Articles | Volume 15, issue 12
https://doi.org/10.5194/gmd-15-4689-2022
https://doi.org/10.5194/gmd-15-4689-2022
Methods for assessment of models
 | 
20 Jun 2022
Methods for assessment of models |  | 20 Jun 2022

loopUI-0.1: indicators to support needs and practices in 3D geological modelling uncertainty quantification

Guillaume Pirot, Ranee Joshi, Jérémie Giraud, Mark Douglas Lindsay, and Mark Walter Jessell

Related authors

GraphFlow v1.0: approximating groundwater contaminant transport with graph-based methods – an application to fault scenario selection
Léonard Moracchini, Guillaume Pirot, Kerry Bardot, Mark W. Jessell, and James L. McCallum
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-154,https://doi.org/10.5194/gmd-2024-154, 2024
Preprint under review for GMD
Short summary
Modelling subglacial fluvial sediment transport with a graph-based model, Graphical Subglacial Sediment Transport (GraphSSeT)
Alan Robert Alexander Aitken, Ian Delaney, Guillaume Pirot, and Mauro A. Werder
The Cryosphere, 18, 4111–4136, https://doi.org/10.5194/tc-18-4111-2024,https://doi.org/10.5194/tc-18-4111-2024, 2024
Short summary
Blockworlds 0.1.0: a demonstration of anti-aliased geophysics for probabilistic inversions of implicit and kinematic geological models
Richard Scalzo, Mark Lindsay, Mark Jessell, Guillaume Pirot, Jeremie Giraud, Edward Cripps, and Sally Cripps
Geosci. Model Dev., 15, 3641–3662, https://doi.org/10.5194/gmd-15-3641-2022,https://doi.org/10.5194/gmd-15-3641-2022, 2022
Short summary
Into the Noddyverse: a massive data store of 3D geological models for machine learning and inversion applications
Mark Jessell, Jiateng Guo, Yunqiang Li, Mark Lindsay, Richard Scalzo, Jérémie Giraud, Guillaume Pirot, Ed Cripps, and Vitaliy Ogarko
Earth Syst. Sci. Data, 14, 381–392, https://doi.org/10.5194/essd-14-381-2022,https://doi.org/10.5194/essd-14-381-2022, 2022
Short summary
dh2loop 1.0: an open-source Python library for automated processing and classification of geological logs
Ranee Joshi, Kavitha Madaiah, Mark Jessell, Mark Lindsay, and Guillaume Pirot
Geosci. Model Dev., 14, 6711–6740, https://doi.org/10.5194/gmd-14-6711-2021,https://doi.org/10.5194/gmd-14-6711-2021, 2021
Short summary

Related subject area

Climate and Earth system modeling
Improving the representation of major Indian crops in the Community Land Model version 5.0 (CLM5) using site-scale crop data
Kangari Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
Geosci. Model Dev., 18, 763–785, https://doi.org/10.5194/gmd-18-763-2025,https://doi.org/10.5194/gmd-18-763-2025, 2025
Short summary
Evaluation of CORDEX ERA5-forced NARCliM2.0 regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025,https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Design, evaluation, and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025,https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Amending the algorithm of aerosol–radiation interactions in WRF-Chem (v4.4)
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025,https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
The very-high-resolution configuration of the EC-Earth global model for HighResMIP
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025,https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary

Cited articles

Ahmed, N., Natarajan, T., and Rao, K. R.: Discrete cosine transform, IEEE T. Comput., 100, 90–93, 1974. a
Ailleres, L.: The Loop 3D stochastic geological modelling platform – development and applications, GMD Special Issue, https://gmd.copernicus.org/articles/special_issue1142.html (last access: 8 June 2022), data available at: https://loop3d.github.io/ (last access: 8 June 2022), 2020. a
Boisvert, J. B., Pyrcz, M. J., and Deutsch, C. V.: Multiple point metrics to assess categorical variable models, Nat. Resour. Res., 19, 165–175, 2010. a, b
Chen, M., Tompson, A. F., Mellors, R. J., and Abdalla, O.: An efficient optimization of well placement and control for a geothermal prospect under geological uncertainty, Appl. Energ., 137, 352–363, 2015. a
Dagan, I., Lee, L., and Pereira, F.: Similarity-based methods for word sense disambiguation, in: Proceedings of the 35th ACL/8th EACL, arXiv preprint, 56–63, https://doi.org/10.48550/arXiv.cmp-lg/9708010, 1997. a, b, c
Download
Short summary
Results of a survey launched among practitioners in the mineral industry show that despite recognising the importance of uncertainty quantification it is not very well performed due to lack of data, time requirements, poor tracking of interpretations and relative complexity of uncertainty quantification. To alleviate the latter, we provide an open-source set of local and global indicators to measure geological uncertainty among an ensemble of geological models.
Share