doi.org/10.5194/gmd-18-5413-2025, 2025
Short summary
Short summary
A new internal solitary wave (ISW) numerical model in the northern South China Sea (ISWNM-NSCS v2.0) improves ISW predictions by incorporating background currents and inhomogeneous stratifications. Additionally, viscosity and diffusivity coefficients are optimized to maintain stable stratifications, extending the forecasting period. Sensitivity experiments show that ISWNM-NSCS v2.0 significantly enhances predictions of various wave properties.
Libang Xu, Bin Jia, Yu Liu, Xue'en Chen, and Donglin Guo
EGUsphere, https://doi.org/10.5194/egusphere-2025-4290, https://doi.org/10.5194/egusphere-2025-4290, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We compared two methods to calculate ice-ocean drag coefficient in Bohai Sea. Results demonstrate that in the thin ice environment, the ice-bottom surface skin drag and the ice floe edge form drag are the main components. One method better predicts ice extent, the other better predicts ice season duration. Higher ice-ocean drag melts ice from below and cools water to form new ice. Our findings improve regional ice forecasts, enhancing safety for shipping and coastal industries.
Yankun Gong, Xueen Chen, Jiexin Xu, Zhiwu Chen, Qingyou He, Ruixiang Zhao, Xiao-Hua Zhu, and Shuqun Cai
Geosci. Model Dev., 18, 5413–5433, https://doi.org/10.5194/gmd-18-5413-2025, https://doi.org/10.5194/gmd-18-5413-2025, 2025
Short summary
Short summary
A new internal solitary wave (ISW) numerical model in the northern South China Sea (ISWNM-NSCS v2.0) improves ISW predictions by incorporating background currents and inhomogeneous stratifications. Additionally, viscosity and diffusivity coefficients are optimized to maintain stable stratifications, extending the forecasting period. Sensitivity experiments show that ISWNM-NSCS v2.0 significantly enhances predictions of various wave properties.
Hao Huang, Pengyang Song, Shi Qiu, Jiaqi Guo, and Xueen Chen
Geosci. Model Dev., 16, 109–133, https://doi.org/10.5194/gmd-16-109-2023, https://doi.org/10.5194/gmd-16-109-2023, 2023
Short summary
Short summary
The Oceanic Regional Circulation and Tide Model (ORCTM) is developed to reproduce internal solitary wave dynamics. The three-dimensional nonlinear momentum equations are involved with the nonhydrostatic pressure obtained via solving the Poisson equation. The validation experimental results agree with the internal wave theories and observations, demonstrating that the ORCTM can successfully describe the life cycle of nonlinear internal solitary waves under different oceanic environments.
Zheen Zhang, Thomas Pohlmann, and Xueen Chen
Ocean Sci., 17, 393–409, https://doi.org/10.5194/os-17-393-2021, https://doi.org/10.5194/os-17-393-2021, 2021
Short summary
Short summary
In this study, we found that the interannual subsurface temperature and salinity variability of the Bay of Bengal (BoB) shows a remarkable delayed correlation with the Indian Ocean Dipole mode. We employed a regional model and determined the contributions of the coastal Kelvin waves and the westward-moving Rossby waves to this correlation. An analysis of the salinity budget revealed that the advection terms dominate the subsurface salinity changes in the BoB.
Cited articles
Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman, M. C., Centurioni, L. R., Chao, S. Y., Chang, M. H., Farmer, D. M., Fringer, O. B., Fu, K. H., Gallacher, P. C., Graber, H. C., Helfrich, K. R., Jachec, S. M., Jackson, C. R., Klymak, J. M., Ko, D. S., Jan, S., Shaun Johnston, T. M., Legg, S., Lee, I. H., Lien, R. C., Mercier, M. J., Moum, J. N., Musgrave, R., Park, J. H., Pickering, A. I., Pinkel, R., Rainville, L., Ramp, S. R., Rudnick, D. L., Sarkar, S., Scotti, A., Simmons, H. L., St Laurent, L. C., Venayagamoorthy, S. K., Wang, Y. H., Wang, J., Yang, Y. J., Paluszkiewicz, T., and Tang, T. Y.: The formation and fate of
internal waves in the South China Sea, Nature, 521, 65–69, https://doi.org/10.1038/nature14399, 2015.
Álvarez, Ó., Izquierdo, A., González, C. J., Bruno, M., and
Mañanes, R.: Some considerations about non-hydrostatic vs. hydrostatic
simulation of short-period internal waves. A case study: The Strait of
Gibraltar, Cont. Shelf Res., 181, 174–186, https://doi.org/10.1016/j.csr.2019.05.016, 2019.
Beardsley, R. C., Duda, T. F., Lynch, J. F., Irish, J. D., Ramp, S. R.,
Chiu, C. S., Tang, T. Y., Yang, Y. J., and Fang, G.: Barotropic tide in the
northeast South China Sea, IEEE J. Oceanic Eng., 29,
1075–1086, https://doi.org/10.1109/JOE.2004.833226, 2004.
Buijsman, M. C., Kanarska, Y., and McWilliams, J. C.: On the generation and
evolution of nonlinear internal waves in the South China Sea, J.
Geophys. Res.-Oceans, 115, C02012, https://doi.org/10.1029/2009JC005275, 2010a.
Buijsman, M. C., McWilliams, J. C., and Jackson, C. R.: East-west asymmetry
in nonlinear internal waves from Luzon Strait, J. Geophys.
Res.-Oceans, 115, C10057, https://doi.org/10.1029/2009JC006004,
2010b.
Cai, S., Long, X., and Gan, Z.: A numerical study of the generation and
propagation of internal solitary waves in the Luzon Strait, Oceanol.
Acta, 25, 51–60, https://doi.org/10.1016/S0399-1784(02)01181-7,
2002.
Cummins, P. F. and Oey, L. Y.: Simulation of barotropic and baroclinic
tides off northern British Columbia, J. Phys. Oceanogr., 27,
762–781, https://doi.org/10.1175/1520-0485(1997)027<0762:SOBABT>2.0.CO;2, 1997.
Du, T., Tseng, Y. H., and Yan, X. H.: Impacts of tidal currents and Kuroshio
intrusion on the generation of nonlinear internal waves in Luzon
Strait, J. Geophys. Res.-Oceans, 113, C08015, https://doi.org/10.1029/2007JC004294, 2008.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic
ocean tides, J. Atmos. Ocean. Tech., 19, 183–204,
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002.
Farmer, D., Li, Q., and Park, J. H.: Internal wave observations in the South
China Sea: The role of rotation and non-linearity, Atmos.-Ocean, 47,
267–280, https://doi.org/10.3137/OC313.2009, 2009.
Farmer, D. M., Alford, M. H., Lien, R. C., Yang, Y. J., Chang, M. H., and
Li, Q.: From Luzon Strait to Dongsha Plateau: Stages in the life of an
internal wave, Oceanography, 24, 64–77, 2011.
Gerkema, T. and Zimmerman, J. T. F.: An introduction to internal waves, Royal NIOZ Lecture Notes, 207 pp., http://www.vliz.be/imisdocs/publications/60/307760.pdf (last access: 23 May 2023), 2008.
Gong, Y.: Three-dimensional MITgcm model of Internal solitary waves in the northern South China Sea, Zenodo [code and data set], https://doi.org/10.5281/zenodo.6792999, 2022.
Guo, C., Chen, X., Vlasenko, V., and Stashchuk, N.: Numerical investigation
of internal solitary waves from the Luzon Strait: Generation process,
mechanism and three-dimensional effects, Ocean Model., 38, 203–216,
https://doi.org/10.1016/j.ocemod.2011.03.002, 2011.
Jin, G., Lai, Z., and Shang, X.: Numerical study on the spatial and temporal
characteristics of nonlinear internal wave energy in the Northern South
China sea, Deep-Sea Res. Pt. I, 178,
103640, https://doi.org/10.1016/j.dsr.2021.103640, 2021.
Lai, Z., Jin, G., Huang, Y., Chen, H., Shang, X., and Xiong, X.: The
generation of nonlinear internal waves in the South China Sea: A
three-dimensional, nonhydrostatic numerical study, J. Geophys. Res.-Oceans, 124, 8949–8968, https://doi.org/10.1029/2019JC015283, 2019.
Legg, S. and Huijts, K. M.: Preliminary simulations of internal waves and
mixing generated by finite amplitude tidal flow over isolated
topography, Deep-Sea Res. Pt. II, 53,
140–156, https://doi.org/10.1016/j.dsr2.2005.09.014, 2006.
Li, Q.: Numerical assessment of factors affecting nonlinear internal waves
in the South China Sea, Prog. Oceanogr., 121, 24–43, https://doi.org/10.1016/j.pocean.2013.03.006, 2014.
Liu, A. K. and Hsu, M. K.: Internal wave study in the South China Sea using
synthetic aperture radar (SAR), Int. J. Remote Sens., 25,
1261–1264, https://doi.org/10.1080/01431160310001592148, 2004.
Locarnini, M. M., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M., Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K. W., Paver, C. R., and Smolyar, I. V.: World Ocean Atlas
2018, Volume 1: Temperature, A. Mishonov, Technical Editor, NOAA Atlas NESDIS 81, 52 pp., http://www.nodc.noaa.gov/OC5/indprod.html (last access: 23 May 2023), 2019.
Marshall, J., Hill, C., Perelman, L., and Adcroft, A.: Hydrostatic,
quasi-hydrostatic, and nonhydrostatic ocean modelling, J. Geophys. Res.-Oceans, 102, 5733–5752, https://doi.org/10.1029/96JC02776, 1997.
Plato, E. A., Boller, R. A., Baynes, K., Wong, M. M., Rice, Z., McGann, M., King, B. A., and Pressley, N. N.: Highlighting Recent Uses of the NASA Worldview Mapping Application, in: AGU Fall Meeting, No. GSFC-E-DAA-TN76137-1, https://ui.adsabs.harvard.edu/abs/2019AGUFMIN21B..04P/abstract, 2019 (data available at: https://worldview.earthdata.nasa.gov, last access: 17 May 2023).
Ramp, S. R., Tang, T. Y., Duda, T. F., Lynch, J. F., Liu, A. K., Chiu, C.
S., Bahr, F., L., Kim, H., R., and Yang, Y. J.: Internal solitons in the
northeastern South China Sea, Part I: Sources and deep water
propagation, IEEE J. Oceanic Eng., 29, 1157–1181, 2004.
Ramp, S. R., Park, J. H., Yang, Y. J., Bahr, F. L., and Jeon, C.:
Latitudinal structure of solitons in the South China Sea, J. Phys. Oceanogr., 49, 1747–1767, https://doi.org/10.1175/JPO-D-18-0071.1, 2019.
Rayson, M. D., Jones, N. L., and Ivey, G. N.: Temporal variability of the
standing internal tide in the Browse Basin, Western Australia, J. Geophys. Res.-Oceans, 117, C06013, https://doi.org/10.1029/2011JC007523, 2012.
Rayson, M. D., Jones, N. L., and Ivey, G. N.: Observations of
large-amplitude mode-2 nonlinear internal waves on the Australian North West
shelf, J. Phys. Oceanogr., 49, 309–328, https://doi.org/10.1175/JPO-D-18-0097.1, 2019.
Shaw, P. T., Ko, D. S., and Chao, S. Y.: Internal solitary waves induced by
flow over a ridge: With applications to the northern South China
Sea, J. Geophys. Res.-Oceans, 114, C02019,
https://doi.org/10.1029/2008JC005007, 2009.
Simmons, H., Chang, M. H., Chang, Y. T., Chao, S. Y., Fringer, O., Jackson,
C. R., and Ko, D. S.: Modeling and prediction of internal waves in the South
China Sea, Oceanography, 24, 88–99, 2011.
Stewart, K. D., Hogg, A. M., Griffies, S. M., Heerdegen, A. P., Ward, M. L.,
Spence, P., and England, M. H.: Vertical resolution of baroclinic modes in
global ocean models, Ocean Model., 113, 50–65, https://doi.org/10.1016/j.ocemod.2017.03.012, 2017.
Vlasenko, V., Stashchuk, N., Guo, C., and Chen, X.: Multimodal structure of baroclinic tides in the South China Sea, Nonlin. Processes Geophys., 17, 529–543, https://doi.org/10.5194/npg-17-529-2010, 2010.
Xie, J., He, Y., Chen, Z., Xu, J., and Cai, S.: Simulations of internal solitary wave interactions with mesoscale eddies in the northeastern South China Sea, J. Phys. Oceanogr., 45, 2959–2978, https://doi.org/10.1175/JPO-D-15-0029.1, 2015.
Xie, J., He, Y., Lü, H., Chen, Z., Xu, J., and Cai, S.: Distortion and broadening of internal solitary wavefront in the northeastern South China Sea deep basin, Geophys. Res. Lett., 43, 7617–7624, https://doi.org/10.1002/2016GL070093, 2016.
Xu, J., He, Y., Chen, Z., Zhan, H., Wu, Y., Xie, J., Shang, X., Ning, D.,
Fang, W., and Cai, S.: Observations of different effects of an anti-cyclonic
eddy on internal solitary waves in the South China Sea, Prog. Oceanogr., 188, 102422, https://doi.org/10.1016/j.pocean.2020.102422, 2020.
Yuan, C., Wang, Z., and Chen, X.: The derivation of an isotropic model for internal waves and its application to wave generation, Ocean Model., 153, 101663, https://doi.org/10.1016/j.ocemod.2020.101663, 2020.
Zeng, Z., Chen, X., Yuan, C., Tang, S., and Chi, L.: A numerical study of
generation and propagation of type-a and type-b internal solitary waves in
the northern South China Sea, Acta Oceanol. Sin., 38, 20–30,
https://doi.org/10.1007/s13131-019-1495-2, 2019.
Zhang, H.: Modulation of Upper Ocean Vertical Temperature Structure and Heat
Content by a Fast-Moving Tropical Cyclone, J. Phys. Oceanogr., 53, 493–508,
https://doi.org/10.1175/JPO-D-22-0132.1, 2022.
Zhang, Z., Fringer, O. B., and Ramp, S. R.: Three-dimensional,
nonhydrostatic numerical simulation of nonlinear internal wave generation
and propagation in the South China Sea, J. Geophys. Res.-Oceans, 116, C05022, https://doi.org/10.1029/2010JC006424, 2011.
Zhao, Z. and Alford, M. H.: Source and propagation of internal solitary
waves in the northeastern South China Sea, J. Geophys. Res.-Oceans, 111, C11012, https://doi.org/10.1029/2006JC003644, 2006.
Zheng, Q., Yuan, Y., Klemas, V., and Yan, X. H.: Theoretical expression for
an ocean internal soliton synthetic aperture radar image and determination
of the soliton characteristic half width, J. Geophys. Res.-Oceans, 106, 31415–31423, https://doi.org/10.1029/2000JC000726,
2001.
Zheng, Q., Susanto, R. D., Ho, C. R., Song, Y. T., and Xu, Q.: Statistical
and dynamical analyses of generation mechanisms of solitary internal waves
in the northern South China Sea, J. Geophys. Res.-Oceans, 112, C03021, https://doi.org/10.1029/2006JC003551, 2007.
Short summary
Internal solitary waves (ISWs) play crucial roles in mass transport and ocean mixing in the northern South China Sea. Massive numerical investigations have been conducted in this region, but there was no systematic evaluation of a three-dimensional model about precisely simulating ISWs. Here, an ISW forecasting model is employed to evaluate the roles of resolution, tidal forcing and stratification in accurately reproducing wave properties via comparison to field and remote-sensing observations.
Internal solitary waves (ISWs) play crucial roles in mass transport and ocean mixing in the...