Articles | Volume 15, issue 21
https://doi.org/10.5194/gmd-15-8001-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-8001-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cyclone generation Algorithm including a THERmodynamic module for Integrated National damage Assessment (CATHERINA 1.0) compatible with Coupled Model Intercomparison Project (CMIP) climate data
Théo Le Guenedal
CORRESPONDING AUTHOR
CREST, ENSAE, Institut Polytechnique de Paris, Palaiseau, France
Philippe Drobinski
LMD-IPSL, Ecole Polytechnique, Institut Polytechnique de Paris, ENS, PSL Research University, Sorbonne Université, CNRS, Palaiseau, France
Peter Tankov
CREST, ENSAE, Institut Polytechnique de Paris, Palaiseau, France
Related authors
No articles found.
Yonatan Givon, Douglas Keller Jr., Vered Silverman, Romain Pennel, Philippe Drobinski, and Shira Raveh-Rubin
Weather Clim. Dynam., 2, 609–630, https://doi.org/10.5194/wcd-2-609-2021, https://doi.org/10.5194/wcd-2-609-2021, 2021
Short summary
Short summary
Mistral wind is a renowned phenomenon in the Mediterranean, yet its large-scale controlling mechanisms have not been systematically mapped. Here, using a new mistral database for 1981–2016, the upper-tropospheric flow patterns are classified by a self-organizing map algorithm, resulting in 16 distinct patterns related to Rossby wave life cycles. Each pattern has unique surface impact, having implications to understanding mistral predictability, air–sea interaction and their future projections.
Aurore Dupré, Philippe Drobinski, Jordi Badosa, Christian Briard, and Riwal Plougonven
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-88, https://doi.org/10.5194/angeo-2019-88, 2019
Manuscript not accepted for further review
Short summary
Short summary
In a context of climate change, the wind energy sector has seen a very sharp growth requiring accurate forecasts. Air density is a key variable in the wind energy modeling as it can make the power output varies by almost 20 %. In this paper, a numerically low-cost method is evaluated. This method improves the wind energy modeling by more than 15 % and by almost 40 % when the atmospheric conditions are far from the standards atmospheric conditions used to produce the wind turbine power curve.
Sophie Bastin, Philippe Drobinski, Marjolaine Chiriaco, Olivier Bock, Romain Roehrig, Clemente Gallardo, Dario Conte, Marta Domínguez Alonso, Laurent Li, Piero Lionello, and Ana C. Parracho
Atmos. Chem. Phys., 19, 1471–1490, https://doi.org/10.5194/acp-19-1471-2019, https://doi.org/10.5194/acp-19-1471-2019, 2019
Short summary
Short summary
This paper uses colocated observations of temperature, precipitation and humidity to investigate the triggering of precipitation. It shows that there is a critical value of humidity above which precipitation picks up. This critical value depends on T and varies spatially. It also analyses how this dependency is reproduced in regional climate simulations over Europe. Models with too little and too light precipitation have both lower critical value of humidity and higher probability to exceed it.
Nicolas Da Silva, Sylvain Mailler, and Philippe Drobinski
Ann. Geophys., 36, 321–335, https://doi.org/10.5194/angeo-36-321-2018, https://doi.org/10.5194/angeo-36-321-2018, 2018
Short summary
Short summary
Aerosols affect atmospheric dynamics because they absorb radiations (direct effects) and because they act as cloud condensation nuclei (indirect effects). The present study shows that aerosol indirect effects reduce summer precipitation in the Euro-Mediterranean region through reduction of the radiative heating of the surface and corresponding reductions of surface temperature, resulting in increased atmospheric stability in the presence of high aerosol loads.
Bénédicte Jourdier and Philippe Drobinski
Ann. Geophys., 35, 691–700, https://doi.org/10.5194/angeo-35-691-2017, https://doi.org/10.5194/angeo-35-691-2017, 2017
Short summary
Short summary
Wind resource assessments often rely on models of wind-speed statistics using a Weibull distribution. This study shows how its use impacts the prediction of the wind energy content and the power output. Three methods for fitting the Weibull distribution are tested (maximum likelihood, moments and WAsP). The first two methods overestimate the production up to 5 %. The WAsP method always produces errors lower than 2 %. A Rayleigh–Rice distribution is also tested and shows even better skill.
C. Hernandez, C. Keribin, P. Drobinski, and S. Turquety
Ann. Geophys., 33, 1495–1506, https://doi.org/10.5194/angeo-33-1495-2015, https://doi.org/10.5194/angeo-33-1495-2015, 2015
C. Hernandez, P. Drobinski, and S. Turquety
Ann. Geophys., 33, 931–939, https://doi.org/10.5194/angeo-33-931-2015, https://doi.org/10.5194/angeo-33-931-2015, 2015
C. Hernandez, P. Drobinski, S. Turquety, and J.-L. Dupuy
Nat. Hazards Earth Syst. Sci., 15, 1331–1341, https://doi.org/10.5194/nhess-15-1331-2015, https://doi.org/10.5194/nhess-15-1331-2015, 2015
Related subject area
Integrated assessment modeling
GCAM-CDR v1.0: enhancing the representation of carbon dioxide removal technologies and policies in an integrated assessment model
The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures
A tool for air pollution scenarios (TAPS v1.0) to enable global, long-term, and flexible study of climate and air quality policies
Improved CASA model based on satellite remote sensing data: simulating net primary productivity of Qinghai Lake basin alpine grassland
Pixel-level parameter optimization of a terrestrial biosphere model for improving estimation of carbon fluxes with an efficient model–data fusion method and satellite-derived LAI and GPP data
Climate Services Toolbox (CSTools) v4.0: from climate forecasts to climate forecast information
TIM: modelling pathways to meet Ireland's long-term energy system challenges with the TIMES-Ireland Model (v1.0)
ANEMI_Yangtze v1.0: a coupled human–natural systems model for the Yangtze Economic Belt – model description
Nested leave-two-out cross-validation for the optimal crop yield model selection
GCAM-USA v5.3_water_dispatch: integrated modeling of subnational US energy, water, and land systems within a global framework
GOBLIN version 1.0: a land balance model to identify national agriculture and land use pathways to climate neutrality via backcasting
Globally consistent assessment of economic impacts of wildfires in CLIMADA v2.2
REMIND2.1: transformation and innovation dynamics of the energy-economic system within climate and sustainability limits
Parallel gridded simulation framework for DSSAT-CSM (version 4.7.5.21) using MPI and NetCDF
Estimating global land system impacts of timber plantations using MAgPIE 4.3.5
David R. Morrow, Raphael Apeaning, and Garrett Guard
Geosci. Model Dev., 16, 1105–1118, https://doi.org/10.5194/gmd-16-1105-2023, https://doi.org/10.5194/gmd-16-1105-2023, 2023
Short summary
Short summary
GCAM-CDR is a variant of the Global Change Analysis Model that makes it easier to study the roles that carbon dioxide removal (CDR) might play in climate policy. Building on GCAM 5.4, GCAM-CDR adds several extra technologies to permanently remove carbon dioxide from the air and enables users to simulate a wider range of CDR-related policies and controls.
Jarmo S. Kikstra, Zebedee R. J. Nicholls, Christopher J. Smith, Jared Lewis, Robin D. Lamboll, Edward Byers, Marit Sandstad, Malte Meinshausen, Matthew J. Gidden, Joeri Rogelj, Elmar Kriegler, Glen P. Peters, Jan S. Fuglestvedt, Ragnhild B. Skeie, Bjørn H. Samset, Laura Wienpahl, Detlef P. van Vuuren, Kaj-Ivar van der Wijst, Alaa Al Khourdajie, Piers M. Forster, Andy Reisinger, Roberto Schaeffer, and Keywan Riahi
Geosci. Model Dev., 15, 9075–9109, https://doi.org/10.5194/gmd-15-9075-2022, https://doi.org/10.5194/gmd-15-9075-2022, 2022
Short summary
Short summary
Assessing hundreds or thousands of emission scenarios in terms of their global mean temperature implications requires standardised procedures of infilling, harmonisation, and probabilistic temperature assessments. We here present the open-source
climate-assessmentworkflow that was used in the IPCC AR6 Working Group III report. The paper provides key insight for anyone wishing to understand the assessment of climate outcomes of mitigation pathways in the context of the Paris Agreement.
William Atkinson, Sebastian D. Eastham, Y.-H. Henry Chen, Jennifer Morris, Sergey Paltsev, C. Adam Schlosser, and Noelle E. Selin
Geosci. Model Dev., 15, 7767–7789, https://doi.org/10.5194/gmd-15-7767-2022, https://doi.org/10.5194/gmd-15-7767-2022, 2022
Short summary
Short summary
Understanding policy effects on human-caused air pollutant emissions is key for assessing related health impacts. We develop a flexible scenario tool that combines updated emissions data sets, long-term economic modeling, and comprehensive technology pathways to clarify the impacts of climate and air quality policies. Results show the importance of both policy levers in the future to prevent long-term emission increases from offsetting near-term air quality improvements from existing policies.
Chengyong Wu, Kelong Chen, Chongyi E, Xiaoni You, Dongcai He, Liangbai Hu, Baokang Liu, Runke Wang, Yaya Shi, Chengxiu Li, and Fumei Liu
Geosci. Model Dev., 15, 6919–6933, https://doi.org/10.5194/gmd-15-6919-2022, https://doi.org/10.5194/gmd-15-6919-2022, 2022
Short summary
Short summary
The traditional Carnegie–Ames–Stanford Approach (CASA) model driven by multisource data such as meteorology, soil, and remote sensing (RS) has notable disadvantages. We drove the CASA using RS data and conducted a case study of the Qinghai Lake basin alpine grassland. The simulated result is similar to published and measured net primary productivity (NPP). It may provide a reference for simulating vegetation NPP to satisfy the requirements of accounting carbon stocks and other applications.
Rui Ma, Jingfeng Xiao, Shunlin Liang, Han Ma, Tao He, Da Guo, Xiaobang Liu, and Haibo Lu
Geosci. Model Dev., 15, 6637–6657, https://doi.org/10.5194/gmd-15-6637-2022, https://doi.org/10.5194/gmd-15-6637-2022, 2022
Short summary
Short summary
Parameter optimization can improve the accuracy of modeled carbon fluxes. Few studies conducted pixel-level parameterization because it requires a high computational cost. Our paper used high-quality spatial products to optimize parameters at the pixel level, and also used the machine learning method to improve the speed of optimization. The results showed that there was significant spatial variability of parameters and we also improved the spatial pattern of carbon fluxes.
Núria Pérez-Zanón, Louis-Philippe Caron, Silvia Terzago, Bert Van Schaeybroeck, Llorenç Lledó, Nicolau Manubens, Emmanuel Roulin, M. Carmen Alvarez-Castro, Lauriane Batté, Pierre-Antoine Bretonnière, Susana Corti, Carlos Delgado-Torres, Marta Domínguez, Federico Fabiano, Ignazio Giuntoli, Jost von Hardenberg, Eroteida Sánchez-García, Verónica Torralba, and Deborah Verfaillie
Geosci. Model Dev., 15, 6115–6142, https://doi.org/10.5194/gmd-15-6115-2022, https://doi.org/10.5194/gmd-15-6115-2022, 2022
Short summary
Short summary
CSTools (short for Climate Service Tools) is an R package that contains process-based methods for climate forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination, and multivariate verification, as well as basic and advanced tools to obtain tailored products. In addition to describing the structure and methods in the package, we also present three use cases to illustrate the seasonal climate forecast post-processing for specific purposes.
Olexandr Balyk, James Glynn, Vahid Aryanpur, Ankita Gaur, Jason McGuire, Andrew Smith, Xiufeng Yue, and Hannah Daly
Geosci. Model Dev., 15, 4991–5019, https://doi.org/10.5194/gmd-15-4991-2022, https://doi.org/10.5194/gmd-15-4991-2022, 2022
Short summary
Short summary
Ireland has significantly increased its climate mitigation ambition, with a recent commitment to reduce greenhouse gases by an average of 7 % yr-1 in the period to 2030 and a net-zero target for 2050. This article describes the TIMES-Ireland model (TIM) developed to inform Ireland's energy system decarbonisation challenge. The paper also outlines a priority list of future model developments to better meet the challenge, taking into account equity, cost-effectiveness, and technical feasibility.
Haiyan Jiang, Slobodan P. Simonovic, and Zhongbo Yu
Geosci. Model Dev., 15, 4503–4528, https://doi.org/10.5194/gmd-15-4503-2022, https://doi.org/10.5194/gmd-15-4503-2022, 2022
Short summary
Short summary
The Yangtze Economic Belt is one of the most dynamic regions of China. The fast urbanization and strong economic growth in the region pose severe challenges for its sustainable development. To improve our understanding of the interactions among coupled human–natural systems in the Belt and to provide the foundation for science-based policy-making for the sustainable development of the Belt, we developed an integrated system-dynamics-based simulation model (ANEMI_Yangtze) for the Belt.
Thi Lan Anh Dinh and Filipe Aires
Geosci. Model Dev., 15, 3519–3535, https://doi.org/10.5194/gmd-15-3519-2022, https://doi.org/10.5194/gmd-15-3519-2022, 2022
Short summary
Short summary
We proposed the leave-two-out method (i.e. one particular implementation of the nested cross-validation) to determine the optimal statistical crop model (using the validation dataset) and estimate its true generalization ability (using the testing dataset). This approach is applied to two examples (robusta coffee in Cu M'gar and grain maize in France). The results suggested that the simple models are more suitable in crop modelling where a limited number of samples is available.
Matthew Binsted, Gokul Iyer, Pralit Patel, Neal T. Graham, Yang Ou, Zarrar Khan, Nazar Kholod, Kanishka Narayan, Mohamad Hejazi, Son Kim, Katherine Calvin, and Marshall Wise
Geosci. Model Dev., 15, 2533–2559, https://doi.org/10.5194/gmd-15-2533-2022, https://doi.org/10.5194/gmd-15-2533-2022, 2022
Short summary
Short summary
GCAM-USA v5.3_water_dispatch is an open-source model that represents key interactions across economic, energy, water, and land systems in a global framework, with subnational detail in the United States. GCAM-USA can be used to explore future changes in demand for (and production of) energy, water, and crops at the state and regional level in the US. This paper describes GCAM-USA and provides four illustrative scenarios to demonstrate the model's capabilities and potential applications.
Colm Duffy, Remi Prudhomme, Brian Duffy, James Gibbons, Cathal O'Donoghue, Mary Ryan, and David Styles
Geosci. Model Dev., 15, 2239–2264, https://doi.org/10.5194/gmd-15-2239-2022, https://doi.org/10.5194/gmd-15-2239-2022, 2022
Short summary
Short summary
The GOBLIN (General Overview for a Backcasting approach of Livestock INtensification) model is a new high-resolution integrated
bottom-upbiophysical land use model capable of identifying broad pathways towards climate neutrality in the agriculture, forestry, and other land use (AFOLU) sector. The model is intended to bridge the gap between hindsight representations of national emissions and much larger globally integrated assessment models.
Samuel Lüthi, Gabriela Aznar-Siguan, Christopher Fairless, and David N. Bresch
Geosci. Model Dev., 14, 7175–7187, https://doi.org/10.5194/gmd-14-7175-2021, https://doi.org/10.5194/gmd-14-7175-2021, 2021
Short summary
Short summary
In light of the dramatic increase in economic impacts due to wildfires, the need for modelling impacts of wildfire damage is ever increasing. Insurance companies, households, humanitarian organisations and governmental authorities are worried by climate risks. In this study we present an approach to modelling wildfire impacts using the open-source modelling platform CLIMADA. All input data are free, public and globally available, ensuring applicability in data-scarce regions of the Global South.
Lavinia Baumstark, Nico Bauer, Falk Benke, Christoph Bertram, Stephen Bi, Chen Chris Gong, Jan Philipp Dietrich, Alois Dirnaichner, Anastasis Giannousakis, Jérôme Hilaire, David Klein, Johannes Koch, Marian Leimbach, Antoine Levesque, Silvia Madeddu, Aman Malik, Anne Merfort, Leon Merfort, Adrian Odenweller, Michaja Pehl, Robert C. Pietzcker, Franziska Piontek, Sebastian Rauner, Renato Rodrigues, Marianna Rottoli, Felix Schreyer, Anselm Schultes, Bjoern Soergel, Dominika Soergel, Jessica Strefler, Falko Ueckerdt, Elmar Kriegler, and Gunnar Luderer
Geosci. Model Dev., 14, 6571–6603, https://doi.org/10.5194/gmd-14-6571-2021, https://doi.org/10.5194/gmd-14-6571-2021, 2021
Short summary
Short summary
This paper presents the new and open-source version 2.1 of the REgional Model of INvestments and Development (REMIND) with the aim of improving code documentation and transparency. REMIND is an integrated assessment model (IAM) of the energy-economic system. By answering questions like
Can the world keep global warming below 2 °C?and, if so,
Under what socio-economic conditions and applying what technological options?, it is the goal of REMIND to explore consistent transformation pathways.
Phillip D. Alderman
Geosci. Model Dev., 14, 6541–6569, https://doi.org/10.5194/gmd-14-6541-2021, https://doi.org/10.5194/gmd-14-6541-2021, 2021
Short summary
Short summary
This paper documents a framework for accessing crop model input data directly from spatially referenced file formats and running simulations in parallel across a geographic region using the Decision Support System for Agrotechnology Transfer Cropping Systems Model (a widely used crop model system). The framework greatly reduced the execution time when compared to running the standard version of the model.
Abhijeet Mishra, Florian Humpenöder, Jan Philipp Dietrich, Benjamin Leon Bodirsky, Brent Sohngen, Christopher P. O. Reyer, Hermann Lotze-Campen, and Alexander Popp
Geosci. Model Dev., 14, 6467–6494, https://doi.org/10.5194/gmd-14-6467-2021, https://doi.org/10.5194/gmd-14-6467-2021, 2021
Short summary
Short summary
Timber plantations are an increasingly important source of roundwood production, next to harvest from natural forests. However, timber plantations are currently underrepresented in global land-use models. Here, we include timber production and plantations in the MAgPIE modeling framework. This allows one to capture the competition for land between agriculture and forestry. We show that increasing timber plantations in the coming decades partly compete with cropland for limited land resources.
Cited articles
Arthur, W. C.: A statistical–parametric model of tropical cyclones for hazard assessment, Nat. Hazards Earth Syst. Sci., 21, 893–916, https://doi.org/10.5194/nhess-21-893-2021, 2021. a
Aznar-Siguan, G. and Bresch, D. N.: CLIMADA v1: a global weather and climate risk assessment platform, Geosci. Model Dev., 12, 3085–3097, https://doi.org/10.5194/gmd-12-3085-2019, 2019. a
Bakkensen, L. A. and Mendelsohn, R. O.: Global tropical cyclone damages and
fatalities under climate change: An updated assessment, in: Hurricane Risk,
Springer, 179–197, https://doi.org/10.1007/978-3-030-02402-4_9, 2019. a, b
Bister, M. and Emanuel, K. A.: Low frequency variability of tropical cyclone
potential intensity 1. Interannual to interdecadal variability, J.
Geophys. Res.-Atmos., 107, ACL 26–1–ACL 26–15, https://doi.org/10.1029/2001JD000776, 2002. a, b
Bresch, D. N.: CLIMADA – the open-source and -access global probabilistic risk modelling platform, GitHub [code], https://github.com/davidnbresch/climada (last access: 14 October 2022), 2017. a
Bruyère, C., Holland, G., Prein, A., Done, J., Buckley, B., Chan, P.,
Leplastrier, M., and Dyer, A.: Severe weather in a changing climate,
Insurance Australia Group and National Center for Atmospheric Research,
November, https://www.iag.com.au/sites/default/files/documents/Severe-weather-in-a-changing-climate-report-011119.pdf (last access: 14 October 2022), 2019. a
Center for International Earth Science Information Network (CIESIN):
Documentation for the gridded population of the world, Version 4 (GPWv4),
Revision 10 Data Sets, 2017. a
Chen, G., Li, X., Liu, X., Chen, Y., Liang, X., Leng, J., Xu, X., Liao, W., Wu, Q., and Huang, K.: Global projections of future urban land expansion
under shared socioeconomic pathways, Nat. Commun., 11, 1–12, 2020. a
Chen, Y., Gao, S., Li, X., and Shen, X.: Key Environmental Factors for Rapid
Intensification of the South China Sea Tropical Cyclones, Front. Earth
Sci., 8, 727, https://doi.org/10.3389/feart.2020.609727, 2021. a
Coronese, M., Lamperti, F., Keller, K., Chiaromonte, F., and Roventini, A.:
Evidence for sharp increase in the economic damages of extreme natural
disasters, P. Natl. Acad. Sci. USA, 116,
21450–21455, 2019. a
Courtney, J.: Adapting the Knaff and Zehr wind-pressure relationship for
operational use in Tropical Cyclone Warning Centres, Aust.
Meteorol. Ocean, 58, 167, http://www.bom.gov.au/jshess/docs/2009/courtney.pdf (last access: 14 October 2022), 2009. a
Courtney, J. and Burton, A.: Joint Industry Project for Objective Tropical
Cyclone Reanalysis: Final Report, Bureau of Meteorology, 87 pp., http://www.bom.gov.au/cyclone/history/database/OTCR-JIP_FinalReport_V1.3_public.pdf (last access: 14 October 2022), 2018. a
Courtney, J. B., Foley, G. R., van Burgel, J. L., Trewin, B., Burton, A. D.,
Callaghan, J., and Davidson, N. E.: Revisions to the Australian tropical
cyclone best track database, Journal of Southern Hemisphere Earth Systems
Science, 71, 203–227, 2021. a
Credit Suisse: Credit Suisse Research Institute: Global Wealth Report 2017,
https://www.credit-suisse.com/about-us-news/en/articles/news-and-expertise/global-wealth-report-2017-201711.html (last access: 14 October 2022),
2017. a
DeMaria, M., Knaff, J. A., and Connell, B. H.: A tropical cyclone genesis
parameter for the tropical Atlantic, Weather Forecast., 16, 219–233,
2001. a
Eberenz, S., Stocker, D., Röösli, T., and Bresch, D. N.: Asset exposure data for global physical risk assessment, Earth Syst. Sci. Data, 12, 817–833, https://doi.org/10.5194/essd-12-817-2020, 2020a. a, b
Edwards, S.: The pricing of bonds and bank loans in international markets: An
empirical analysis of developing countries' foreign borrowing, Eur.
Econ. Rev., 30, 565–589, 1986. a
Emanuel, K. A.: Increasing destructiveness of tropical cyclones over the past
30 years, Nature, 436, 686–688, 2005. a
Fabregat, A., Mezic, I., and Poje, A. C.: Finite-time partitions for lagrangian
structure identification in Gulf Stream eddy transport, arXiv [preprint],
https://doi.org/10.48550/arXiv.1606.07382, 2016. a
Forster, P. M., Bodeker, G., Schofield, R., Solomon, S., and Thompson, D.:
Effects of ozone cooling in the tropical lower stratosphere and upper
troposphere, Geophys. Res. Lett., 34, L23813, https://doi.org/10.1029/2007GL031994, 2007. a
Gao, J.: Downscaling global spatial population projections from 1/8-degree to
1-km grid cells, Technical Notes NCAR, National Center for Atmospheric
Researcher [data set], Boulder, CO, USA,
https://doi.org/10.5065/D60Z721H, downscaled [data set] available at: https://doi.org/10.7927/q7z9-9r69,
2020. a
Geiger, T., Gütschow, J., Bresch, D. N., Emanuel, K., and Frieler, K.:
Double benefit of limiting global warming for tropical cyclone exposure,
Nat. Clim. Change, 11, 861–866, 2021. a
Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D. P., van den Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., Stehfest, E., and Takahashi, K.: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century, Geosci. Model Dev., 12, 1443–1475, https://doi.org/10.5194/gmd-12-1443-2019, 2019. a
Gray, W. M.: ropical cyclone genesis, Atmospheric science paper, no. 234, https://mountainscholar.org/bitstream/handle/10217/247/0234_Bluebook.pdf, (last access: 14 October 2022),
1975. a
Gusain, A., Ghosh, S., and Karmakar, S.: Added value of CMIP6 over CMIP5 models
in simulating Indian summer monsoon rainfall, Atmos. Res., 232,
104680, https://doi.org/10.1016/j.atmosres.2019.104680, 2020. a
Harper, B.: Tropical cyclone parameter estimation in the Australian Region, Systems Engineering Australia Pty Ltd for Woodside Energy Ltd, Perth, 83, https://doi.org/10.13140/RG.2.2.13057.04961,
2002. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy.
Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hilscher, J. and Nosbusch, Y.: Determinants of sovereign risk: Macroeconomic
fundamentals and the pricing of sovereign debt, Rev. Finance, 14,
235–262, 2010. a
Jien, J. Y., Gough, W. A., Butler, K., Cheng, V., and Arhonditsis, G.:
Near-Time Sea Surface Temperature and Tropical Cyclone Intensity in the
Eastern North Pacific Basin, in: Hurricanes and Climate Change,
Springer, 55–89, https://doi.org/10.1007/978-3-319-47594-3_3, 2017. a
Jones, B. and O'Neill, B.: Spatially explicit global population scenarios consistent with the Shared Socioeconomic
Pathways, Environ. Res. Lett., 11, 084003,
https://doi.org/10.1088/1748-9326/11/8/084003, 2016. a
Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho,
C.-H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L.: Tropical cyclones and
climate change assessment: Part II: Projected response to anthropogenic
warming, B. Am. Meteorol. Soc., 101, E303–E322,
2020. a
Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea,
C., Held, I., Kossin, J. P., Srivastava, A., and Sugi, M.: Tropical cyclones
and climate change, Nat. Geosci., 3, 157–163, 2010. a
Kossin, J. P.: A global slowdown of tropical-cyclone translation speed, Nature,
558, 104–107, 2018. a
Kossin, J. P., Emanuel, K. A., and Vecchi, G. A.: The poleward migration of the
location of tropical cyclone maximum intensity, Nature, 509, 349–352, 2014. a
Kriegler, E., O’Neill, B. C., Hallegatte, S., Kram, T., Lempert, R. J., Moss,
R. H., and Wilbanks, T.: The need for and use of socio-economic scenarios for
climate change analysis: a new approach based on shared socio-economic
pathways, Global Environ. Chang., 22, 807–822, 2012. a
Leckebusch, G. C., Ulbrich, U., Fröhlich, L., and Pinto, J. G.: Property
loss potentials for European midlatitude storms in a changing climate,
Geophys. Res. Lett., 34, L05703, https://doi.org/10.1029/2006GL027663, 2007. a
Lee, C.-Y., Tippett, M. K., Sobel, A. H., and Camargo, S. J.: An
environmentally forced tropical cyclone hazard model, J. Adv.
Model. Earth Sy., 10, 223–241, 2018. a
Le Guenedal, T., Drobinski, P., and Tankov, P.: Cyclone generation Algorithm including a THERmodynamic module for Integrated National damage Assessment (CATHERINA 1.0) compatible with CMIP climate data (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.5645516, 2021. a
Michelangeli, P.-A., Vrac, M., and Loukos, H.: Probabilistic downscaling
approaches: Application to wind cumulative distribution functions,
Geophys. Res. Lett., 36, L11708, https://doi.org/10.1029/2009GL038401, 2009. a
Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A., and
Ramirez-Villegas, J.: High-resolution and bias-corrected CMIP5 projections
for climate change impact assessments, Sci. Data, 7, 1–14, 2020. a
Neu, U., Akperov, M. G., Bellenbaum, N., Benestad, R., Blender,
R., Caballero, R., Cocozza, A., Dacre, H. F., Feng, Y., Fraedrich,
K., Grieger, J., Gulev, S., Hanley, J., Hewson, T., Inatsu, M.,
Keay, K., Kew, S. F., Kindem, I., Leckebusch, G. C., Liberato,
M. L. R., Lionello, P., Mokhov, I. I., Pinto, J. G., Raible, C. C.,
Reale, M., Rudeva, I., Schuster, M., Simmonds, I., Sinclair, M.,
Sprenger, M., Tilinina, N. D., Trigo, I. F., Ulbrich, S., Ulbrich, U.,
Wang, X. L., and Wernli, H.: IMILAST: A
community effort to intercompare extratropical cyclone detection and tracking
algorithms, B. Am. Meteorol. Soc., 94, 529–547, https://doi.org/10.1175/BAMS-D-11-00154.1,
2013. a
O’Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P.,
Birkmann, J., Kok, K., Levy, M., and Solecki, W.: The roads ahead: Narratives for shared socioeconomic pathways
describing world futures in the 21st century, Global Environ. Chang.,
42, 169–180, https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2017. a, b, c
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer,
W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P.,
Dubash, N. K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster,
P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri, L., Hal-
legatte, S., Hegerl, G., Howden, M., Jiang, K., Cisneroz, B. J.,
Kattsov, V., Lee, H., Mach, K. J., Marotzke, J., Mastrandrea,
M. D., Meyer, L., Minx, J., Mulugetta, Y., O’Brien, K., Oppen-
heimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner, G.-K.,
Pörtner, H.-O., Power, S. B., Preston, B., Ravindranath, N. H.,
Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth,
K., Sokona, Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vu-
uren, D., and van Ypserle, J.-P.: Climate change
2014: synthesis report. Contribution of Working Groups I, II and III to the
fifth assessment report of the Intergovernmental Panel on Climate Change,
IPCC, Geneva, Switzerland, https://hdl.handle.net/10013/epic.45156, 2014. a
Prahl, B. F., Rybski, D., Burghoff, O., and Kropp, J. P.: Comparison of storm damage functions and their performance, Nat. Hazards Earth Syst. Sci., 15, 769–788, https://doi.org/10.5194/nhess-15-769-2015, 2015. a
Ramaswamy, V., Schwarzkopf, M., Randel, W., Santer, B., Soden, B. J., and
Stenchikov, G.: Anthropogenic and natural influences in the evolution of
lower stratospheric cooling, Science, 311, 1138–1141, 2006. a
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp,
A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S.,
Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Silva,
L. A. D., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui,
T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M.,
Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., Klimont, Z.,
Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., and Tavoni, M.:
The Shared Socioeconomic Pathways and their energy, land use, and greenhouse
gas emissions implications: An overview, Global Environ. Chang., 42,
153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017. a, b, c, d
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill,
B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko,
O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M.,
Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa,
T., Havlik, P., Humpenöder, F., Silva, L. A. D., Smith, S., Ste-
hfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J.,
Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Taka-
hashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., Klimont,
Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau,
A., and Tavoni, M.: Cost and
attainability of meeting stringent climate targets without overshoot, Nat.
Clim. Change, 11, 1063–1069, 2021. a
Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Ger-
naat, D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G.,
Krey, V., Kriegler, E., Riahi, K., van Vuuren, D. P., Doelman,
J., Drouet, L., Edmonds, J., Fricko, O., Harmsen, M., Havlík, P.,
Humpenöder, F., Stehfest, E., and Tavoni, M.: Scenarios
towards limiting global mean temperature increase below 1.5 C, Nat. Clim.
Change, 8, 325–332, 2018. a, b, c, d
Román, M. O., Wang, Z., Sun, Q., Kalb, V., Miller, S. D.,
Molthan, A., Schultz, L., Bell, J., Stokes, E. C., Pandey, B.,
Seto, K. C., Hall, D., Oda, T., Wolfe, R. E., Lin, G., Golpayegani, N., Devadiga, S., Davidson, C., Sarkar, S., Praderas,
C., Schmaltz, J., Boller, R., Stevens, J., Ramos González,
O. M., Padilla, E., Alonso, J., Detrés, Y., Armstrong, R., Miranda, I., Conte, Y., Marrero, N., MacManus, K., Esch, T.,
and Masuoka, E. J.: NASA's Black Marble
nighttime lights product suite, Remote Sens. Environ., 210, 113–143,
2018. a
Sherwood, S. C., Ingram, W., Tsushima, Y., Satoh, M., Roberts, M., Vidale,
P. L., and O'Gorman, P. A.: Relative humidity changes in a warmer climate,
J. Geophys. Res.-Atmos., 115, D09104, https://doi.org/10.1029/2009JD012585, 2010. a
Solomon, S., Manning, M., Marquis, M., Qin, D., Chen, Z., Averyt,
K., Tignor, M., and Miller, H.: Climate change 2007 – the physical science basis: Working group I contribution to the fourth assessment report of the IPCC, vol. 4, Cambridge university press,
ISBN 978 0521 88009-1 Hardback; 978 0521 70596-7 Paperback, 2007. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the
experiment design, B. Am. Meteorol. Soc., 93,
485–498, 2012. a
Unanwa, C., McDonald, J., Mehta, K., and Smith, D.: The development of wind
damage bands for buildings, J. Wind Eng. Ind.
Aerod., 84, 119–149, 2000. a
Vrac, M., Drobinski, P., Merlo, A., Herrmann, M., Lavaysse, C., Li, L., and Somot, S.: Dynamical and statistical downscaling of the French Mediterranean climate: uncertainty assessment, Nat. Hazards Earth Syst. Sci., 12, 2769–2784, https://doi.org/10.5194/nhess-12-2769-2012, 2012. a, b
Walsh, K. J., McBride, J. L., Klotzbach, P. J., Balachandran, S., Camargo, S. J., Holland, G., Knutson, T. R., Kossin,J. P., Lee, T.-C., Sobel, A., and Sugi, M.: Tropical cyclones and climate change, Wires Clim. Change, 7, 65–89, 2016. a
World Bank: Building the World Bank’s Wealth Accounts: Methods and Data,
https://development-data-hub-s3-public.s3.amazonaws.com/ddhfiles/94641/wealth-methodology-january-30-2018_4_0.pdf (last access: 14 October 2022),
2018. a
World Bank: World Bank Open Data, https://data.worldbank.org/ (last access: 14 October 2022), 2019. a
Short summary
The CATHERINA model produces simulations of cyclone-related annualized damage costs at a country level from climate data and open-source socioeconomic indicators. The framework couples statistical and physical modeling of tropical cyclones to bridge the gap between general circulation and integrated assessment models providing a precise description of tropical-cyclone-related damages.
The CATHERINA model produces simulations of cyclone-related annualized damage costs at a country...