Articles | Volume 16, issue 5
https://doi.org/10.5194/gmd-16-1481-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-16-1481-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reproducible and relocatable regional ocean modelling: fundamentals and practices
Marine System Modelling, National Oceanography Centre, Liverpool, UK
James Harle
Marine System Modelling, National Oceanography Centre, Liverpool, UK
Jason Holt
Marine System Modelling, National Oceanography Centre, Liverpool, UK
Anna Katavouta
Marine System Modelling, National Oceanography Centre, Liverpool, UK
Dale Partridge
Plymouth Marine Laboratory, Plymouth, UK
Jenny Jardine
Marine System Modelling, National Oceanography Centre, Liverpool, UK
Sarah Wakelin
Marine System Modelling, National Oceanography Centre, Liverpool, UK
Julia Rulent
Marine System Modelling, National Oceanography Centre, Liverpool, UK
Anthony Wise
Marine System Modelling, National Oceanography Centre, Liverpool, UK
Katherine Hutchinson
Laboratoire LOCEAN/IPSL, Paris, France
David Byrne
Marine System Modelling, National Oceanography Centre, Liverpool, UK
Diego Bruciaferri
Met Office, Exeter, UK
Enda O'Dea
Met Office, Exeter, UK
Michela De Dominicis
Marine System Modelling, National Oceanography Centre, Liverpool, UK
Pierre Mathiot
Institut des Géosciences et de l’Environnement, University Grenoble Alpes/CNRS/IRD/G-INP, Grenoble, France
Andrew Coward
Marine System Modelling, National Oceanography Centre, Southampton, UK
Andrew Yool
Marine System Modelling, National Oceanography Centre, Southampton, UK
Julien Palmiéri
Marine System Modelling, National Oceanography Centre, Southampton, UK
Gennadi Lessin
Plymouth Marine Laboratory, Plymouth, UK
Claudia Gabriela Mayorga-Adame
Marine System Modelling, National Oceanography Centre, Liverpool, UK
Valérie Le Guennec
Marine System Modelling, National Oceanography Centre, Liverpool, UK
Institute of Mathematical Sciences, Pusan National University, Busan, South Korea
Alex Arnold
Met Office, Exeter, UK
Clément Rousset
Laboratoire LOCEAN/IPSL, Paris, France
Related authors
David Byrne, Jeff Polton, Enda O'Dea, and Joanne Williams
Geosci. Model Dev., 16, 3749–3764, https://doi.org/10.5194/gmd-16-3749-2023, https://doi.org/10.5194/gmd-16-3749-2023, 2023
Short summary
Short summary
Validation is a crucial step during the development of models for ocean simulation. The purpose of validation is to assess how accurate a model is. It is most commonly done by comparing output from a model to actual observations. In this paper, we introduce and demonstrate usage of the COAsT Python package to standardise the validation process for physical ocean models. We also discuss our five guiding principles for standardised validation.
Juan Manuel Castillo, Huw W. Lewis, Akhilesh Mishra, Ashis Mitra, Jeff Polton, Ashley Brereton, Andrew Saulter, Alex Arnold, Segolene Berthou, Douglas Clark, Julia Crook, Ananda Das, John Edwards, Xiangbo Feng, Ankur Gupta, Sudheer Joseph, Nicholas Klingaman, Imranali Momin, Christine Pequignet, Claudio Sanchez, Jennifer Saxby, and Maria Valdivieso da Costa
Geosci. Model Dev., 15, 4193–4223, https://doi.org/10.5194/gmd-15-4193-2022, https://doi.org/10.5194/gmd-15-4193-2022, 2022
Short summary
Short summary
A new environmental modelling system has been developed to represent the effect of feedbacks between atmosphere, land, and ocean in the Indian region. Different approaches to simulating tropical cyclones Titli and Fani are demonstrated. It is shown that results are sensitive to the way in which the ocean response to cyclone evolution is captured in the system. Notably, we show how a more rigorous formulation for the near-surface energy budget can be included when air–sea coupling is included.
Dorothée Vallot, Nicolas C. Jourdain, and Pierre Mathiot
EGUsphere, https://doi.org/10.5194/egusphere-2025-2866, https://doi.org/10.5194/egusphere-2025-2866, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Some recent studies show that the topography at the base of an ice shelf has consequences for its interaction with the ocean. To describe friction velocity in the melt parameterisation, we use a drag coefficient dependent on the distance of the first wet cell to the ice and the basal topography rather than a fixed-tuned parameter. We find that it is less dependent on the choice of vertical resolution and, while providing similar total melt, it gives more weight to highly crevassed areas.
Dale Partridge, Ségolène Berthou, Rebecca Millington, James Clark, Lucy Bricheno, Juan Manuel Castillo, Julia Rulent, and Huw Lewis
EGUsphere, https://doi.org/10.5194/egusphere-2025-3654, https://doi.org/10.5194/egusphere-2025-3654, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Phytoplankton blooms are governed by the availability of light and nutrients, both of which are affected by mixing in the upper layers of the ocean, which is impacted by wave activity on the surface. Most numerical ocean models estimate waves through a parameterisation, here we explicitly resolve waves through a coupled wave model to examine the impact on the strength and timing of phytoplankton blooms, particular during storms when wave activity is elevated.
Jozef Skákala, David Ford, Keith Haines, Amos Lawless, Matthew J. Martin, Philip Browne, Marcin Chrust, Stefano Ciavatta, Alison Fowler, Daniel Lea, Matthew Palmer, Andrea Rochner, Jennifer Waters, Hao Zuo, Deep S. Banerjee, Mike Bell, Davi M. Carneiro, Yumeng Chen, Susan Kay, Dale Partridge, Martin Price, Richard Renshaw, Georgy Shapiro, and James While
Ocean Sci., 21, 1709–1734, https://doi.org/10.5194/os-21-1709-2025, https://doi.org/10.5194/os-21-1709-2025, 2025
Short summary
Short summary
UK marine data assimilation (MDA) involves a closely collaborating research community. In this paper, we offer both an overview of the state of the art and a vision for the future across all of the main areas of UK MDA, ranging from physics to biogeochemistry to coupled DA. We discuss the current UK MDA stakeholder applications, highlight theoretical developments needed to advance our systems, and reflect upon upcoming opportunities with respect to hardware and observational missions.
Adrian Peter Martin, Noelie Benoist, Brian Bett, Anieke Brombacher, Jennifer Durden, Sophy Oliver, and Andrew Yool
EGUsphere, https://doi.org/10.5194/egusphere-2025-2180, https://doi.org/10.5194/egusphere-2025-2180, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Although seemingly inhospitable, under huge pressure and with permanent darkness, the seafloor has a diversity of organisms. They are almost entirely dependent on food sinking down through the ocean onto the seafloor. This model allows us to study how these organisms survive in this hostile environment. Making use of evidence that biological characteristics, like lifetime, vary with size and temperature, this model can simulate the fate of seafloor creatures from bacteria to large sea cucumbers.
Dale Partridge, Deep Banerjee, David Ford, Ke Wang, Jozef Skakala, Juliane Wihsgott, Prathyush Menon, Susan Kay, Daniel Clewley, Andrea Rochner, Emma Sullivan, and Matthew Palmer
EGUsphere, https://doi.org/10.5194/egusphere-2025-3346, https://doi.org/10.5194/egusphere-2025-3346, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study outlines the development and testing of a Digital Twin Ocean (DTO) framework, aimed at improving coastal ocean forecasts through the use of autonomous underwater gliders. A fleet of gliders were deployed in the western English Channel during August–September 2024 to collect measurements of temperature, salinity, chlorophyll and oxygen, aiming to track the movement of the harmful algal bloom Karenia mikimotoi.
Samantha Siedlecki, Stanley Nmor, Gennadi Lessin, Kelly Kearney, Subhadeep Rakshit, Colleen Petrik, Jessica Luo, Cristina Schultz, Dalton Sasaki, Kayla Gillen, Anh Pham, Christopher Somes, Damian Brady, Jeremy Testa, Christophe Rabouille, Isa Elegbede, and Olivier Sulpis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1846, https://doi.org/10.5194/egusphere-2025-1846, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Benthic biogeochemical models are essential for simulating seafloor carbon cycling and climate feedbacks, yet vary widely in structure and assumptions. This paper introduces SedBGC_MIP, a community initiative to compare existing models, refine key processes, and assess uncertainty. We highlight discrepancies through case studies and introduce needs including observational benchmarks. Ultimately, we seek to improve climate and resource projections.
Robert J. Wilson, Yuri Artioli, Giovanni Galli, James Harle, Jason Holt, Ana M. Queirós, and Sarah Wakelin
Ocean Sci., 21, 1255–1270, https://doi.org/10.5194/os-21-1255-2025, https://doi.org/10.5194/os-21-1255-2025, 2025
Short summary
Short summary
Marine heatwaves are of growing concern around the world. We use a state-of-the-art ensemble of downscaled climate models to project how often heatwaves will occur in the future across northwestern Europe under a high-emission scenario. The projections show that, without emission reductions, heatwaves will occur more than half of the time in the future. We show that the seafloor is expected to experience much more frequent heatwaves than the sea surface in the future.
Yavor Kostov, Paul R. Holland, Kelly A. Hogan, James A. Smith, Nicolas C. Jourdain, Pierre Mathiot, Anna Olivé Abelló, Andrew H. Fleming, and Andrew J. S. Meijers
EGUsphere, https://doi.org/10.5194/egusphere-2025-2423, https://doi.org/10.5194/egusphere-2025-2423, 2025
Short summary
Short summary
Icebergs ground when they reach shallow topography such as Bear Ridge in the Amundsen Sea. Grounded icebergs can block the transport of sea-ice and create areas of higher and lower sea-ice concentration. We introduce a physically and observationally motivated representation of grounding in an ocean model. In addition, we improve the way simulated icebergs respond to winds, ocean currents, and density differences in sea water. We analyse the forces acting on freely floating and grounded icebergs.
Claire K. Yung, Xylar S. Asay-Davis, Alistair Adcroft, Christopher Y. S. Bull, Jan De Rydt, Michael S. Dinniman, Benjamin K. Galton-Fenzi, Daniel Goldberg, David E. Gwyther, Robert Hallberg, Matthew Harrison, Tore Hattermann, David M. Holland, Denise Holland, Paul R. Holland, James R. Jordan, Nicolas C. Jourdain, Kazuya Kusahara, Gustavo Marques, Pierre Mathiot, Dimitris Menemenlis, Adele K. Morrison, Yoshihiro Nakayama, Olga Sergienko, Robin S. Smith, Alon Stern, Ralph Timmermann, and Qin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2025-1942, https://doi.org/10.5194/egusphere-2025-1942, 2025
Short summary
Short summary
ISOMIP+ compares 12 ocean models that simulate ice-ocean interactions in a common, idealised, static ice shelf cavity setup, aiming to assess and understand inter-model variability. Models simulate similar basal melt rate patterns, ocean profiles and circulation but differ in ice-ocean boundary layer properties and spatial distributions of melting. Ice-ocean boundary layer representation is a key area for future work, as are realistic-domain ice sheet-ocean model intercomparisons.
Yushi Morioka, Eric Maisonnave, Sébastien Masson, Clement Rousset, Luis Kornblueh, Marco Giorgetta, Masami Nonaka, and Swadhin K. Behera
EGUsphere, https://doi.org/10.5194/egusphere-2025-2258, https://doi.org/10.5194/egusphere-2025-2258, 2025
Short summary
Short summary
Ocean mesoscale eddies, which have a horizontal scale with an order of 100 km, play a prominent role in global ocean heat transport that regulates Earth climate. Here we newly develop an eddy-permitting climate model to demonstrate that the increased ocean model resolution improves representation of air-sea interaction in the western and eastern boundary current regions, while the improved sea ice model physics benefit realistic simulation of sea ice variability.
David Storkey, Pierre Mathiot, Michael J. Bell, Dan Copsey, Catherine Guiavarc'h, Helene T. Hewitt, Jeff Ridley, and Malcolm J. Roberts
Geosci. Model Dev., 18, 2725–2745, https://doi.org/10.5194/gmd-18-2725-2025, https://doi.org/10.5194/gmd-18-2725-2025, 2025
Short summary
Short summary
The Southern Ocean is a key region of the world ocean in the context of climate change studies. We show that the Met Office Hadley Centre coupled model with intermediate ocean resolution struggles to accurately simulate the Southern Ocean. Increasing the frictional drag that the seafloor exerts on ocean currents and introducing a representation of unresolved ocean eddies both appear to reduce the large-scale biases in this model.
Gavin A. Schmidt, Kenneth D. Mankoff, Jonathan L. Bamber, Dustin Carroll, David M. Chandler, Violaine Coulon, Benjamin J. Davison, Matthew H. England, Paul R. Holland, Nicolas C. Jourdain, Qian Li, Juliana M. Marson, Pierre Mathiot, Clive R. McMahon, Twila A. Moon, Ruth Mottram, Sophie Nowicki, Anne Olivé Abelló, Andrew G. Pauling, Thomas Rackow, and Damien Ringeisen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1940, https://doi.org/10.5194/egusphere-2025-1940, 2025
Short summary
Short summary
The impact of increasing mass loss from the Greenland and Antarctic ice sheets has not so far been included in historical climate model simulations. This paper describes the protocols and data available for modeling groups to add this anomalous freshwater to their ocean modules to better represent the impacts of these fluxes on ocean circulation, sea ice, salinity and sea level.
Justine Caillet, Nicolas C. Jourdain, Pierre Mathiot, Fabien Gillet-Chaulet, Benoit Urruty, Clara Burgard, Charles Amory, Mondher Chekki, and Christoph Kittel
Earth Syst. Dynam., 16, 293–315, https://doi.org/10.5194/esd-16-293-2025, https://doi.org/10.5194/esd-16-293-2025, 2025
Short summary
Short summary
Internal climate variability, resulting from processes intrinsic to the climate system, modulates the Antarctic response to climate change by delaying or offsetting its effects. Using climate and ice-sheet models, we highlight that irreducible internal climate variability significantly enlarges the likely range of Antarctic contribution to sea-level rise until 2100. Thus, we recommend considering internal climate variability as a source of uncertainty for future ice-sheet projections.
David A. Stappard, Jamie D. Wilson, Andrew Yool, and Toby Tyrrell
EGUsphere, https://doi.org/10.5194/egusphere-2025-436, https://doi.org/10.5194/egusphere-2025-436, 2025
Short summary
Short summary
This research explores nutrient limitations in oceanic primary production. While traditional experiments identify the immediate limiting nutrient at specific locations, this study aims to identify the ultimate limiting nutrient (ULN), which governs long-term productivity. A mathematical model incorporating nitrogen, phosphorus, and iron nutrient cycles is used. The model's results are compared with ocean observational data to assess its effectiveness in investigating the ULN.
Théo Brivoal, Virginie Guemas, Martin Vancoppenolle, Clément Rousset, and Bertrand Decharme
EGUsphere, https://doi.org/10.5194/egusphere-2024-3220, https://doi.org/10.5194/egusphere-2024-3220, 2025
Short summary
Short summary
Snow in polar regions is key to sea ice formation and the Earth's climate, but current climate models simplify snow cover on sea ice. This study integrates an intermediate complexity snow-physics scheme into a sea-ice model designed for climate applications. We show that modelling the temporal changes in properties such as the density and thermal conductivity of the snow layers leads to a more accurate representation of heat transfer between the underlying sea ice and the atmosphere.
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025, https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary
Short summary
The Global Ocean and Sea Ice configuration version 9 (GOSI9) is the new UK hierarchy of model configurations based on the Nucleus for European Modelling of the Ocean (NEMO) and available at three resolutions. It will be used for various applications, e.g. weather forecasting and climate prediction. It improves upon the previous version by reducing global temperature and salinity biases and enhancing the representation of Arctic sea ice and the Antarctic Circumpolar Current.
Alex T. Archibald, Bablu Sinha, Maria R. Russo, Emily Matthews, Freya A. Squires, N. Luke Abraham, Stephane J.-B. Bauguitte, Thomas J. Bannan, Thomas G. Bell, David Berry, Lucy J. Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian A. King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Bengamin I. Moat, Katie Read, Chris Reed, Malcolm J. Roberts, Reinhard Schiemann, David Schroeder, Timothy J. Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Mingxi Yang
Earth Syst. Sci. Data, 17, 135–164, https://doi.org/10.5194/essd-17-135-2025, https://doi.org/10.5194/essd-17-135-2025, 2025
Short summary
Short summary
Here, we present an overview of the data generated as part of the North Atlantic Climate System Integrated Study (ACSIS) programme that are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA; www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC; bodc.ac.uk). The datasets described here cover the North Atlantic Ocean, the atmosphere above (it including its composition), and Arctic sea ice.
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024, https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Short summary
Global climate models do not reliably simulate sea-level change due to ice-sheet–ocean interactions. We propose a community modelling effort to conduct a series of well-defined experiments to compare models with observations and study how models respond to a range of perturbations in climate and ice-sheet geometry. The second Marine Ice Sheet–Ocean Model Intercomparison Project will continue to lay the groundwork for including ice-sheet–ocean interactions in global-scale IPCC-class models.
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used as the physical basis for UK contributions to CMIP7. Documentation of science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details on how SI3 was adapted to work with Met Office coupling methodology and documentation of coupling processes in the model.
Giovanni Galli, Sarah Wakelin, James Harle, Jason Holt, and Yuri Artioli
Biogeosciences, 21, 2143–2158, https://doi.org/10.5194/bg-21-2143-2024, https://doi.org/10.5194/bg-21-2143-2024, 2024
Short summary
Short summary
This work shows that, under a high-emission scenario, oxygen concentration in deep water of parts of the North Sea and Celtic Sea can become critically low (hypoxia) towards the end of this century. The extent and frequency of hypoxia depends on the intensity of climate change projected by different climate models. This is the result of a complex combination of factors like warming, increase in stratification, changes in the currents and changes in biological processes.
Hannah Chawner, Eric Saboya, Karina E. Adcock, Tim Arnold, Yuri Artioli, Caroline Dylag, Grant L. Forster, Anita Ganesan, Heather Graven, Gennadi Lessin, Peter Levy, Ingrid T. Luijkx, Alistair Manning, Penelope A. Pickers, Chris Rennick, Christian Rödenbeck, and Matthew Rigby
Atmos. Chem. Phys., 24, 4231–4252, https://doi.org/10.5194/acp-24-4231-2024, https://doi.org/10.5194/acp-24-4231-2024, 2024
Short summary
Short summary
The quantity of atmospheric potential oxygen (APO), derived from coincident measurements of carbon dioxide (CO2) and oxygen (O2), has been proposed as a tracer for fossil fuel CO2 emissions. In this model sensitivity study, we examine the use of APO for this purpose in the UK and compare our model to observations. We find that our model simulations are most sensitive to uncertainties relating to ocean fluxes and boundary conditions.
Lee de Mora, Ranjini Swaminathan, Richard P. Allan, Jerry C. Blackford, Douglas I. Kelley, Phil Harris, Chris D. Jones, Colin G. Jones, Spencer Liddicoat, Robert J. Parker, Tristan Quaife, Jeremy Walton, and Andrew Yool
Earth Syst. Dynam., 14, 1295–1315, https://doi.org/10.5194/esd-14-1295-2023, https://doi.org/10.5194/esd-14-1295-2023, 2023
Short summary
Short summary
We investigate the flux of carbon from the atmosphere into the land surface and ocean for multiple models and over a range of future scenarios. We did this by comparing simulations after the same change in the global-mean near-surface temperature. Using this method, we show that the choice of scenario can impact the carbon allocation to the land, ocean, and atmosphere. Scenarios with higher emissions reach the same warming levels sooner, but also with relatively more carbon in the atmosphere.
Pierre Mathiot and Nicolas C. Jourdain
Ocean Sci., 19, 1595–1615, https://doi.org/10.5194/os-19-1595-2023, https://doi.org/10.5194/os-19-1595-2023, 2023
Short summary
Short summary
How much the Antarctic ice shelf basal melt rate can increase in response to global warming remains an open question. To achieve this, we compared an ocean simulation under present-day atmospheric condition to a one under late 23rd century atmospheric conditions. The ocean response to the perturbation includes a decrease in the production of cold dense water and an increased intrusion of warmer water onto the continental shelves. This induces a substantial increase in ice shelf basal melt rates.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
David Byrne, Jeff Polton, Enda O'Dea, and Joanne Williams
Geosci. Model Dev., 16, 3749–3764, https://doi.org/10.5194/gmd-16-3749-2023, https://doi.org/10.5194/gmd-16-3749-2023, 2023
Short summary
Short summary
Validation is a crucial step during the development of models for ocean simulation. The purpose of validation is to assess how accurate a model is. It is most commonly done by comparing output from a model to actual observations. In this paper, we introduce and demonstrate usage of the COAsT Python package to standardise the validation process for physical ocean models. We also discuss our five guiding principles for standardised validation.
Katherine Hutchinson, Julie Deshayes, Christian Éthé, Clément Rousset, Casimir de Lavergne, Martin Vancoppenolle, Nicolas C. Jourdain, and Pierre Mathiot
Geosci. Model Dev., 16, 3629–3650, https://doi.org/10.5194/gmd-16-3629-2023, https://doi.org/10.5194/gmd-16-3629-2023, 2023
Short summary
Short summary
Bottom Water constitutes the lower half of the ocean’s overturning system and is primarily formed in the Weddell and Ross Sea in the Antarctic due to interactions between the atmosphere, ocean, sea ice and ice shelves. Here we use a global ocean 1° resolution model with explicit representation of the three large ice shelves important for the formation of the parent waters of Bottom Water. We find doing so reduces salt biases, improves water mass realism and gives realistic ice shelf melt rates.
Katherine E. Turner, Doug M. Smith, Anna Katavouta, and Richard G. Williams
Biogeosciences, 20, 1671–1690, https://doi.org/10.5194/bg-20-1671-2023, https://doi.org/10.5194/bg-20-1671-2023, 2023
Short summary
Short summary
We present a new method for reconstructing ocean carbon using climate models and temperature and salinity observations. To test this method, we reconstruct modelled carbon using synthetic observations consistent with current sampling programmes. Sensitivity tests show skill in reconstructing carbon trends and variability within the upper 2000 m. Our results indicate that this method can be used for a new global estimate for ocean carbon content.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Jane P. Mulcahy, Colin G. Jones, Steven T. Rumbold, Till Kuhlbrodt, Andrea J. Dittus, Edward W. Blockley, Andrew Yool, Jeremy Walton, Catherine Hardacre, Timothy Andrews, Alejandro Bodas-Salcedo, Marc Stringer, Lee de Mora, Phil Harris, Richard Hill, Doug Kelley, Eddy Robertson, and Yongming Tang
Geosci. Model Dev., 16, 1569–1600, https://doi.org/10.5194/gmd-16-1569-2023, https://doi.org/10.5194/gmd-16-1569-2023, 2023
Short summary
Short summary
Recent global climate models simulate historical global mean surface temperatures which are too cold, possibly to due to excessive aerosol cooling. This raises questions about the models' ability to simulate important climate processes and reduces confidence in future climate predictions. We present a new version of the UK Earth System Model, which has an improved aerosols simulation and a historical temperature record. Interestingly, the long-term response to CO2 remains largely unchanged.
Clara Burgard, Nicolas C. Jourdain, Ronja Reese, Adrian Jenkins, and Pierre Mathiot
The Cryosphere, 16, 4931–4975, https://doi.org/10.5194/tc-16-4931-2022, https://doi.org/10.5194/tc-16-4931-2022, 2022
Short summary
Short summary
The ocean-induced melt at the base of the floating ice shelves around Antarctica is one of the largest uncertainty factors in the Antarctic contribution to future sea-level rise. We assess the performance of several existing parameterisations in simulating basal melt rates on a circum-Antarctic scale, using an ocean simulation resolving the cavities below the shelves as our reference. We find that the simple quadratic slope-independent and plume parameterisations yield the best compromise.
Diego Bruciaferri, Marina Tonani, Isabella Ascione, Fahad Al Senafi, Enda O'Dea, Helene T. Hewitt, and Andrew Saulter
Geosci. Model Dev., 15, 8705–8730, https://doi.org/10.5194/gmd-15-8705-2022, https://doi.org/10.5194/gmd-15-8705-2022, 2022
Short summary
Short summary
More accurate predictions of the Gulf's ocean dynamics are needed. We investigate the impact on the predictive skills of a numerical shelf sea model of the Gulf after changing a few key aspects. Increasing the lateral and vertical resolution and optimising the vertical coordinate system to best represent the leading physical processes at stake significantly improve the accuracy of the simulated dynamics. Additional work may be needed to get real benefit from using a more realistic bathymetry.
Stephanie Woodward, Alistair A. Sellar, Yongming Tang, Marc Stringer, Andrew Yool, Eddy Robertson, and Andy Wiltshire
Atmos. Chem. Phys., 22, 14503–14528, https://doi.org/10.5194/acp-22-14503-2022, https://doi.org/10.5194/acp-22-14503-2022, 2022
Short summary
Short summary
We describe the dust scheme in the UKESM1 Earth system model and show generally good agreement with observations. Comparing with the closely related HadGEM3-GC3.1 model, we show that dust differences are not only due to inter-model differences but also to the dust size distribution. Under climate change, HadGEM3-GC3.1 dust hardly changes, but UKESM1 dust decreases because that model includes the vegetation response which, in our models, has a bigger impact on dust than climate change itself.
Yona Silvy, Clément Rousset, Eric Guilyardi, Jean-Baptiste Sallée, Juliette Mignot, Christian Ethé, and Gurvan Madec
Geosci. Model Dev., 15, 7683–7713, https://doi.org/10.5194/gmd-15-7683-2022, https://doi.org/10.5194/gmd-15-7683-2022, 2022
Short summary
Short summary
A modeling framework is introduced to understand and decompose the mechanisms causing the ocean temperature, salinity and circulation to change since the pre-industrial period and into 21st century scenarios of global warming. This framework aims to look at the response to changes in the winds and in heat and freshwater exchanges at the ocean interface in global climate models, throughout the 1850–2100 period, to unravel their individual effects on the changing physical structure of the ocean.
Antony Siahaan, Robin S. Smith, Paul R. Holland, Adrian Jenkins, Jonathan M. Gregory, Victoria Lee, Pierre Mathiot, Antony J. Payne, Jeff K. Ridley, and Colin G. Jones
The Cryosphere, 16, 4053–4086, https://doi.org/10.5194/tc-16-4053-2022, https://doi.org/10.5194/tc-16-4053-2022, 2022
Short summary
Short summary
The UK Earth System Model is the first to fully include interactions of the atmosphere and ocean with the Antarctic Ice Sheet. Under the low-greenhouse-gas SSP1–1.9 (Shared Socioeconomic Pathway) scenario, the ice sheet remains stable over the 21st century. Under the strong-greenhouse-gas SSP5–8.5 scenario, the model predicts strong increases in melting of large ice shelves and snow accumulation on the surface. The dominance of accumulation leads to a sea level fall at the end of the century.
Pradeebane Vaittinada Ayar, Laurent Bopp, Jim R. Christian, Tatiana Ilyina, John P. Krasting, Roland Séférian, Hiroyuki Tsujino, Michio Watanabe, Andrew Yool, and Jerry Tjiputra
Earth Syst. Dynam., 13, 1097–1118, https://doi.org/10.5194/esd-13-1097-2022, https://doi.org/10.5194/esd-13-1097-2022, 2022
Short summary
Short summary
The El Niño–Southern Oscillation is the main driver for the natural variability of global atmospheric CO2. It modulates the CO2 fluxes in the tropical Pacific with anomalous CO2 influx during El Niño and outflux during La Niña. This relationship is projected to reverse by half of Earth system models studied here under the business-as-usual scenario. This study shows models that simulate a positive bias in surface carbonate concentrations simulate a shift in the ENSO–CO2 flux relationship.
Juan Manuel Castillo, Huw W. Lewis, Akhilesh Mishra, Ashis Mitra, Jeff Polton, Ashley Brereton, Andrew Saulter, Alex Arnold, Segolene Berthou, Douglas Clark, Julia Crook, Ananda Das, John Edwards, Xiangbo Feng, Ankur Gupta, Sudheer Joseph, Nicholas Klingaman, Imranali Momin, Christine Pequignet, Claudio Sanchez, Jennifer Saxby, and Maria Valdivieso da Costa
Geosci. Model Dev., 15, 4193–4223, https://doi.org/10.5194/gmd-15-4193-2022, https://doi.org/10.5194/gmd-15-4193-2022, 2022
Short summary
Short summary
A new environmental modelling system has been developed to represent the effect of feedbacks between atmosphere, land, and ocean in the Indian region. Different approaches to simulating tropical cyclones Titli and Fani are demonstrated. It is shown that results are sensitive to the way in which the ocean response to cyclone evolution is captured in the system. Notably, we show how a more rigorous formulation for the near-surface energy budget can be included when air–sea coupling is included.
Matthew Clark, Robert Marsh, and James Harle
Ocean Sci., 18, 549–564, https://doi.org/10.5194/os-18-549-2022, https://doi.org/10.5194/os-18-549-2022, 2022
Short summary
Short summary
The European Slope Current (SC) is a northward-flowing current running parallel to the UK coastline. It is forced by changes in the density gradient of the wider North Atlantic Ocean. As the North Atlantic has warmed since the late 1990s, these gradients have changed strength and moved, reducing the volume and speed of water feeding into the SC. The SC flows into the North Sea, where changes in the species distribution of some plankton and fish have been seen due to the warming inputs.
Reint Fischer, Delphine Lobelle, Merel Kooi, Albert Koelmans, Victor Onink, Charlotte Laufkötter, Linda Amaral-Zettler, Andrew Yool, and Erik van Sebille
Biogeosciences, 19, 2211–2234, https://doi.org/10.5194/bg-19-2211-2022, https://doi.org/10.5194/bg-19-2211-2022, 2022
Short summary
Short summary
Since current estimates show that only about 1 % of the all plastic that enters the ocean is floating at the surface, we look at subsurface processes that can cause vertical movement of (micro)plastic. We investigate how modelled algal attachment and the ocean's vertical movement can cause particles to sink and oscillate in the open ocean. Particles can sink to depths of > 5000 m in regions with high wind intensity and mainly remain close to the surface with low winds and biological activity.
Darren R. Clark, Andrew P. Rees, Charissa M. Ferrera, Lisa Al-Moosawi, Paul J. Somerfield, Carolyn Harris, Graham D. Quartly, Stephen Goult, Glen Tarran, and Gennadi Lessin
Biogeosciences, 19, 1355–1376, https://doi.org/10.5194/bg-19-1355-2022, https://doi.org/10.5194/bg-19-1355-2022, 2022
Short summary
Short summary
Measurements of microbial processes were made in the sunlit open ocean during a research cruise (AMT19) between the UK and Chile. These help us to understand how microbial communities maintain the function of remote ecosystems. We find that the nitrogen cycling microbes which produce nitrite respond to changes in the environment. Our insights will aid the development of models that aim to replicate and ultimately project how marine environments may respond to ongoing climate change.
Charles Pelletier, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, Samuel Helsen, Pierre-Vincent Huot, Christoph Kittel, François Klein, Sébastien Le clec'h, Nicole P. M. van Lipzig, Sylvain Marchi, François Massonnet, Pierre Mathiot, Ehsan Moravveji, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Niels Souverijns, Guillian Van Achter, Sam Vanden Broucke, Alexander Vanhulle, Deborah Verfaillie, and Lars Zipf
Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022, https://doi.org/10.5194/gmd-15-553-2022, 2022
Short summary
Short summary
We present PARASO, a circumpolar model for simulating the Antarctic climate. PARASO features five distinct models, each covering different Earth system subcomponents (ice sheet, atmosphere, land, sea ice, ocean). In this technical article, we describe how this tool has been developed, with a focus on the
coupling interfacesrepresenting the feedbacks between the distinct models used for contribution. PARASO is stable and ready to use but is still characterized by significant biases.
Julia Rulent, Lucy M. Bricheno, J. A. Mattias Green, Ivan D. Haigh, and Huw Lewis
Nat. Hazards Earth Syst. Sci., 21, 3339–3351, https://doi.org/10.5194/nhess-21-3339-2021, https://doi.org/10.5194/nhess-21-3339-2021, 2021
Short summary
Short summary
High coastal total water levels (TWLs) can lead to flooding and hazardous conditions for coastal communities and environment. In this research we are using numerical models to study the interactions between the three main components of the TWL (waves, tides, and surges) on UK and Irish coasts during winter 2013/14. The main finding of this research is that extreme waves and surges can indeed happen together, even at high tide, but they often occurred simultaneously 2–3 h before high tide.
Josué Bock, Martine Michou, Pierre Nabat, Manabu Abe, Jane P. Mulcahy, Dirk J. L. Olivié, Jörg Schwinger, Parvadha Suntharalingam, Jerry Tjiputra, Marco van Hulten, Michio Watanabe, Andrew Yool, and Roland Séférian
Biogeosciences, 18, 3823–3860, https://doi.org/10.5194/bg-18-3823-2021, https://doi.org/10.5194/bg-18-3823-2021, 2021
Short summary
Short summary
In this study we analyse surface ocean dimethylsulfide (DMS) concentration and flux to the atmosphere from four CMIP6 Earth system models over the historical and ssp585 simulations.
Our analysis of contemporary (1980–2009) climatologies shows that models better reproduce observations in mid to high latitudes. The models disagree on the sign of the trend of the global DMS flux from 1980 onwards. The models agree on a positive trend of DMS over polar latitudes following sea-ice retreat dynamics.
Andrew Yool, Julien Palmiéri, Colin G. Jones, Lee de Mora, Till Kuhlbrodt, Ekatarina E. Popova, A. J. George Nurser, Joel Hirschi, Adam T. Blaker, Andrew C. Coward, Edward W. Blockley, and Alistair A. Sellar
Geosci. Model Dev., 14, 3437–3472, https://doi.org/10.5194/gmd-14-3437-2021, https://doi.org/10.5194/gmd-14-3437-2021, 2021
Short summary
Short summary
The ocean plays a key role in modulating the Earth’s climate. Understanding this role is critical when using models to project future climate change. Consequently, it is necessary to evaluate their realism against the ocean's observed state. Here we validate UKESM1, a new Earth system model, focusing on the realism of its ocean physics and circulation, as well as its biological cycles and productivity. While we identify biases, generally the model performs well over a wide range of properties.
Anna Katavouta and Richard G. Williams
Biogeosciences, 18, 3189–3218, https://doi.org/10.5194/bg-18-3189-2021, https://doi.org/10.5194/bg-18-3189-2021, 2021
Short summary
Short summary
Diagnostics of the latest-generation Earth system models reveal the ocean will continue to absorb a large fraction of the anthropogenic carbon released to the atmosphere in the next century, with the Atlantic Ocean storing a large amount of this carbon relative to its size. The ability of the ocean to absorb carbon will reduce in the future as the ocean warms and acidifies. This reduction is larger in the Atlantic Ocean due to a weakening of the meridional overturning with changes in climate.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Svetlana Jevrejeva, Lucy Bricheno, Jennifer Brown, David Byrne, Michela De Dominicis, Andy Matthews, Stefanie Rynders, Hindumathi Palanisamy, and Judith Wolf
Nat. Hazards Earth Syst. Sci., 20, 2609–2626, https://doi.org/10.5194/nhess-20-2609-2020, https://doi.org/10.5194/nhess-20-2609-2020, 2020
Short summary
Short summary
We explore the role of waves, storm surges and sea level rise for the Caribbean region with a focus on the eastern Caribbean islands. We simulate past extreme events, suggesting a storm surge might reach 1.5 m and coastal wave heights up to 12 m offshore and up to 5 m near the coast of St Vincent. We provide sea level projections of up to 2.2 m by 2100. Our work provides quantitative evidence for policy-makers, scientists and local communities to actively protect against climate change.
Lee de Mora, Alistair A. Sellar, Andrew Yool, Julien Palmieri, Robin S. Smith, Till Kuhlbrodt, Robert J. Parker, Jeremy Walton, Jeremy C. Blackford, and Colin G. Jones
Geosci. Commun., 3, 263–278, https://doi.org/10.5194/gc-3-263-2020, https://doi.org/10.5194/gc-3-263-2020, 2020
Short summary
Short summary
We use time series data from the first United Kingdom Earth System Model (UKESM1) to create six procedurally generated musical pieces for piano. Each of the six pieces help to explain either a scientific principle or a practical aspect of Earth system modelling. We describe the methods that were used to create these pieces, discuss the limitations of this pilot study and list several approaches to extend and expand upon this work.
Cited articles
Adcroft, A. and Marshall, D.: How Slippery Are Piecewise-Constant Coastlines in
Numerical Ocean Models?, Tellus A, 50,
95–108, https://doi.org/10.3402/tellusa.v50i1.14514, 1998. a
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.:
Interannual variations in meltwater input to the Southern Ocean from
Antarctic ice shelves, Nat. Geosci., 13, 616–620,
https://doi.org/10.1038/s41561-020-0616-z, 2020. a
Andreas, E. L., Mahrt, L., and Vickers, D.: An Improved Bulk Air-Sea
Surface Flux Algorithm, Including Spray-mediated Transfer,
Q. J. Roy. Meteor. Soc., 141, 642–654, https://doi.org/10.1002/qj.2424,
2015. a
Arheimer, B., Pimentel, R., Isberg, K., Crochemore, L., Andersson, J. C. M., Hasan, A., and Pineda, L.: Global catchment modelling using World-Wide HYPE (WWH), open data, and stepwise parameter estimation, Hydrol. Earth Syst. Sci., 24, 535–559, https://doi.org/10.5194/hess-24-535-2020, 2020. a
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. a
Axell, L. B.: Wind-Driven Internal Waves and Langmuir Circulations in a
Numerical Ocean Model of the Southern Baltic Sea,
J. Geophys. Res., 107, 3204, https://doi.org/10.1029/2001JC000922, 2002. a
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016. a
Baretta, J., Ebenhöh, W., and Ruardij, P.: The European Regional Seas
Ecosystem Model, a Complex Marine Ecosystem Model,
Neth. J. Sea Res., 33, 233–246, https://doi.org/10.1016/0077-7579(95)90047-0, 1995. a
Beck, K.: Test Driven Development: By Example, Addison-Wesley Professional,
ISBN 9780321146533, 2002. a
Belcher, S. E., Grant, A. L. M., Hanley, K. E., Fox-Kemper, B., Van Roekel,
L., Sullivan, P. P., Large, W. G., Brown, A., Hines, A., Calvert, D.,
Rutgersson, A., Pettersson, H., Bidlot, J.-R., Janssen, P. A. E. M., and
Polton, J. A.: A Global Perspective on Langmuir Turbulence in the Ocean
Surface Boundary Layer: FRONTIER, Geophys. Res. Lett., 39, L18605,
https://doi.org/10.1029/2012GL052932, 2012. a
Beljaars, A. C. M.: The parametrization of surface fluxes in large-scale models
under free convection, Q. J. Roy. Meteor. Soc.,
121, 255–270, https://doi.org/10.1002/qj.49712152203, 1995. a
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model
for coastal regions: 1. Model description and validation, J.
Geophys. Res.-Oceans, 104, 7649–7666, 1999. a
Boyer, T., Baranova, O., Coleman, C., Garcia, H., Grodsky, A., Locarnini, R.,
Mishonov, A., Paver, C., Reagan, J., Seidov, D., Smolyar, I., Weathers, K.,
and Zweng, M.: World Ocean Database 2018, Tech. rep., NOAA Atlas NESDIS 87,
technical Ed.: Mishonov, A. V., 2018a. a
Boyer, T. P., Garcia, H. E., Locarnini, R. A., Zweng, M. M., Mishonov, A. V.,
Reagan, J. R., Weathers, K. A., Baranova, O. K., Seidov, D., and Smolyar,
I. V.: World Ocean Atlas 2018, [data set], https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18 (last access: 20 February 2022), 2018b. a
Breivik, Ø., Mogensen, K., Bidlot, J.-R., Balmaseda, M. A., and Janssen, P.
A. E. M.: Surface Wave Effects in the NEMO Ocean Model: Forced and
Coupled Experiments, J. Geophys. Res.-Oceans, 120,
2973–2992, https://doi.org/10.1002/2014JC010565, 2015. a
Brodeau, L., Barnier, B., Treguier, A.-M., Penduff, T., and Gulev, S.: An
ERA40-based atmospheric forcing for global ocean circulation models, Ocean Model., 31, 88–104, https://doi.org/10.1016/j.ocemod.2009.10.005, 2010. a
Bruciaferri, D., Shapiro, G. I., and Wobus, F.: A Multi-Envelope Vertical
Coordinate System for Numerical Ocean Modelling, Ocean Dynam., 68,
1239–1258, https://doi.org/10.1007/s10236-018-1189-x, 2018. a, b
Bruciaferri, D., Shapiro, G., Stanichny, S., Zatsepin, A., Ezer, T., Wobus, F.,
Francis, X., and Hilton, D.: The Development of a 3D Computational Mesh
to Improve the Representation of Dynamic Processes: The Black Sea Test
Case, Ocean Model., 146, 101534, https://doi.org/10.1016/j.ocemod.2019.101534,
2020. a
Bruciaferri, D., Tonani, M., Lewis, H. W., Siddorn, J. R., Saulter, A.,
Castillo Sanchez, J. M., Valiente, N. G., Conley, D., Sykes, P., Ascione, I.,
and McConnell, N.: The Impact of Ocean-Wave Coupling on the
Upper Ocean Circulation During Storm Events, J. Geophys. Res.-Oceans, 126, e2021JC017343, https://doi.org/10.1029/2021JC017343, 2021. a
Bull, C. Y. S., Jenkins, A., Jourdain, N. C., Vaňková, I., Holland,
P. R., Mathiot, P., Hausmann, U., and Sallée, J.: Remote Control of
Filchner‐Ronne Ice Shelf Melt Rates by the Antarctic Slope Current,
J. Geophys. Res.-Oceans, 126, e2020JC016550, https://doi.org/10.1029/2020JC016550,
2021. a
Butenschön, M., Clark, J., Aldridge, J. N., Allen, J. I., Artioli, Y., Blackford, J., Bruggeman, J., Cazenave, P., Ciavatta, S., Kay, S., Lessin, G., van Leeuwen, S., van der Molen, J., de Mora, L., Polimene, L., Sailley, S., Stephens, N., and Torres, R.: ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels, Geosci. Model Dev., 9, 1293–1339, https://doi.org/10.5194/gmd-9-1293-2016, 2016. a, b
Byrne, D., Polton, J., O'Dea, E., and Williams, J.: A Standardised Validation Framework for Ocean Physics Models: Application to the Northwest European Shelf, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2022-218, in review, 2022. a
Castillo, J. M., Lewis, H. W., Mishra, A., Mitra, A., Polton, J., Brereton, A., Saulter, A., Arnold, A., Berthou, S., Clark, D., Crook, J., Das, A., Edwards, J., Feng, X., Gupta, A., Joseph, S., Klingaman, N., Momin, I., Pequignet, C., Sanchez, C., Saxby, J., and Valdivieso da Costa, M.: The Regional Coupled Suite (RCS-IND1): application of a flexible regional coupled modelling framework to the Indian region at kilometre scale, Geosci. Model Dev., 15, 4193–4223, https://doi.org/10.5194/gmd-15-4193-2022, 2022. a, b
Cavaleri, L., Abdalla, S., Benetazzo, A., Bertotti, L., Bidlot, J.-R., Breivik,
Ø., Carniel, S., Jensen, R., Portilla-Yandun, J., Rogers, W., Roland,
A., Sanchez-Arcilla, A., Smith, J., Staneva, J., Toledo, Y., van Vledder,
G., and van der Westhuysen, A.: Wave Modelling in Coastal and Inner Seas,
Prog. Oceanogr., 167, 164–233, https://doi.org/10.1016/j.pocean.2018.03.010,
2018. a
Chen, C., Beardsley, R., and Cowles, G.: An Unstructured Grid,
Finite-Volume Coastal Ocean Model (FVCOM) System, Oceanography,
19, 78–89, https://doi.org/10.5670/oceanog.2006.92, 2006. a
Cheng, K.-Y., Harris, L. M., and Sun, Y. Q.: Enhancing the accessibility of unified modeling systems: GFDL System for High-resolution prediction on Earth-to-Local Domains (SHiELD) v2021b in a container, Geosci. Model Dev., 15, 1097–1105, https://doi.org/10.5194/gmd-15-1097-2022, 2022. a
Craig, P. D. and Banner, M. L.: Modeling Wave-Enhanced Turbulence in the Ocean
Surface Layer, J. Phys. Oceanogr., 24, 2546–2559,
https://doi.org/10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2, 1994. a
Danilov, S.: Ocean Modeling on Unstructured Meshes, Ocean Model., 69,
195–210, https://doi.org/10.1016/j.ocemod.2013.05.005, 2013. a
De Dominicis, M., Polton, J. A., Payo, M. P., and Brown, J.:
JMMP-Group/SEVERN-SWOT: V0.2.0, Zenodo [code], https://doi.org/10.5281/zenodo.7473198,
2022. a, b, c
de Mora, L., Butenschön, M., and Allen, J. I.: The assessment of a global marine ecosystem model on the basis of emergent properties and ecosystem function: a case study with ERSEM, Geosci. Model Dev., 9, 59–76, https://doi.org/10.5194/gmd-9-59-2016, 2016. a
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M., Ligtenberg,
S. R. M., van den Broeke, M. R., and Moholdt, G.: Calving fluxes and basal
melt rates of Antarctic ice shelves, Nature, 502, 89–92,
https://doi.org/10.1038/nature12567, 2013. a
Dorrell, R. M., Lloyd, C. J., Lincoln, B. J., Rippeth, T. P., Taylor, J. R.,
Caulfield, C.-c. P., Sharples, J., Polton, J. A., Scannell, B. D., Greaves,
D. M., Hall, R. A., and Simpson, J. H.: Anthropogenic Mixing in
Seasonally Stratified Shelf Seas by Offshore Wind Farm
Infrastructure, Front. Mar. Sci., 9, 830927,
https://doi.org/10.3389/fmars.2022.830927, 2022. a
Echevin, V., Gévaudan, M., Espinoza-Morriberón, D., Tam, J., Aumont, O., Gutierrez, D., and Colas, F.: Physical and biogeochemical impacts of RCP8.5 scenario in the Peru upwelling system, Biogeosciences, 17, 3317–3341, https://doi.org/10.5194/bg-17-3317-2020, 2020. a
Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J.,
Fairall, C. W., Miller, S. D., Mahrt, L., Vickers, D., and Hersbach, H.: On
the Exchange of Momentum over the Open Ocean, J. Phys.
Oceanogr., 43, 1589–1610, https://doi.org/10.1175/JPO-D-12-0173.1, 2013. a
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of
Barotropic Ocean Tides, J. Atmos. Ocean. Tech.,
19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002. a
England, M. R., Wagner, T. J. W., and Eisenman, I.:
Modeling the breakup of tabular icebergs, Sci. Adv., 6, eabd1273,
https://doi.org/10.1126/sciadv.abd1273, 2020. a
Éthé, C., Person, R., and Aumont, O.: NEMO-PISCES 1D Demonstration guide,
Zenodo [code], https://doi.org/10.5281/zenodo.7139521, 2022. a, b
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J. B.:
Bulk Parameterization of Air-Sea Fluxes: Updates and Verification for the
COARE Algorithm, J. Climate, 16, 571–591,
https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2, 2003. a
Felgate, S. L., Barry, C. D. G., Mayor, D. J., Sanders, R., Carrias, A., Young,
A., Fitch, A., Mayorga-Adame, C. G., Andrews, G., Brittain, H., Cryer, S. E.,
Evans, C. D., Goddard-Dwyer, M., Holt, J. T., Hughes, B. K., Lapworth, D. J.,
Pinder, A., Price, D. M., Rosado, S., and Evans, C.: Conversion of Forest
to Agriculture Increases Colored Dissolved Organic Matter in a
Subtropical Catchment and Adjacent Coastal Environment,
J.
Geophys. Res.-Biogeo., 126, e2021JG006295, https://doi.org/10.1029/2021JG006295, 2021. a
Flather, R. A.: A tidal model of the northwest European continental shelf,
Memoires Societe Royales des Sciences de Liege, Series 6, 141–164, 1976. a
Foldvik, A., Gammelsrød, T., and Tørresen, T.: Circulation and water
masses on the southern Weddell Sea shelf, AGU Books, in: Oceanology of the Antarctic Continental Shelf, edited by: Jacobs, S. S., 5–20,
https://doi.org/10.1029/AR043p0005, 1985. a
Fox-Kemper, B., Hewitt, H., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S.,
Edwards, T., Golledge, N., Hemer, M., Kopp, R., Krinner, G., Mix, A., Notz,
D., Nowicki, S., Nurhati, I., Ruiz, L., Sallée, J.-B., Slangen, A., and Yu,
Y.: Ocean, Cryosphere and Sea Level Change, Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA,
1211–1362, https://doi.org/10.1017/9781009157896.011, 2021. a
Ge, J., Torres, R., Chen, C., Liu, J., Xu, Y., Bellerby, R., Shen, F.,
Bruggeman, J., and Ding, P.: Influence of suspended sediment front on
nutrients and phytoplankton dynamics off the Changjiang Estuary: A
FVCOM-ERSEM coupled model experiment, J. Mar. Syst., 204,
103292, https://doi.org/10.1016/j.jmarsys.2019.103292, 2020. a
Gentile, E. S., Gray, S. L., Barlow, J. F., Lewis, H. W., and Edwards, J. M.:
The Impact of Atmosphere-Ocean-Wave Coupling on the Near-Surface Wind
Speed in Forecasts of Extratropical Cyclones, Bounda.-Lay. Meteorol., https://doi.org/10.1007/s10546-021-00614-4, 2021. a
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality Controlled
Ocean Temperature and Salinity Profiles and Monthly Objective Analyses with
Uncertainty Estimates: THE EN4 DATA SET, J. Geophys. Res.-Oceans, 118, 6704–6716, https://doi.org/10.1002/2013JC009067, 2013. a
Graham, J. A., O'Dea, E., Holt, J., Polton, J., Hewitt, H. T., Furner, R., Guihou, K., Brereton, A., Arnold, A., Wakelin, S., Castillo Sanchez, J. M., and Mayorga Adame, C. G.: AMM15: a new high-resolution NEMO configuration for operational simulation of the European north-west shelf, Geosci. Model Dev., 11, 681–696, https://doi.org/10.5194/gmd-11-681-2018, 2018. a
Grant, A. L. M. and Belcher, S. E.: Characteristics of Langmuir Turbulence
in the Ocean Mixed Layer, J. Phys. Oceanogr., 39,
1871–1887, https://doi.org/10.1175/2009JPO4119.1, 2009. a
Greenberg, D. A., Dupont, F., Lyard, F. H., Lynch, D. R., and Werner, F. E.:
Resolution Issues in Numerical Models of Oceanic and Coastal Circulation,
Cont. Shelf Res., 27, 1317–1343, https://doi.org/10.1016/j.csr.2007.01.023,
2007. a
Griffies, S. M., Böning, C., Bryan, F. O., Chassignet, E. P., Gerdes, R.,
Hasumi, H., Hirst, A., Treguier, A.-M., and Webb, D.: Developments in Ocean
Climate Modelling, Ocean Model., 2, 123–192,
https://doi.org/10.1016/S1463-5003(00)00014-7, 2000. a
Griffiths, S. D.: Kelvin Wave Propagation along Straight Boundaries in
C-grid Finite-Difference Models, J. Computat. Phys., 255,
639–659, https://doi.org/10.1016/j.jcp.2013.08.040, 2013. a
Hacker, J. P., Exby, J., Gill, D., Jimenez, I., Maltzahn, C., See, T.,
Mullendore, G., and Fossell, K.: A Containerized Mesoscale Model and
Analysis Toolkit to Accelerate Classroom Learning, Collaborative Research,
and Uncertainty Quantification, B. Am. Meteor.
Soc., 98, 1129–1138, https://doi.org/10.1175/BAMS-D-15-00255.1, 2017. a
Haidvogel, D. B. and Beckmann, A.: Numerical Ocean Circulation Modeling, Imperial
College Press, Distributed by World Scientific Pub., London, River Edge,
NJ, ISBN 1-86094-114-1, 1999. a
Harley, M. D., Masselink, G., Ruiz de Alegría-Arzaburu, A., Valiente,
N. G., and Scott, T.: Single Extreme Storm Sequence Can Offset Decades of
Shoreline Retreat Projected to Result from Sea-Level Rise, Commun.
Earth Environ., 3, s43247-022-00437-2, https://doi.org/10.1038/s43247-022-00437-2, 2022. a
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del
Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant,
T. E.: Array programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Hashemi, M. R., Neill, S. P., and Davies, A. G.: A coupled tide-wave model for
the NW European shelf seas,
Geophys. Astro. Fluid,
109, 234–253, https://doi.org/10.1080/03091929.2014.944909, 2015. a
Hasselmann, K.: Wave-driven Inertial Oscillations,
Geophysical Fluid Dynamics,
1, 463–502, https://doi.org/10.1080/03091927009365783, 1970. a
Hinrichs, I., Gouretski, V., Pätsch, J., Emeis, K.-C., and Stammer, D.:
North Sea Biogeochemical Climatology (Version 1.1), World Data Center for Climate (WDCC) [data set],
https://doi.org/10.1594/WDCC/NSBClim_v1.1, 2017. a
Holt, J. and Proctor, R.: The Seasonal Circulation and Volume Transport on the
Northwest European Continental Shelf: A Fine-Resolution Model Study,
J. Geophys. Res., 113, C06021, https://doi.org/10.1029/2006JC004034,
2008. a
Holt, J., Harle, J., Proctor, R., Michel, S., Ashworth, M., Batstone, C.,
Allen, I., Holmes, R., Smyth, T., Haines, K., Bretherton, D., and Smith, G.:
Modelling the Global Coastal Ocean, Philos. T. Roy.
Soc. A, 367, 939–951,
https://doi.org/10.1098/rsta.2008.0210, 2009. a
Hoyer, S. and Hamman, J.: xarray: N-D labeled arrays and datasets in
Python, Journal of Open Research Software, 5, 10, https://doi.org/10.5334/jors.148, 2017. a, b, c
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci.
Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Huthnance, J. M.: Circulation, Exchange and Water Masses at the Ocean Margin:
The Role of Physical Processes at the Shelf Edge, Prog. Oceanogr.,
35, 353–431, 1995. a
Jardine, J., Katavouta, A., Polton, J., Holt, J., and Wakelin, S.:
NOC-MSM/SANH: South Asian Nitrogen Hub Regional Ocean Modelling.
NEMOv3.6, Zenodo [code], https://doi.org/10.5281/ZENODO.6423248, 2022. a, b, c
Joughin, I., Smith, B. E., and Holland, D. M.: Sensitivity of 21st century sea
level to ocean-induced thinning of Pine Island Glacier, Antarctica,
Geophys. Res. Lett., 37, L20502, https://doi.org/10.1029/2010GL044819, 2010. a
Kara, A. B., Wallcraft, A. J., and Hurlburt, H. E.: A New Solar Radiation
Penetration Scheme for Use in Ocean Mixed Layer Studies: An
Application to the Black Sea Using a Fine-Resolution Hybrid
Coordinate Ocean Model (HYCOM), J. Phys. Oceanogr., 35,
13–32, 2005. a
Kay, S., Clark, J., Hall, A., Marsh, J., and Fernandes, J.: Marine
biogeochemistry data for the Northwest European Shelf and Mediterranean Sea
from 2006 up to 2100 derived from climate projections, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.dcc9295c, 2020. a
Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and
Janssen, P.: Dynamics and modelling of ocean waves, Cambridge University Press, ISBN 9780521577816, 1996. a
Large, W. G. and Yeager, S.: Diurnal to decadal global forcing for ocean and
sea-ice models: The data sets and flux climatologies, No. NCAR/TN-460+STR, University Corporation for Atmospheric Research,
https://doi.org/10.5065/D6KK98Q6, 2004. a
Large, W. G. and Yeager, S.: The global climatology of an interannually varying
air-sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009. a
Lear, D., Herman, P., Van Hoey, G., Schepers, L., Tonné, N., Lipizer, M.,
Muller-Karger, F., Appeltans, W., Kissling, W., Holdsworth, N., Edwards, M.,
Pecceu, E., Nygård, H., Canonico, G., Birchenough, S., Graham, G., Deneudt,
K., Claus, S., and Oset, P.: Supporting the essential – Recommendations for
the development of accessible and interoperable marine biological data
products, Mar. Policy, 117, 103958, https://doi.org/10.1016/j.marpol.2020.103958,
2020. a, b
Legg, S., Hallberg, R. W., and Girton, J. B.: Comparison of Entrainment in
Overflows Simulated by Z-Coordinate, Isopycnal and Non-Hydrostatic Models,
Ocean Model., 11, 69–97, https://doi.org/10.1016/j.ocemod.2004.11.006, 2006. a
Lewis, E. L. and Perkin, R. G.: Ice pumps and their rates, J. Geophys. Res., 91, 11756, https://doi.org/10.1029/JC091iC10p11756, 1986. a
Lewis, H. W., Castillo Sanchez, J. M., Arnold, A., Fallmann, J., Saulter, A., Graham, J., Bush, M., Siddorn, J., Palmer, T., Lock, A., Edwards, J., Bricheno, L., Martínez-de la Torre, A., and Clark, J.: The UKC3 regional coupled environmental prediction system, Geosci. Model Dev., 12, 2357–2400, https://doi.org/10.5194/gmd-12-2357-2019,
2019a. a, b, c
Lewis, H. W., Castillo Sanchez, J. M., Siddorn, J., King, R. R., Tonani, M., Saulter, A., Sykes, P., Pequignet, A.-C., Weedon, G. P., Palmer, T., Staneva, J., and Bricheno, L.: Can wave coupling improve operational regional ocean forecasts for the north-west European Shelf?, Ocean Sci., 15, 669–690, https://doi.org/10.5194/os-15-669-2019, 2019b. a
Li, X., Shokr, M., Hui, F., Chi, Z., Heil, P., Chen, Z., Yu, Y., Zhai, M., and
Cheng, X.: The spatio-temporal patterns of landfast ice in Antarctica during
2006–2011 and 2016–2017 using high-resolution SAR imagery, Remote Sens. Environ., 242, 111736,
https://doi.org/10.1016/j.rse.2020.111736, 2020. a
Liu, X., Dunne, J. P., Stock, C. A., Harrison, M. J., Adcroft, A., and
Resplandy, L.: Simulating Water Residence Time in the Coastal Ocean: A Global
Perspective, Geophys. Res. Lett., 46, 13910–13919,
https://doi.org/10.1029/2019GL085097, 2019. a
Longuet-Higgins, M. and Stewart, R.: Radiation stresses in water waves; a
physical discussion, with applications, Deep-Sea Res. Pt. I, 11, 529–562, https://doi.org/10.1016/0011-7471(64)90001-4,
1964. a
Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., and Picot, N.: FES2014 global ocean tide atlas: design and performance, Ocean Sci., 17, 615–649, https://doi.org/10.5194/os-17-615-2021, 2021. a, b
Lévy, M., Gavart, M., Mémery, L., Caniaux, G., and Paci, A.: A
four-dimensional mesoscale map of the spring bloom in the northeast Atlantic
(POMME experiment): Results of a prognostic model, J. Geophys. Res.-Oceans, 110, C07S21, https://doi.org/10.1029/2004JC002588, 2005. a
Madec, G. and Team, N. S.: NEMO ocean engine, Zenodo [code], https://doi.org/10.5281/zenodo.1464816, 2022. a
Marchesiello, P., McWilliams, J. C., and Shchepetkin, A.: Open boundary
conditions for long-term integration of regional oceanic models, Ocean
Model., 3, 1–20, https://doi.org/10.1016/S1463-5003(00)00013-5, 2001. a
Marsh, R., Ivchenko, V. O., Skliris, N., Alderson, S., Bigg, G. R., Madec, G., Blaker, A. T., Aksenov, Y., Sinha, B., Coward, A. C., Le Sommer, J., Merino, N., and Zalesny, V. B.: NEMO–ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution, Geosci. Model Dev., 8, 1547–1562, https://doi.org/10.5194/gmd-8-1547-2015, 2015. a
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A
Finite-Volume, Incompressible Navier Stokes Model for Studies of the
Ocean on Parallel Computers, J. Geophys. Res.-Oceans, 102,
5753–5766, https://doi.org/10.1029/96JC02775, 1997. a
Masselink, G., Scott, T., Poate, T., Russell, P., Davidson, M., and Conley, D.:
The Extreme 2013/2014 Winter Storms: Hydrodynamic Forcing and Coastal
Response along the Southwest Coast of England,
Earth Surf. Proc. Land., 41, 378–391, https://doi.org/10.1002/esp.3836, 2016. a
Mathiot, P. and Hutchinson, K.: NEMO Demonstrator: Worked Example of
WED025, Zenodo [code], https://doi.org/10.5281/ZENODO.6817000, 2022. a, b
Mathiot, P., Jenkins, A., Harris, C., and Madec, G.: Explicit representation and parametrised impacts of under ice shelf seas in the z* coordinate ocean model NEMO 3.6, Geosci. Model Dev., 10, 2849–2874, https://doi.org/10.5194/gmd-10-2849-2017, 2017. a
Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H.,
Bouwman, A., Fekete, B. M., Kroeze, C., and Van Drecht, G.: Global Nutrient
Export from WaterSheds 2 (NEWS 2): Model development and implementation,
Environ. Model. Softw., 25, 837–853,
https://doi.org/10.1016/j.envsoft.2010.01.007, 2010. a
Mayorga Adame, C., Polton, J. A., Acevedo, S., and Holt, J.:
NOC-MSM/Belize_workshop: Belize Workshop (Regional NEMO
Ocean in Docker Container), Zenodo [code], https://doi.org/10.5281/ZENODO.6451433, 2022. a
McWilliams, J. C., Sullivan, P. P., and Moeng, C.-H.: Langmuir Turbulence in
the Ocean, J. Fluid Mech., 334, 1–30,
https://doi.org/10.1017/S0022112096004375, 1997. a
Mellor, G. L., Oey, L.-Y., and Ezer, T.: Sigma Coordinate Pressure Gradient
Errors and the Seamount Problem, J. Atmos. Ocean.
Tech., 15, 1122–1131,
https://doi.org/10.1175/1520-0426(1998)015<1122:SCPGEA>2.0.CO;2, 1998. a
Melton, J. R., Arora, V. K., Wisernig-Cojoc, E., Seiler, C., Fortier, M., Chan, E., and Teckentrup, L.: CLASSIC v1.0: the open-source community successor to the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM) – Part 1: Model framework and site-level performance, Geosci. Model Dev., 13, 2825–2850, https://doi.org/10.5194/gmd-13-2825-2020, 2020. a
Merino, N., Le Sommer, J., Durand, G., Jourdain, N. C., Madec, G., Mathiot,
P., and Tournadre, J.: Antarctic icebergs melt over the Southern Ocean:
Climatology and impact on sea ice, Ocean Model., 104, 99–110,
https://doi.org/10.1016/j.ocemod.2016.05.001, 2016. a
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G.,
Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum,
J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert,
A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K., Millan, R.,
Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A.,
Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., van den Broeke, M. R.,
van Ommen, T. D., van Wessem, M., and Young, D. A.: Deep glacial troughs and
stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet,
Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020. a
Myriokefalitakis, S., Ito, A., Kanakidou, M., Nenes, A., Krol, M. C., Mahowald, N. M., Scanza, R. A., Hamilton, D. S., Johnson, M. S., Meskhidze, N., Kok, J. F., Guieu, C., Baker, A. R., Jickells, T. D., Sarin, M. M., Bikkina, S., Shelley, R., Bowie, A., Perron, M. M. G., and Duce, R. A.: Reviews and syntheses: the GESAMP atmospheric iron deposition model intercomparison study, Biogeosciences, 15, 6659–6684, https://doi.org/10.5194/bg-15-6659-2018, 2018. a
NEMO Consortium: NEMO Development Strategy 2023–2027,
Zenodo [code], https://doi.org/10.5281/zenodo.7361464, 2022. a
Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., and Suzuki, T.: The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean, Earth Syst. Sci. Data, 8, 297–323, https://doi.org/10.5194/essd-8-297-2016, 2016. a
Partridge, D.: ACCORD: Addressing Challenges of Coastal Communities through
Ocean Research for Developing Economies Regional Ocean Modelling
Biogeochemistry, Zenodo [code], https://doi.org/10.5281/zenodo.6940832, 2022a. a
Partridge, D.: SANH: South Asian Nitrogen Hub Regional Ocean Modelling
Biogeochemistry, Zenodo [code], https://doi.org/10.5281/zenodo.6907302, 2022b. a, b
Polton, J., Harle, J., de Dominicis, M., and Katavouta, A.:
NOC-MSM/SEAsia: SEAsia, Zenodo [code], https://doi.org/10.5281/ZENODO.6483233,
2022a. a, b, c, d
Polton, J. A., Byrne, D., Wise, A., Holt, J., Katavouta, A., Rulent, J., Gardner, T., Cazaly, M., Hearn, M., Jennings, R., Luong, Q., Loch, S., Gorman, L., and de Mora, L.: British-Oceanographic-Data-Centre/COAsT: v3.2.0 (v3.2.0), Zenodo [code], https://doi.org/10.5281/zenodo.7352697, 2022b. a
Polton, J. A. and Belcher, S. E.: Langmuir Turbulence and Deeply Penetrating
Jets in an Unstratified Mixed Layer, J. Geophys. Res., 112,
C09020, https://doi.org/10.1029/2007JC004205, 2007. a
Polton, J. A., Lewis, D. M., and Belcher, S. E.: The Role of Wave-Induced
Coriolis-Stokes Forcing on the Wind-Driven Mixed Layer,
J. Phys. Oceanogr., 35, 444–457, https://doi.org/10.1175/JPO2701.1,
2005. a
Polton, J. A., Brereton, A., and Holgate, S.: A NEMO Regional Model of the
Bay of Bengal and East Arabian Sea (BoBEAS) Implemented with
MPI across Docker Containers, Zenodo [code], https://doi.org/10.5281/ZENODO.6103525,
2020a. a, b
Polton, J. A., Wise, A., O'Neill, C. K., and O'Dea, E.: AMM7-surge: A
7km Resolution Atlantic Margin Model Surge Configuration Using
NEMOv3.6, Zenodo [code], https://doi.org/10.5281/ZENODO.4022310, 2020b. a
Ponte, R. M., Meyssignac, B., Domingues, C. M., Stammer, D., Cazenave, A., and
Lopez, T.: Guest editorial: relationships between coastal sea level and
large-scale ocean circulation, Surv. Geophys., 40, 1245–1249, 2019. a
Popova, E. E., Yool, A., Coward, A. C., Aksenov, Y. K., Alderson, S. G., de Cuevas, B. A., and Anderson, T. R.: Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model, Biogeosciences, 7, 3569–3591, https://doi.org/10.5194/bg-7-3569-2010, 2010. a
Porter, A. R., Appleyard, J., Ashworth, M., Ford, R. W., Holt, J., Liu, H., and Riley, G. D.: Portable multi- and many-core performance for finite-difference or finite-element codes – application to the free-surface component of NEMO (NEMOLite2D 1.0), Geosci. Model Dev., 11, 3447–3464, https://doi.org/10.5194/gmd-11-3447-2018, 2018. a
Primo, C., Kelemen, F. D., Feldmann, H., Akhtar, N., and Ahrens, B.: A regional atmosphere–ocean climate system model (CCLMv5.0clm7-NEMOv3.3-NEMOv3.6) over Europe including three marginal seas: on its stability and performance, Geosci. Model Dev., 12, 5077–5095, https://doi.org/10.5194/gmd-12-5077-2019, 2019. a
Resplandy, L., Lévy, M., Bopp, L., Echevin, V., Pous, S., Sarma, V. V. S. S., and Kumar, D.: Controlling factors of the oxygen balance in the Arabian Sea's OMZ, Biogeosciences, 9, 5095–5109, https://doi.org/10.5194/bg-9-5095-2012, 2012. a
Richon, C., Dutay, J.-C., Dulac, F., Wang, R., and Balkanski, Y.: Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea, Biogeosciences, 15, 2499–2524, https://doi.org/10.5194/bg-15-2499-2018, 2018. a
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-shelf melting
around antarctica, Science, 341, 266–270, https://doi.org/10.1126/science.1235798, 2013. a, b
Rulent, J.: NOC-MSM/SRIL34, Zenodo [code], https://doi.org/10.5281/zenodo.7464071, 2022. a
Sankar, S., Polimene, L., Marin, L., Menon, N., Samuelsen, A., Pastres, R., and
Ciavatta, S.: Sensitivity of the simulated Oxygen Minimum Zone to
biogeochemical processes at an oligotrophic site in the Arabian Sea,
Ecol. Model., 372, 12–23,
https://doi.org/10.1016/j.ecolmodel.2018.01.016, 2018. a
Sathyendranath, S., Brewin, R., Brockmann, C., Brotas, V., Calton, B., Chuprin,
A., Cipollini, P., Couto, A., Dingle, J., Doerffer, R., Donlon, C., Dowell,
M., Farman, A., Grant, M., Groom, S., Horseman, A., Jackson, T., Krasemann,
H., Lavender, S., Martinez-Vicente, V., Mazeran, C., Mélin, F., Moore, T.,
Müller, D., Regner, P., Roy, S., Steele, C., Steinmetz, F., Swinton, J.,
Taberner, M., Thompson, A., Valente, A., Zühlke, M., Brando, V., Feng, H.,
Feldman, G., Franz, B., Frouin, R., Gould, Jr., R., Hooker, S., Kahru, M.,
Kratzer, S., Mitchell, B., Muller-Karger, F., Sosik, H., Voss, K., Werdell,
J., and Platt, T.: An ocean-colour time series for use in climate studies:
the experience of the Ocean-Colour Climate Change Initiative (OC-CCI),
Sensors, 19, 4285, https://doi.org/10.3390/s19194285, 2019. a
Scambos, T. A., Bohlander, J. A., Shuman, C. A., and Skvarca, P.: Glacier
acceleration and thinning after ice shelf collapse in the Larsen B embayment,
Antarctica, Geophys. Res. Lett., 31, 2001–2004,
https://doi.org/10.1029/2004GL020670, 2004. a
Shchepetkin, A. F. and McWilliams, J. C.: The Regional Oceanic Modeling System
(ROMS): A Split-Explicit, Free-Surface, Topography-Following-Coordinate
Oceanic Model, Ocean Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005. a
Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, Á., and Wind, P.: The EMEP MSC-W chemical transport model – technical description, Atmos. Chem. Phys., 12, 7825–7865, https://doi.org/10.5194/acp-12-7825-2012, 2012. a
Smith, R. S., Mathiot, P., Siahaan, A., Lee, V., Cornford, S. L., Gregory,
J. M., Payne, A. J., Jenkins, A., Holland, P. R., Ridley, J. K., and Jones,
C. G.: Coupling the U.K. Earth System Model to dynamic models of the
Greenland and Antarctic ice sheets,
J. Adv. Model. Earth Sy., e2021MS002520, https://doi.org/10.1029/2021MS002520, 2021. a
Soontiens, N. and Allen, S. E.: Modelling Sensitivities to Mixing and Advection
in a Sill-Basin Estuarine System, Ocean Model., 112, 17–32,
https://doi.org/10.1016/j.ocemod.2017.02.008, 2017. a
Stern, A. A., Adcroft, A., and Sergienko, O.: The effects of Antarctic iceberg
calving-size distribution in a global climate model, J. Geophys.
Res.-Oceans, 121, 5773–5788, https://doi.org/10.1002/2016JC011835, 2016. a
Stokes, G. G.: On the Theory of Oscillatory Waves,
Transactions of the Cambridge Philosophical Society, 8, 441–455, 1847. a
Storkey, D., Blaker, A. T., Mathiot, P., Megann, A., Aksenov, Y., Blockley, E. W., Calvert, D., Graham, T., Hewitt, H. T., Hyder, P., Kuhlbrodt, T., Rae, J. G. L., and Sinha, B.: UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions, Geosci. Model Dev., 11, 3187–3213, https://doi.org/10.5194/gmd-11-3187-2018, 2018. a, b
Tan, J., Fu, J. S., Dentener, F., Sun, J., Emmons, L., Tilmes, S., Sudo, K., Flemming, J., Jonson, J. E., Gravel, S., Bian, H., Davila, Y., Henze, D. K., Lund, M. T., Kucsera, T., Takemura, T., and Keating, T.: Multi-model study of HTAP II on sulfur and nitrogen deposition, Atmos. Chem. Phys., 18, 6847–6866, https://doi.org/10.5194/acp-18-6847-2018, 2018. a
Tolman, H. L., Balasubramaniyan, B., Burroughs, L. D., Chalikov, D. V., Chao,
Y. Y., Chen, H. S., and Gerald, V. M.: Development and implementation of
wind-generated ocean surface wave Modelsat NCEP, Weather Forecast., 17,
311–333, 2002. a
Trotta, F., Fenu, E., Pinardi, N., Bruciaferri, D., Giacomelli, L., Federico,
I., and Coppini, G.: A Structured and Unstructured Grid Relocatable Ocean
Platform for Forecasting (SURF), Physical, Chemical and Biological
Observations and Modelling of Oil Spills in the Mediterranean Sea, 133,
54–75, https://doi.org/10.1016/j.dsr2.2016.05.004, 2016. a
Trotta, F., Federico, I., Pinardi, N., Coppini, G., Causio, S., Jansen, E.,
Iovino, D., and Masina, S.: A Relocatable Ocean Modeling Platform for
Downscaling to Shelf-Coastal Areas to Support Disaster Risk Reduction,
Front. Mar. Sci., 8, 642815, https://doi.org/10.3389/fmars.2021.642815, 2021. a, b
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G.,
Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C. W.,
Bozec, A., Chassignet, E. P., Curchitser, E., Boeira Dias, F., Durack,
P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C.,
Kobayashi, S., Komuro, Y., Large, W. G., Le Sommer, J., Marsland, S. J.,
Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.:
JRA-55 based surface dataset for driving ocean-sea-ice models (JRA55-do),
Ocean Model., 130, 79–139, https://doi.org/10.1016/j.ocemod.2018.07.002, 2018. a, b
Valcke, S., T., C., and L., C.: OASIS3-MCT User Guide, CERFACS, Technical
Report, TR/CMGC/15/38, https://www.cerfacs.fr/oa4web/oasis3-mct_3.0/oasis3mct_UserGuide.pdf (last access: 20 February 2022), 2015. a
Valiente, N. G., Saulter, A., Edwards, J. M., Lewis, H. W., Sanchez, J. M.,
Bruciaferri, D., Bunney, C., and Siddorn, J.: The impact of wave model
source terms and coupling strategies to rapidly developing waves across the
north‐west european shelf during extreme events,
Journal of Marine Science and Engineering, 9, 403, https://doi.org/10.3390/jmse9040403, 2021. a
Wakelin, S. L., Artioli, Y., Holt, J. T., Butenschön, M., and Blackford,
J.: Controls on Near-Bed Oxygen Concentration on the Northwest European
Continental Shelf under a Potential Future Climate Scenario, Prog.
Oceanogr., 187, 102400, https://doi.org/10.1016/j.pocean.2020.102400, 2020. a
Wang, S., Dieterich, C., Döscher, R., Höglund, A., Hordoir, R., Meier, H.
E. M., Samuelsson, P., and Schimanke, S.: Development and evaluation of a new
regional coupled atmosphere-ocean model in the North Sea and Baltic Sea,
Tellus A, 67, 24284,
https://doi.org/10.3402/tellusa.v67.24284, 2015. a, b
Wilson, C., Harle, D. J., and Wakelin, D. S.: NEMO Regional Configuration
of the Caribbean, Zenodo [code], https://doi.org/10.5281/ZENODO.3228088, 2019. a, b
Wise, A., Harle, J., Bruciaferri, D., O'Dea, E., and Polton, J.: The Effect of
Vertical Coordinates on the Accuracy of a Shelf Sea Model, Ocean Model.,
170, 101935, https://doi.org/10.1016/j.ocemod.2021.101935, 2022. a, b, c
Wobus, F., Shapiro, G. I., Huthnance, J. M., and Maqueda, M. A.: The Piercing
of the Atlantic Layer by an Arctic Shelf Water Cascade in an
Idealised Study Inspired by the Storfjorden Overflow in Svalbard,
Ocean Model., 71, 54–65, https://doi.org/10.1016/j.ocemod.2013.03.003, 2013. a
Yool, A., Popova, E. E., and Anderson, T. R.: Medusa-1.0: a new intermediate complexity plankton ecosystem model for the global domain, Geosci. Model Dev., 4, 381–417, https://doi.org/10.5194/gmd-4-381-2011, 2011. a
Yool, A., Popova, E. E., and Anderson, T. R.: MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies, Geosci. Model Dev., 6, 1767–1811, https://doi.org/10.5194/gmd-6-1767-2013, 2013. a
Zektser, I. and Loaiciga, H. A.: Groundwater Fluxes in the Global Hydrologic
Cycle: Past, Present and Future, J. Hydrol., 144, 405–427,
https://doi.org/10.1016/0022-1694(93)90182-9, 1993.
a
Zhao, N. and Nasuno, T.: How Does the Air-Sea Coupling Frequency Affect
Convection During the MJO Passage?, J. Adv. Model. Earth Sy., 12, e2020MS002058, https://doi.org/10.1029/2020MS002058,
2020. a
Executive editor
Reproducibility is fundamental to the scientific method, but really reproducible computational science at the scale of ocean modelling is far from universal. This manuscript addresses the question of what it takes for regional ocean simulations to be reproducible. It should act as a reference point for that community and beyond.
Reproducibility is fundamental to the scientific method, but really reproducible computational...
Short summary
The aim is to increase the capacity of the modelling community to respond to societally important questions that require ocean modelling. The concept of reproducibility for regional ocean modelling is developed: advocating methods for reproducible workflows and standardised methods of assessment. Then, targeting the NEMO framework, we give practical advice and worked examples, highlighting key considerations that will the expedite development cycle and upskill the user community.
The aim is to increase the capacity of the modelling community to respond to societally...
Special issue