Articles | Volume 15, issue 12
https://doi.org/10.5194/gmd-15-4959-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-4959-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil Cycles of Elements simulator for Predicting TERrestrial regulation of greenhouse gases: SCEPTER v0.9
School of Earth and Atmospheric Sciences, Georgia Institute of
Technology, Atlanta, GA 30332, USA
Shuang Zhang
Department of Oceanography, Texas A&M University, College Station,
TX 77843, USA
Noah J. Planavsky
Department of Earth and Planetary Sciences, Yale University, New
Haven, CT 06511, USA
Christopher T. Reinhard
CORRESPONDING AUTHOR
School of Earth and Atmospheric Sciences, Georgia Institute of
Technology, Atlanta, GA 30332, USA
Related authors
Yoshiki Kanzaki, Isabella Chiaravalloti, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 17, 4515–4532, https://doi.org/10.5194/gmd-17-4515-2024, https://doi.org/10.5194/gmd-17-4515-2024, 2024
Short summary
Short summary
Soil pH is one of the most commonly measured agronomical and biogeochemical indices, mostly reflecting exchangeable acidity. Explicit simulation of both porewater and bulk soil pH is thus crucial to the accurate evaluation of alkalinity required to counteract soil acidification and the resulting capture of anthropogenic carbon dioxide through the enhanced weathering technique. This has been enabled by the updated reactive–transport SCEPTER code and newly developed framework to simulate soil pH.
Yoshiki Kanzaki, Dominik Hülse, Sandra Kirtland Turner, and Andy Ridgwell
Geosci. Model Dev., 14, 5999–6023, https://doi.org/10.5194/gmd-14-5999-2021, https://doi.org/10.5194/gmd-14-5999-2021, 2021
Short summary
Short summary
Sedimentary carbonate plays a central role in regulating Earth’s carbon cycle and climate, and also serves as an archive of paleoenvironments, hosting various trace elements/isotopes. To help obtain
trueenvironmental changes from carbonate records over diagenetic distortion, IMP has been newly developed and has the capability to simulate the diagenesis of multiple carbonate particles and implement different styles of particle mixing by benthos using an adapted transition matrix method.
Samuel Shou-En Tsao, Tim Jesper Surhoff, Giuseppe Amatulli, Maya Almaraz, Jonathan Gewirtzman, Beck Woollen, Eric W. Slessarev, James E. Saiers, Christopher T. Reinhard, Shuang Zhang, Noah J. Planavsky, and Peter A. Raymond
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-411, https://doi.org/10.5194/essd-2025-411, 2025
Preprint under review for ESSD
Short summary
Short summary
We created the first detailed map of how much agricultural lime has been used across the United States from 1930 to 1987. Lime helps improve soil health and crop growth. Our study shows that how and where lime is used depends on climate, soil, and farming practices. By using machine learning, we found patterns that help explain these differences. This work helps us better understand the environmental role of lime and its impact on farming and climate.
Jelle Bijma, Mathilde Hagens, Jens Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim Jesper Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter A. Wolf-Gladrow
EGUsphere, https://doi.org/10.5194/egusphere-2025-2740, https://doi.org/10.5194/egusphere-2025-2740, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Enhanced rock weathering is a nature based negative emission technology, that permanently stores CO2. It requires rock-flour to be added to arable land with the help of farmers. To be eligible for carbon credits calls for a simple but scientifically solid, so called, Monitoring, Reporting & Verification” (MRV). We demonstrate that the commonly used carbon-based accounting is ill-suited to close the balance in open systems such as arable land, and argue for cation-based accounting strategy.
Yoshiki Kanzaki, Isabella Chiaravalloti, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 17, 4515–4532, https://doi.org/10.5194/gmd-17-4515-2024, https://doi.org/10.5194/gmd-17-4515-2024, 2024
Short summary
Short summary
Soil pH is one of the most commonly measured agronomical and biogeochemical indices, mostly reflecting exchangeable acidity. Explicit simulation of both porewater and bulk soil pH is thus crucial to the accurate evaluation of alkalinity required to counteract soil acidification and the resulting capture of anthropogenic carbon dioxide through the enhanced weathering technique. This has been enabled by the updated reactive–transport SCEPTER code and newly developed framework to simulate soil pH.
Maria Val Martin, Elena Blanc-Betes, Ka Ming Fung, Euripides P. Kantzas, Ilsa B. Kantola, Isabella Chiaravalloti, Lyla L. Taylor, Louisa K. Emmons, William R. Wieder, Noah J. Planavsky, Michael D. Masters, Evan H. DeLucia, Amos P. K. Tai, and David J. Beerling
Geosci. Model Dev., 16, 5783–5801, https://doi.org/10.5194/gmd-16-5783-2023, https://doi.org/10.5194/gmd-16-5783-2023, 2023
Short summary
Short summary
Enhanced rock weathering (ERW) is a CO2 removal strategy that involves applying crushed rocks (e.g., basalt) to agricultural soils. However, unintended processes within the N cycle due to soil pH changes may affect the climate benefits of C sequestration. ERW could drive changes in soil emissions of non-CO2 GHGs (N2O) and trace gases (NO and NH3) that may affect air quality. We present a new improved N cycling scheme for the land model (CLM5) to evaluate ERW effects on soil gas N emissions.
Kazumi Ozaki, Devon B. Cole, Christopher T. Reinhard, and Eiichi Tajika
Geosci. Model Dev., 15, 7593–7639, https://doi.org/10.5194/gmd-15-7593-2022, https://doi.org/10.5194/gmd-15-7593-2022, 2022
Short summary
Short summary
A new biogeochemical model (CANOPS-GRB v1.0) for assessing the redox stability and dynamics of the ocean–atmosphere system on geologic timescales has been developed. In this paper, we present a full description of the model and its performance. CANOPS-GRB is a useful tool for understanding the factors regulating atmospheric O2 level and has the potential to greatly refine our current understanding of Earth's oxygenation history.
Yoshiki Kanzaki, Dominik Hülse, Sandra Kirtland Turner, and Andy Ridgwell
Geosci. Model Dev., 14, 5999–6023, https://doi.org/10.5194/gmd-14-5999-2021, https://doi.org/10.5194/gmd-14-5999-2021, 2021
Short summary
Short summary
Sedimentary carbonate plays a central role in regulating Earth’s carbon cycle and climate, and also serves as an archive of paleoenvironments, hosting various trace elements/isotopes. To help obtain
trueenvironmental changes from carbonate records over diagenetic distortion, IMP has been newly developed and has the capability to simulate the diagenesis of multiple carbonate particles and implement different styles of particle mixing by benthos using an adapted transition matrix method.
Sebastiaan J. van de Velde, Dominik Hülse, Christopher T. Reinhard, and Andy Ridgwell
Geosci. Model Dev., 14, 2713–2745, https://doi.org/10.5194/gmd-14-2713-2021, https://doi.org/10.5194/gmd-14-2713-2021, 2021
Short summary
Short summary
Biogeochemical interactions between iron and sulfur are central to the long-term biogeochemical evolution of Earth’s oceans. Here, we introduce an iron–sulphur cycle in a model of Earth's oceans. Our analyses show that the results of the model are robust towards parameter choices and that simulated concentrations and reactions are comparable to those observed in ancient ocean analogues (anoxic lakes). Our model represents an important step forward in the study of iron–sulfur cycling.
Christopher T. Reinhard, Stephanie L. Olson, Sandra Kirtland Turner, Cecily Pälike, Yoshiki Kanzaki, and Andy Ridgwell
Geosci. Model Dev., 13, 5687–5706, https://doi.org/10.5194/gmd-13-5687-2020, https://doi.org/10.5194/gmd-13-5687-2020, 2020
Short summary
Short summary
We provide documentation and testing of new developments for the oceanic and atmospheric methane cycles in the cGENIE Earth system model. The model is designed to explore Earth's methane cycle across a wide range of timescales and scenarios, in particular assessing the mean climate state and climate perturbations in Earth's deep past. We further document the impact of atmospheric oxygen levels and ocean chemistry on fluxes of methane to the atmosphere from the ocean biosphere.
Cited articles
Aachib, M., Mbonimpa, M., and Aubertin, M.: Measurement and prediction of the
oxygen diffusion coefficient in unsaturated media, with applications to soil
covers, Water Air Soil Pollut., 156, 163–193,
https://doi.org/10.1023/B:WATE.0000036803.84061.e5, 2004.
Archer, D. E., Morford, J. L., and Emerson, S. R.: A model of suboxic
sedimentary diagenesis suitable for automatic tuning and gridded global
domains, Global Biogeochem. Cy., 16, 1017,
https://doi.org/10.1029/2000GB001288, 2002.
Astete, C. E., Thibodeaux, L. J., and Constant, W. D.: Semi-volatile organic
compounds as chemical tracers for estimating soil particle biodiffusion
coefficients: application of polychlorinated biphenyls in earthworm
bioturbation at a grassland site, Soil Sci., 181, 457–464,
https://doi.org/10.1097/SS.0000000000000178, 2016.
Beaulieu, E., Goddéris, Y., Donnadieu, Y., Labat, D., and Roelandt, C.: High sensitivity of the continental-weathering carbon dioxide sink to future climate change, Nat. Clim. Change, 2, 346–349, https://doi.org/10.1038/nclimate1419, 2012.
Beerling, D. J., Kantzas, E. P., Lomas, M. R., Wade, P., Eufrasio, R. M.,
Renforth, P., Sarkar, B., Andrews, M. G., James, R. H., Pearce, C. R.,
Mercure, J.-F., Pollitt, H., Holden, P. B., Edwards, N. R., Khanna, M., Koh,
L., Quegan, S., Pidgeon, N. F., Janssens, I. A., Hansen, J., and Banwart, S.
A.: Potential for large-scale CO2 removal via enhanced rock weathering
with croplands, Nature, 583, 242–248,
https://doi.org/10.1038/s41586-020-2448-9, 2020.
Berner, R. A.: Weathering, plants, and the long-term carbon cycle,
Geochim. Cosmochim. Ac., 56, 3225–3231,
https://doi.org/10.1016/0016-7037(92)90300-8, 1992.
Bibi, I., Singh, B., and Silvester, E.: Dissolution of illite in
saline–acidic solutions at 25 ∘ C, Geochim. Cosmochim. Ac., 75,
3237–3249, https://doi.org/10.1016/j.gca.2011.03.022, 2011.
Bolton, E. W., Berner, R. A., and Petsch, S. T.: The weathering of
sedimentary organic matter as a control on atmospheric O2: II.
Theoretical modeling, Am. J. Sci., 306, 575–615,
https://doi.org/10.2475/08.2006.01, 2006.
Boudreau, B. P.: Diagenetic Models and Their Implication, Springer, ISBN 978-3-642-64399-6, 1997.
Boudreau, B. P., Choi, J., Meysman, F., and François-Carcaillet, F.:
Diffusion in a lattice-automaton model of bioturbation by small deposit
feeders, J. Mar. Res., 59, 749–768,
https://doi.org/10.1357/002224001762674926, 2001.
Brantley, S. L. and Lebedeva, M.: Learning to read the chemistry of regolith
to understand the Critical Zone, Annu. Rev. Earth Planet. Sci., 39, 387–416,
https://doi.org/10.1146/annurev-earth-040809-152321, 2011.
Brantley, S. L. and Mellott, N. P.: Surface area and porosity of primary
silicate minerals, Am. Mineral., 85, 1767–1783,
https://doi.org/10.2138/am-2000-11-1220, 2000.
Brantley, S. L., Kubicki, J. D., and White, A. F.: Kinetics of Water-Rock
Interaction, Springer, ISBN 978-0-387-73562-7, 2008.
Brovkin, V., Boysen, L., Arora, V. K., Boisier, J. P., Cadule, P., Chini,
L., Claussen, M., Friedlingstein, P., Gayler, V., van den Hurk, B. J. J. M.,
Hurtt, G. C., Jones, C. D., Kato, E., de Noblet-Ducoudré, N., Pacifico,
F., Pongratz, J., and Weiss, M.: Effect of anthropogenic land-use and
land-cover changes on climate and land carbon storage in CMIP5 projections
for the twenty-first century, J. Climate, 26, 6859–6881,
https://doi.org/10.1175/JCLI-D-12-00623.1, 2013.
Chen, S., Huang, Y., Zou, J., Shen, Q., Hu, Z., Qin, Y., Chen, H., and Pan,
G.: Modeling interannual variability of global soil respiration from climate
and soil properties, Agr. Forest Meteorol., 150, 590–605,
https://doi.org/10.1016/j.agrformet.2010.02.004, 2010.
Chen, Z., Guo, M., and Wang, W.: Variations in soil erosion resistance of
gully head along a 25-year revegetation age on the Loess Plateau, Water, 12,
3301, https://doi.org/10.3390/w12123301, 2020.
Choi, J., Francois-Carcaillet, F., and Boudreau, B. P.: Lattice-automaton
bioturbation simulator (LABS): implementation for small deposit feeders,
Comput. Geosci., 28, 213–222, https://doi.org/10.1016/S0098-3004(01)00064-4,
2002.
Clennell, M. B.: Tortuosity: a guide through the maze, in: Developments in
Petrophysics, edited by: Lovell, M. A. and Harvey, P. K., Geological Society
Special Publication No. 122, 299–344, https://doi.org/10.1144/GSL.SP.1997.122.01.18, 1997.
Delany, J. M. and Lundeen, S. R.: The LLNL thermochemical database, Lawrence
Livermore National Laboratory Report UCRL-21658, Lawrence Livermore National
Laboratory, 1990.
Eberl, D. D., Drits, V. A., and Środoń, J.: Deducing growth
mechanisms for minerals from the shapes of crystal size distributions, Am.
J. Sci., 298, 499–533, https://doi.org/10.2475/ajs.298.6.499, 1998.
Elberling, B. and Nicholson, R. V.: Field determination of sulphide
oxidation rates in mine tailings, Water Resour. Res., 32, 1773–1784,
https://doi.org/10.1029/96WR00487, 1996.
Emmanuel, S. and Ague, J. J.: Impact of nano-size weathering products on the
dissolution rates of primary minerals, Chem. Geol., 282, 11–18,
https://doi.org/10.1016/j.chemgeo.2011.01.002, 2011.
Emmanuel, S. and Berkowitz, B.: Mixing-induced precipitation and porosity
evolution in porous media, Adv. Water Resour., 28, 337–344,
https://doi.org/10.1016/j.advwatres.2004.11.010, 2005.
Fanchi, J. R.: Principles of Applied Reservoir Simulation, 4th Edn.,
Elsevier, ISBN 978-0-12-815563-9, 2018.
Fekete, B. M., Vörösmarty, C. J., and Grabs, W.: High-resolution
fields of global runoff combining observed river discharge and simulated
water balances, Global Biogeochem. Cy., 16, 15-1–15-10,
https://doi.org/10.1029/1999GB001254, 2002.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution
climate surfaces for global land areas, Int. J. Climatol., 37, 4302–4315,
https://doi.org/10.1002/joc.5086, 2017.
Fuss, S., Ganadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais,
P., Jackson, R. B., Jones, C. D., Kraxner, F., Nakicenovic, N., Le
Quéré, C., Raupach, M. R., Sharifi, A., Smith, P., and Yamagata, Y.:
Betting on negative emissions, Nat. Clim. Change, 4, 850–853,
https://doi.org/10.1038/nclimate2392, 2014.
Gasser, T., Cuivarch, C., Tachiiri, K., Jones, C. D., and Ciais, P.:
Negative emissions physically needed to keep global warming below 2
∘ C, Nat. Commun., 6, 7958, https://doi.org/10.1038/ncomms8958,
2015.
Gíslason, S. R. and Arnósson, S.: Dissolution of primary basaltic
minerals in natural waters: saturation state and kinetics, Chem. Geol., 105,
117–135, https://doi.org/10.1016/0009-2541(93)90122-Y, 1993.
Goldberg, E. D. and Koide, M.: Geochronological studies of deep sea
sediments by the ionium/thorium method, Geochim. Cosmochim. Ac., 26,
417–450, https://doi.org/10.1016/0016-7037(62)90112-6, 1962.
Goll, D. S., Ciais, P., Amann, T., Buermann, W., Chang, J., Eker, S.,
Hartmann, J., Janssens, I., Li, W., Obersteiner, M., Penuelas, J., Tanaka,
K., and Vicca, S: Potential CO2 removal from enhanced weathering by
ecosystem responses to powdered rock, Nat. Geosci, 14, 545–549,
https://doi.org/10.1038/s41561-021-00798-x, 2021.
Goddéris, Y., François, L. M., Probst, A., Schott, J., Moncoulon, D., Labat, D., and Viville, D.: Modelling weathering processes at the catchment scale: The WITCH numerical model, Geochim. Cosmochim. Ac., 70, 1128–1147, https://doi.org/10.1016/j.gca.2005.11.018, 2006.
Goddéris, Y., Brantley, S. L., François, L. M., Schott, J., Pollard, D., Déqué, M., and Dury, M.: Rates of consumption of atmospheric CO2 through the weathering of loess during the next 100 yr of climate change, Biogeosciences, 10, 135–148, https://doi.org/10.5194/bg-10-135-2013, 2013.
GRASS Development Team: Geographic Resources Analysis Support System (GRASS
GIS) Software, Version 7.2, Open Source Geospatial Foundation,
http://grass.osgeo.org (last access: 20 April 2022), 2017.
Hartmann, J., West, A. J., Renforth, P., Köhler, P., De La Rocha, C. L.,
Wolf-Gladrow, D. A., Dürr, H. H., and Scheffran, J.: Enhanced chemical
weathering as a geoengineering strategy to reduce atmospheric carbon
dioxide, supply nutrients, and mitigate ocean acidification, Rev. Geophys.,
51, 113–149, https://doi.org/10.1002/rog.20004, 2013.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Gonzalez, M. R.,
Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PloS One 12, e0169748,
https://doi.org/10.1371/journal.pone.0169748, 2017.
Hochella Jr., M. F.: Nanoscience and technology: the next revolution in the
Earth sciences, Earth Planet. Sc. Lett., 203, 593–605,
https://doi.org/10.1016/S0012-821X(02)00818-X, 2003.
Holden, P. B., Edwards, N. R., Fraedrich, K., Kirk, E., Lunkeit, F., and Zhu, X.: PLASIM–GENIE v1.0: a new intermediate complexity AOGCM, Geosci. Model Dev., 9, 3347–3361, https://doi.org/10.5194/gmd-9-3347-2016, 2016.
Ibarra, D. E., Caves Rugenstein, J. K., Bachan, A., Baresch, A., Lau, K. V.,
Thomas, D. L., Lee, J.-E., Boyce, C. K., and Chamberlain, C. P.: Modeling
the consequences of land plant evolution on silicate weathering, Am. J.
Sci., 319, 1–43, https://doi.org/10.2475/01.2019.01, 2019.
Iggland, M. and Mazzotti, M.: Population balance modeling with
size-dependent solubility: Ostwald ripening, Cryst. Growth Des., 12,
1489–1500, https://doi.org/10.1021/cg201571n, 2012.
IPCC: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, IPCC,
ISBN 4-88788-032-4, 2006.
IPCC: Global Warming of 1.5∘ C, IPCC, https://doi.org/10.1017/9781009157940, 2018.
Jarvis, N. J., Taylor, A., Larsbo, M., Etana, A., and Rosén, K.:
Modelling the effects of bioturbation on the re-distribution of 137Cs
in an undisturbed grassland soil, Eur. J. Soil Sci., 61, 24–34,
https://doi.org/10.1111/j.1365-2389.2009.01209.x, 2010.
Jia, M., Jacques, D., Gérard, F., Su, D., Mayer, K. U., and
Šimůnek, J.: A benchmark for soil organic matter degradation under
variably saturated flow conditions, Comput. Geosci., 25, 1359–1377,
https://doi.org/10.1007/s10596-019-09862-3, 2021.
Kanzaki, Y.: lithos-erw/SCEPTER: submission to GMDD (v0.9), Zenodo [code], https://doi.org/10.5281/zenodo.5835413, 2022.
Kanzaki, Y. and Kump, L. R.: Biotic effects on oxygen consumption during
weathering: Implications for the second rise of oxygen, Geology, 45,
611–614, https://doi.org/10.1130/G38869.1, 2017.
Kanzaki, Y. and Murakami, T.: Estimates of atmospheric CO2 in the
Neoarchean–Paleoproterozoic from paleosols, Geochim. Cosmochim. Ac., 159,
190–219, https://doi.org/10.1016/j.gca.2015.03.011, 2015.
Kanzaki, Y. and Murakami, T.: Estimates of atmospheric O2 in the
Paleoproterozoic from paleosols, Geochim. Cosmochim. Ac., 174, 263–290,
https://doi.org/10.1016/j.gca.2015.11.022, 2016.
Kanzaki, Y. and Murakami, T.: Effects of atmospheric composition on apparent
activation energy of silicate weathering: I. Model formulation, Geochim. Cosmochim. Ac., 223, 159–186, https://doi.org/10.1016/j.gca.2017.10.008,
2018.
Kanzaki, Y., Boudreau, B. P., Kirtland Turner, S., and Ridgwell, A.: A lattice-automaton bioturbation simulator with coupled physics, chemistry, and biology in marine sediments (eLABS v0.2), Geosci. Model Dev., 12, 4469–4496, https://doi.org/10.5194/gmd-12-4469-2019, 2019.
Kanzaki, Y., Brantley, S. L., and Kump, L. R.: A numerical examination of
the effect of sulfide dissolution on silicate weathering, Earth Planet. Sc. Lett., 539, 116239, https://doi.org/10.1016/j.epsl.2020.116239, 2020.
Kanzaki, Y., Hülse, D., Kirtland Turner, S., and Ridgwell, A.: A model for marine sedimentary carbonate diagenesis and paleoclimate proxy signal tracking: IMP v1.0, Geosci. Model Dev., 14, 5999–6023, https://doi.org/10.5194/gmd-14-5999-2021, 2021.
Köhler, P., Hartmann, J., and Wolf-Gladrow, D. A.: Geoengineering potential
of artificially enhanced silicate weathering of olivine, P. Natl. Acad.
Sci. USA, 107, 20228–20233, https://doi.org/10.1073/pnas.1000545107,
2010.
Köhler, P., Abrams, J. F., Völker, C., Hauck, J., and Wolf-Gladrow, D. A.: Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology, Environ. Res. Lett., 21, 014009, https://doi.org/10.1088/1748-9326/8/1/014009, 2013.
Larsen, I. J., Montgomery, D. R., and Greenberg, H. M.: The contribution of
mountains to global denudation, Geology, 42, 527–530,
https://doi.org/10.1130/G35136.1, 2014.
Lawrence, C., Harden, J., and Maher, K.: Modeling the influence of organic acids on soil weathering, Geochim. Cosmochim. Ac., 139, 487–507, https://doi.org/10.1016/j.gca.2014.05.003, 2014.
LeBlanc, S. E. and Fogler, H. S.: Population balance modeling of the
dissolution of polydisperse solids: rate limiting regimes, AIChE J., 33,
54–63, https://doi.org/10.1002/aic.690330108, 1987.
Li, D. D., Jacobson, A. D., and McInerney, D. J.: A reactive-transport model
for examining tectonic and climatic controls on chemical weathering and
atmospheric CO2 consumption in granitic regolith, Chem. Geol., 365,
300–42, https://doi.org/10.1016/j.chemgeo.2013.11.028, 2014.
Li, Y.-H. and Gregory, S.: Diffusion of ions in sea water and in deep-sea
sediments, Geochim. Cosmochim. Ac., 38, 703–714,
https://doi.org/10.1016/0016-7037(74)90145-8, 1974.
Liddicoat, S. K., Wiltshire, A. J., Jones, C. D., Arora, V. K., Brovkin, V.,
Cadule, P., Hajima, T., Lawrence, D. M., Pongratz, J., Schwinger, J.,
Séférian, R., Tjiputra, J. F., and Ziehn, T.: Compatible fossil fuel
CO2 emissions in the CMIP6 Earth system models' historical and Shared
Socioeconomic Pathway experiments of the twenty-first century, J. Climate, 34,
2853–2875, https://doi.org/10.1175/JCLI-D-19-0991.1, 2021.
Maggi, F., Gu, C., Riley, W. J., Hornberger, G. M., Venterea, R. T., Xu, T.,
Spycher, N., Steefel, C., Miller, N. L., and Oldenburg, C. M.: A mechanistic
treatment of the dominant soil nitrogen cycling processes: Model
development, testing, and application, J. Geophys. Res., 113, G02016,
https://doi.org/10.1029/2007JG000578, 2008.
Maher, K., Steefel, C. I., White, A. F., and Stonestrom, D. A.: The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California, Geochim. Cosmochim. Ac., 73, 2804–2831, https://doi.org/10.1016/j.gca.2009.01.030, 2009.
Massmann, W. J.: A review of the molecular diffusivities of H2O,
CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and
NO2 in air, O2 and N2 near STP, Atmos. Environ., 32,
1111–1127, https://doi.org/10.1016/S1352-2310(97)00391-9, 1998.
Mayer, L. M., Schick, L. L., Hardy, K. R., Wagai, R., and McCarthy, J.:
Organic matter in small mesopores in sediments and soils, Geochim. Cosmochim. Ac., 68, 3863–3872, https://doi.org/10.1016/j.gca.2004.03.019,
2004.
McGuire, A. D., Lawrence, D. M., Koven, C., Clein, J. S., Burke, E., Chen,
G., Jafarov, E., MacDougall, A. H., Marchenko, S., Nicolsky, D., Peng, S.,
Rinke, A., Ciais, P., Gouttevin, I., Hayes, D. J., Ji, D., Krinner, G.,
Moore, J. C., Romanovsky, V., Schädel, C., Schaefer, K., Schuur, E. A.
G., and Zhuang, Q.: Dependence of the evolution of carbon dynamics in the
northern permafrost region on the trajectory of climate change, P. Natl.
Acad. Sci. USA, 115, 3882–3887,
https://doi.org/10.1073/pnas.1719903115, 2018.
McKibben, M. A. and Barnes, H. L.: Oxidation of pyrite in low temperature
acidic solutions: Rate laws and surface textures, Geochim. Cosmochim. Ac.,
50, 1509–1520, https://doi.org/10.1016/0016-7037(86)90325-X, 1986.
Minx, J. C., Lamb, W. F., Callaghan, M. W., Fuss, S., Hilaire, J., Creutzig,
F., Amann, T., Beringer, T., de Oliveria Garcia, W., Hartmann, J., Khanna,
T., Lenzi, D., Luderer, G., Nemet, G. F., Rogelj, J., Smith, P., Luis
Vincente Vincente, J., Wilcox, J., and del Mar Zamora Dominguez, M.:
Negative emissions–Part 1: Research landscape and synthesis, Environ. Res.
Lett., 13, 063001, https://doi.org/10.1088/1748-9326/aabf9b, 2018.
Moore, J., Lichtner, P. C., White, A. F., and Brantley, S. L.: Using a reactive transport model to elucidate differences between laboratory and field dissolution rates in regolith, Geochim. Cosmochim. Ac., 93, 235–261, https://doi.org/10.1016/j.gca.2012.03.021, 2012.
Munhoven, G.: Model of Early Diagenesis in the Upper Sediment with Adaptable complexity – MEDUSA (v. 2): a time-dependent biogeochemical sediment module for Earth system models, process analysis and teaching, Geosci. Model Dev., 14, 3603–3631, https://doi.org/10.5194/gmd-14-3603-2021, 2021.
Navarre-Sitchler, A. and Brantley, S.: Basalt weathering across scales,
Earth Planet. Sc. Lett., 261, 321–334,
https://doi.org/10.1016/j.epsl.2007.07.010, 2007.
Nicholson, R. V., Gillham, R. W., and Reardon, E. J.: Pyrite oxidation in
carbonate-buffered solution: 2. Rate control by oxide coatings, Geochim. Cosmochim. Ac., 54, 395–402, https://doi.org/10.1016/0016-7037(90)90328-I,
1990.
Palandri, J. L. and Kharaka, Y. K.: A Compilation of Rate Parameters of
Water-Mineral Interaction Kinetics for Application to Geochemical Modeling,
Geological Survey, Menlo Park CA, 2004.
Parkhurst, D. L. and Appelo, C. A. J.: Description of input and examples for
PHREEQC version 3: a computer program for speciation, batch-reaction,
one-dimensional transport, and inverse geochemical calculations, US
Geological Survey, https://doi.org/10.3133/tm6A43, 2013.
Perez-Fodich, A. and Derry, L. A.: Organic acids and high soil CO2 drive intense chemical weathering of Hawaiian basalts: Insights from reactive transport models, Geochim. Cosmochim. Ac., 349, 173–198, https://doi.org/10.1016/j.gca.2019.01.027, 2019.
Perez, M., Dumont, M., and Acevedo-Reyes, D.: Implementation of classical
nucleation and growth theories for precipitation, Acta Mater., 56,
2119–2132, https://doi.org/10.1016/j.actamat.2007.12.050, 2008.
Pritchard, D. T. and Currie, J. A.: Diffusion of coefficients of carbon
dioxide, nitrous oxide, ethylene and ethane in air and their measurement, J.
Soil Sci., 33, 175–184, https://doi.org/10.1111/j.1365-2389.1982.tb01757.x,
1982.
Ragnarsdóttir, K. V.: Dissolution kinetics of heulandite at pH 2–12 and
25 ∘ C, Geochim. Cosmochim. Ac., 57, 2439–2449,
https://doi.org/10.1016/0016-7037(93)90408-O, 1993.
Rau, G. H., Knauss, K. G., Langer, W. H., and Caldeira, K.: Reducing
energy-related CO2 emissions using accelerated weathering of limestone,
Energy, 32, 1471–1477, https://doi.org/10.1016/j.energy.2006.10.011, 2007.
Rebreanu, L., Vanderborght, J. P., and Chou, L.: The diffusion coefficient
of dissolved silica revisited, Mar. Chem., 112, 230–233,
https://doi.org/10.1016/j.marchem.2008.08.004, 2008.
Renforth, P.: The potential of enhanced weathering in the UK, Int. J.
Greenh. Gas Control., 10, 229–243,
https://doi.org/10.1016/j.ijggc.2012.06.011, 2012.
Renforth, P. and Henderson, G.: Assessing ocean alkalinity for carbon
sequestration, Rev. Geophys., 55, 636–674,
https://doi.org/10.1002/2016RG000533, 2017.
Renforth, P., Pogge von Strandmann, P. A. E, and Henderson, G. M.: The
dissolution of olivine added to soil: Implications for enhanced weathering,
Appl. Geochem., 61, 109–118,
https://doi.org/10.1016/j.apgeochem.2015.05.016, 2015.
Ridgwell, A., Hargreaves, J. C., Edwards, N. R., Annan, J. D., Lenton, T. M., Marsh, R., Yool, A., and Watson, A.: Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling, Biogeosciences, 4, 87–104, https://doi.org/10.5194/bg-4-87-2007, 2007.
Robie, R. A. Hemingway, B. S., and Fisher, J. R.: Thermodynamic properties
of minerals and related substances at 298.15 K and 1 bar (105 pascals)
pressure and at higher temperatures, US Geological Survey, 1978.
Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V.,
Handa, C., Kobayashi, S., Kriegler, E., Mundaca, L., Séférian, R.,
Vilariño, M. V., Calvin, K., Emmerling, J., Fuss, S., Gillett, N., He,
C., Hertwich, E., Höglund-Isaksson, L., Huppmann, D., Luderer, G.,
McCollum, D.L., Meinshausen, M., Millar, R., Popp, A., Purohit, P., Riahi,
K., Ribes, A., Saunders, H., Schädel, C., Smith, P., Trutnevyte, E.,
Xiu, Y., Zhou, W., Zickfeld, K., Flato, G., Fuglestvedt, J., Mrabet, R., and
Schaeffer, R.: Mitigation pathways compatible with 1.5∘ C in the
context of sustainable development, IPCC, https://doi.org/10.1017/9781009157940.004, 2018.
Roland, M., Serrano-Ortiz, P., Kowalski, A. S., Goddéris, Y., Sánchez-Cañete, E. P., Ciais, P., Domingo, F., Cuezva, S., Sanchez-Moral, S., Longdoz, B., Yakir, D., Van Grieken, R., Schott, J., Candell, C., and Janssens, I. A.: Atmospheric turbulence triggers pronounced diel pattern in karst carbonate geochemistry, Biogeosciences, 10, 5009–5017, https://doi.org/10.5194/bg-10-5009-2013, 2013.
Safari, V., Arzpeyma, G., Raschchi, F., and Mostoufi, N.: A shrinking
particle–shrinking core model for leaching of a zinc ore containing
silica, Int. J. Miner. Process., 93, 79–83,
https://doi.org/10.1016/j.minpro.2009.06.003, 2009.
Schulz, H. D. and Zabel, M.: Marine Geochemistry, Springer, https://doi.org/10.1007/3-540-32144-6, 2006.
Shull, D. H.: Transition-matrix model of bioturbation and radionuclide
diagenesis, Limnol. Oceanogr., 46, 905–916,
https://doi.org/10.4319/lo.2001.46.4.0905, 2001.
Singer, P. C. and Stumm, W.: Acidic mine drainage: the rate-determining
step, Science, 167, 1121–1123,
https://doi.org/10.1126/science.167.3921.1121, 1970.
Sklar, L. S., Riebe, C. S., Marshall, J. A., Genetti, J., Leclere, S.,
Lukens, C. L., and Merces, V.: The problem of predicting the size
distribution of sediment supplied by hillslopes to rivers, Geomorphology,
277, 31–49, https://doi.org/10.1016/j.geomorph.2016.05.005, 2017.
Steefel, C. I.: CrunchFlow Software for Modeling Multicomponent Reactive
Flow and Transport USER'S MANUAL, 2009.
Steefel, C. I. and Lasaga, A. C.: A coupled model for transport of multiple
chemical species and kinetic precipitation/dissolution reactions with
application to reactive flow in single phase hydrothermal systems, Am. J.
Sci., 294, 529–592, https://doi.org/10.2475/ajs.294.5.529, 1994.
Steefel, S. I., Appelo, C. A. J., Arora, B., Jacques, D., Kalbacher, T.,
Kolditz, O., Lagneau, V., Lichtner, P. C., Mayer, K. U., Meeussen, J. C.L.,
Molins, S., Moulton, D., Shao, H., Šimůnek, J., Spycher, N.,
Yabusaki, S. B., and Yeh, G. T.: Reactive transport codes for subsurface
environmental simulation, Comput. Geosci., 19, 445–478,
https://doi.org/10.1007/s10596-014-9443-x, 2015.
Stonestrom, D. A., White, A. F., and Akstin, K. C.: Determining rates of
chemical weathering in soils–solute transport versus profile
evolution, J. Hydrol., 209, 331–345,
https://doi.org/10.1016/S0022-1694(98)00158-9, 1998.
Strefler, J., Amann, T., Bauer, N., Kriegler, E., and Hartmann, J.:
Potential and costs of carbon dioxide removal by enhanced weathering of
rocks, Environ. Res. Lett., 13, 034010,
https://doi.org/10.1088/1748-9326/aaa9c4, 2018.
Sugimori, H., Kanzaki, Y., and Murakami, T.: Relationships between Fe
redistribution and during mineral dissolution
under low O2 conditions, Geochim. Cosmochim. Ac., 84, 29–46,
https://doi.org/10.1016/j.gca.2012.01.001, 2012.
Sverdrup, H. and Warfvinge, P.: Calculating field weathering rates using a mechanistic geochemical model PROFILE, Appl. Geochem., 8, 273–283, https://doi.org/10.1016/0883-2927(93)90042-F, 1993.
Sverdrup, H., Warfvinge, P., Blake, L, and Goulding, K.: Modelling recent and historic soil data from the Rothamsted Experimental Station, UK using SAFE, Agr. Ecosyst. Environ., 53, 161–177, https://doi.org/10.1016/0167-8809(94)00558-V, 1995.
Trauth, M. H.: TURBO: A dynamic-probabilistic simulation to study the
effects of bioturbation on paleoceanographic time series, Comput. Geosci.,
24, 433–441, https://doi.org/10.1016/S0098-3004(98)00019-3, 1998.
Taylor, L. L., Quirk, J., Thorley, R. M. S., Kharecha, P. A., Hansen, J.,
Ridgwell, A., Lomas, M. R., Banwart, S. A., and Beerling, D. J.: Enhanced
weathering strategies for stabilizing climate and averting ocean
acidification, Nat. Clim. Change, 6, 402–406,
https://doi.org/10.1038/NCLIMATE2882, 2016.
U.S. Geological Survey: National Geochemical Database: Soil, U.S. Geological
Survey, https://mrdata.usgs.gov/ngdb/soil/ (last access: 20 April 2022), 2016.
Volk, T.: Feedbacks between weathering and atmospheric CO2 over the
last 100 million years, Am. J. Sci., 287, 763–779,
https://doi.org/10.2475/ajs.287.8.763, 1987.
Wang, B., Zhang, G.-H., Shi, Y.-Y., and Zhang, X. C.: Soil detachment by
overland flow under different vegetation restoration models in the Loess
Plateau of China, Catena, 116, 51–59,
https://doi.org/10.1016/j.catena.2013.12.010, 2014.
Weiss, R. F. and Price, B. A.: Nitrous oxide solubility in water and
seawater, Mar. Chem., 8, 347–357,
https://doi.org/10.1016/0304-4203(80)90024-9, 1980.
Wen, H., Sullivan, P. L., Macpherson, G. L., Billings, S. A., and Li, L.: Deepening roots can enhance carbonate weathering by amplifying CO2-rich recharge, Biogeosciences, 18, 55–75, https://doi.org/10.5194/bg-18-55-2021, 2021.
White, A. F. and Peterson, M. L.: Role of reactive-surface-area
characterization in geochemical kinetic models, in: Chemical Modeling of
Aqueous Systems II, ACS Symposium Series, 416, 461–475,
https://doi.org/10.1021/bk-1990-0416.ch035, 1990.
Williamson, M. A. and Rimstidt, J. D.: The kinetics and electrochemical
rate-determining step of aqueous pyrite oxidation, Geochim. Cosmochim. Ac.,
58, 5443–5454, https://doi.org/10.1016/0016-7037(94)90241-0, 1994.
Wilkin, R. T. and Barnes, H. L.: Solubility and stability of zeolites in
aqueous solution; I, Analcime, Na-, and K-clinoptilolite, Am. Mineral., 83,
746–761, https://doi.org/10.2138/am-1998-7-807, 1998.
Wolery, T. J. and Jove-Colon, C. F.: Qualification of thermodynamic data for
geochemical modeling of mineral-water interactions in dilute systems, No.
ANL-WIS-GS-000003 REV 00, YMP (Yucca Mountain Project, Las Vegas, Nevada),
https://doi.org/10.2172/850412, 2004.
Zhi, W., Shi, Y., Wen, H., Saberi, L., Ng, G.-H. C., Sadayappan, K., Kerins, D., Stewart, B., and Li, L.: BioRT-Flux-PIHM v1.0: a biogeochemical reactive transport model at the watershed scale, Geosci. Model Dev., 15, 315–333, https://doi.org/10.5194/gmd-15-315-2022, 2022.
Short summary
Increasing carbon dioxide in the atmosphere is an urgent issue in the coming century. Enhanced rock weathering in soils can be one of the most efficient C capture strategies. On the basis as a weathering simulator, the newly developed SCEPTER model implements bio-mixing by fauna/humans and enables organic matter and crushed rocks/minerals at the soil surface with an option to track their particle size distributions. Those features can be useful for evaluating the carbon capture efficiency.
Increasing carbon dioxide in the atmosphere is an urgent issue in the coming century. Enhanced...