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Abstract. To support the needs of practitioners regarding 3D
geological modelling and uncertainty quantification in the
field, in particular from the mining industry, we propose a
Python package called loopUI-0.1 that provides a set of
local and global indicators to measure uncertainty and fea-
tures dissimilarities among an ensemble of voxet models.
Results are presented of a survey launched among practi-
tioners in the mineral industry, enquiring about their mod-
elling and uncertainty quantification practice and needs. It
reveals that practitioners acknowledge the importance of un-
certainty quantification even if they do not perform it. A total
of four main factors preventing practitioners performing un-
certainty quantification were identified: a lack of data uncer-
tainty quantification, (computing) time requirement to gen-
erate one model, poor tracking of assumptions and interpre-
tations and relative complexity of uncertainty quantification.
The paper reviews and proposes solutions to alleviate these
issues. Elements of an answer to these problems are already
provided in the special issue hosting this paper and more are
expected to come.

1 Introduction

An objective of researchers who develop open-source 3D
geological modelling algorithms (Loop, 2019; de la Varga
et al., 2019) is to make them findable, accessible, interoper-

able and reusable (FAIR) for practitioners. As for any soft-
ware, these algorithms should satisfy the needs and expecta-
tions of users (Franke and Von Hippel, 2003; Kujala, 2008).
Thus, new developments should rely on a good understand-
ing of modelling purposes, processes and limitations, follow-
ing a philosophy of continuous improvement. In a general
context, this becomes even more important given the increas-
ing number of open-source algorithms in the fields of earth
and planetary sciences (see Fig. 1). However, to the best of
our knowledge, the needs and uses of 3D geological mod-
elling practitioners with respect to uncertainty quantification
are only partially described in the literature, as it constitutes
an emerging field that only recently gained traction in both
academia and industry.

An essential purpose of modelling is to support decision
makers by offering a simplified representation of nature that
also provides a corresponding quantitative assessment of un-
certainty, communicating what we know, what remains un-
known and what is ambiguous (Ferré, 2017). Uncertainty
quantification is essential, because it allows mitigation of
predictive uncertainty (Jessell et al., 2018) by expanding our
knowledge, rejecting hypotheses (Wilcox, 2011) or falsify-
ing scenarios (Raftery, 1993). Questions related to 3D geo-
logical modelling and uncertainty quantification are not just
limited to the minerals industry, but also concern the fields
of CO2 sequestration (Mo et al., 2019), petroleum (Scheidt
and Caers, 2009) and geothermal (Witter et al., 2019) en-
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Figure 1. Evolution of yearly open-source algorithm publications
between 2000 and 2020; data from Web Of Knowledge (last access:
1 September 2021).

ergy resources as well as hydrogeology (Linde et al., 2017)
or civil engineering in urban environments (Osenbrück et al.,
2007; Tubau et al., 2017). Here, we are interested in the uses
and practices of the minerals industry, that is dealing with
both sedimentary basin and hard rock and/or cratonic settings
across regional to mine scales.

The three main pillars of uncertainty quantification are the
characterisation of uncertainty sources, their propagation and
mitigation throughout the modelling workflow (see Fig. 2).
The different sources of uncertainty, often overlooked, are
related to measurement errors, interpretations, assumptions,
modelling approximations and limited knowledge (sample
size or unknown process). Measurement or data errors can
be estimated by repetitive independent sampling or from
instrument characteristics; they can be propagated through
the modelling workflow by Monte Carlo data perturbation
(Wellmann and Regenauer-Lieb, 2012; Lindsay et al., 2012;
Pakyuz-Charrier et al., 2018). Combined with expert knowl-
edge, initial datasets can be used to shape some assump-
tions and define plausible conceptual models but despite the
importance of conceptual uncertainty on predictions (Pirot
et al., 2015), it is too often limited to the definition of a
unique scenario (Ferré, 2017). From a perspective on al-
gorithms, some assumptions such as how to set parameter
ranges are needed and this can greatly impact the definition
of geological parameters (Lajaunie et al., 1997) prior to run-
ning predictive numerical simulations. Another aspect that is
not always considered is the uncertainty related to a spatially
limited sampling. Unsampled locations suggest a high uncer-
tainty about the spatial distribution of the model parameters
(or values of the property field); this is why it is preferable to
resort to spatial stochastic simulations (e.g. sequential Gaus-
sian simulations in a multi-Gaussian world) rather than inter-
polations (e.g. kriging) to generate models that are parameter
fields (Journel and Huijbregts, 1978).

While the main objective of uncertainty quantification and
data integration might be to improve the confidence level
of predictions for decision making, it usually involves the
generation of model ensembles via a Monte Carlo algorithm
and it is rarely a straightforward step. Indeed, because of
the high dimensionality and non-linearity of earth processes
or the lack of data, history matching might prove difficult
to achieve and predicted outcomes might present multiple
modes (e.g. Suzuki and Caers, 2008; Sambridge, 2014; Pirot
et al., 2017). In such cases, geological uncertainty analysis
allows to improve our understanding of geological model
(dis)similarities and how specific or shared features can be
related to upstream parameters and downstream predictions.
Model comparison requires a shared discrete support; one
possibility is to project each geological model onto a discrete
mesh such as a regular grid voxet composed of volumetric
cells, also called voxels. Local uncertainty indicators such
as voxel-wise entropy or cardinality (Lindsay et al., 2012;
Schweizer et al., 2017), computed over an ensemble of geo-
logical voxets will inform about property field variability at
specific locations (voxels) of the model mesh. Global indica-
tors or summary metrics might be useful to identify how the
statistics of specific patterns (e.g. fault or fracture network
density, anisotropy, connectivity, etc.) evolve between differ-
ent models and might also be a way to perform model or
scenario selection (e.g. Pirot et al., 2019) or to reduce the di-
mensionality of the sampling space, from a high dimensional
geological space to a low dimensional latent space (Lochbüh-
ler et al., 2013). Although some indicators have been used or
developed for specific studies or softwares (Li et al., 2014), to
the best of our knowledge, no independent uncertainty anal-
ysis tool applicable to both discrete and continuous property
fields, combining local and global indicators is available to
practitioners.

To investigate the uses and practices of the minerals in-
dustry regarding modelling and uncertainty quantification,
we recently conducted a survey among numerical modelling
practitioners from industry, government and academia in the
sector of exploration and production of economic miner-
als. In this paper, first we present the main results and in-
terpretations from this survey, the questions of which are
listed in Appendix A. Second, to answer some of these
needs, we propose a set of indicators to quantify geologi-
cal uncertainty over an ensemble of geological models, rep-
resented as regular grid voxets and characterised by litho-
logical units in the discrete domain and their underlying
scalar field derived from implicit modelling in the contin-
uous domain. The various indicators are illustrated with
a synthetic case derived from a simplified Precambrian
dataset of the Hamersley, Western Australia. The Python
code called loopUI-0.1 (Pirot, 2021a) and the notebooks
used to compute and illustrate these indicators are available
at https://doi.org/10.5281/zenodo.5656151.
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Figure 2. Schematic representation of a geomodelling workflow; each ellipse is associated with some uncertainty; Data 1 (e.g. geological
observations) is used only to build a prior ensemble of models; Data 2 (e.g. geophysical measurements) is used to reduce the number of
models that can be considered. It is achieved by exploring the ensemble of prior models and selecting those that are more likely to reproduce
Data 2 within a prescribed level of error.

2 Survey

2.1 Material and method

The survey was designed to be concise to encourage partic-
ipation but with several open-ended questions to maximise
our chance to learn about different uses and practices, as well
as to minimise induced bias whenever possible. The survey
was in two parts. The first part was general and enquired
about the scales and dimensions (questions 1 and 2) of ge-
ological models. The second part of the survey was more
specific at a fixed modelling scale. It enquired about outputs
or objectives (questions 3 and 4), about data input (question
5), current workflows (questions 6–9) and limitations and ex-
pected improvements (question 10).

It was distributed between October 2019 and January 2020
among the 3D Interest Group (3DIG, last access: 8 June
2022; https://www.linkedin.com/groups/6804787/members/,
last access: 8 June 2022), Centre for Exploration Target-
ing (CET (last access: 8 June 2022) members (https://www.
cet.edu.au/personnel/, last access: 8 June 2022; https://www.
cet.edu.au/members/), Loop, last access: 8 June 2022; re-
searchers (https://loop3d.github.io/loopers.html, last access:
8 June 2022) and related networks. About 150 persons were
given the opportunity to participate. The solicited partici-
pants were essentially based in Australia but from a num-
ber of nationalities, with interests in geological modelling
for mining applications. They were either from the industry
or academia, from junior to senior profiles. Respondents had

the opportunity to complete the survey on paper, in a text file
or online.

A total of 35 responses were collected and anonymised.
Of the responses seven concerned models at different scales,
and when the second part of the survey was not clearly du-
plicated for each scale, the answers were considered with
caution for each modelling scale. Although 35 responses is
a relatively small number disallowing computation of robust
statistics, statistical analysis was not the intended outcome.
We endeavoured to ascertain opinions from practitioners in
a specialised and important domain in the geosciences. The
value is in the opinions we gathered which enhanced the sur-
vey results, aided interpretation and indicated which prac-
tices are commonly employed in geomodelling.

2.2 Results

This section summarises the answers provided by the sur-
vey respondents. Table 1 provides the general statistics of
answers to the survey. The high answer rate (mostly over
80 %) indicates that questions are meaningful for the respon-
dents and indicates that the reader can have confidence in
the presented results. The most answered question was Q1,
about the modelling scale. The least answered question was
Q9, about data integration and upscaling . The second least
answered question was Q8, about the modelling workflow
used. All other questions had an answer rate above 80 %
on a global average. Note that the global number of sur-
vey answers was smaller than the sum of each survey answer
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Figure 3. Modelling scales and resolutions in the mineral industry
with examples of scale-specific scientific enquiry; model illustra-
tions of the Vihanti-Pyhäsalmi Area, Finland, adapted from Laine
et al. (2015).

grouped by scale, as some survey answers were returned only
once for multiple scales.

Due to existing overlap of collected answers on differ-
ent questions, the results presented hereafter summarise and
group the collected answers by theme (output or objectives,
input data, current modelling workflow and limitations), as
outlined in the survey (see Appendix). Each theme is treated
by modelling scale (see Fig. 3) when it involves different an-
swers.

Q3–4. The main modelling objectives depend on the scale
of investigation. At the largest scales, investigation and
modelling are particularly useful to assist exploration and
prospectivity mapping. At the Greenfields or regional scale
(> 10 km dimension, ∼ 1 km resolution) , the main objective
is to obtain a contextual and conceptual understanding of the
regional geology, in particular regarding stratigraphy, topol-
ogy and geochronology. At the Brownfields scale (1–10 km
dimension, ∼ 100 m resolution), modelling aims to estimate
deep structures beyond the depths reached by drilling, such
as the depth of a particular interface or the delineation of po-
tential mineral system components (e.g. fluid alteration path-
ways and ore deposition environments). At the Mine scale
(< 1 km dimension, ∼ 10 m resolution), the objectives are to
assist with near mine exploration, resource estimation, ore
body localisation, drill targeting, operation scheduling and
efficient mining, by characterising local structures and ge-
ometries of stratigraphy and mineralisation. In addition to
fulfilling these various objectives, 3D models are useful to
improve hydrogeological characterisation, to identify critical
zones where more knowledge has to be gained, to allow for
comparison between datasets and test internal consistency,
scenarios and last but not least, for visualisation and commu-
nication.

Figure 4. Consideration of input data uncertainty in modelling.

Q5. Data types used as input for geoscientific modelling
are similar and complementary across scales. For instance,
geological mapping, geophysical data (gravity, magnetics,
electromagnetics, seismic), and geochemistry are useful at
all scales even though the related measurements might in-
form about a regional trend. Drill hole-derived data are usu-
ally much more abundant at the Mine scale and can be useful
to understand the regional context if analysed with this alter-
native use in mind. For example, drill logs that only record
the presence or absence of mineralisation are not useful for
the regional context; however, those that record rock prop-
erties, lithology and structure can be extrapolated to larger
scales and integrated in regional models (e.g. Lindsay et al.,
2020).

Q6. Regarding current modelling practices, although the
survey respondents acknowledge the importance of uncer-
tainty quantification and propagation into modelling to es-
timate the confidence around predictions, only about 10 %
perform quantitative uncertainty characterisation and propa-
gation from input data; about 20 % do some qualitative char-
acterisation and a vast majority of 70 % recognise that it is
ignored (see Fig. 4).

Q7–9. Modelling steps, assumptions or geological inter-
pretations are not recorded in one third of the cases. In most
cases, assumptions and elements of the modelling process
are described in metadata or in separate reports. In very few
cases, specific procedures and tools are available to keep
track of these. The respondents use a variety of software,
platforms or programming tools to produce 3D geological
models and further data integration. The lack of a coherent
workflow introduces the potential for uncertainty, error and
loss of precision when forced to translate data formats across
multiple software platforms, in addition to the time lost that
could otherwise be dedicated to solving the problem under
question or exploring alternative hypotheses.

Q10. Overall, the main limitations involved in 3D ge-
ological modelling are uncertainty underestimation due to
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Table 1. Global number and rate of answers per question and detailed by modelling scale.

Total Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

All scales Answer rate 100 % 97 % 94 % 83 % 91 % 89 % 86 % 77 % 60 % 83 %
Nb. answers 35 35 34 33 29 32 31 30 27 21 29

Mine scale Answer rate 100 % 93 % 100 % 71 % 93 % 86 % 86 % 64 % 43 % 79 %
Nb. answers 14 14 13 14 10 13 12 12 9 6 11

Brownfields scale Answer rate 100 % 94 % 100 % 82 % 94 % 94 % 94 % 82 % 76 % 82 %
Nb. answers 17 17 16 17 14 16 16 16 14 13 14

Greenfields scale Answer rate 100 % 100 % 88 % 75 % 81 % 81 % 88 % 81 % 63 % 81 %
Nb. answers 16 16 16 14 12 13 13 14 13 10 13

strong constraining and underlying assumptions (e.g. lack of
consideration of alternative conceptual models, lack of un-
certainty around interpreted horizons), navigation between
scales, the amount of work required to process and prepare
input data (including necessary artificial data), the time re-
quired to generate one model, the difficulty to integrate 2D
data into a 3D framework, the difficulty to visualise and man-
age huge amounts of drill hole data in 3D, the advent of ge-
ological inconsistencies, workflow and model reproducibil-
ity given the same inputs, joint integration of geological and
geophysical data and lack of tools to visualise uncertainty.

In what follows we address one of the needs identified in
the survey: the lack of tools to quantify and visualise uncer-
tainty from an ensemble of 3D voxets (prior or posterior en-
sembles). Indeed, it is of utmost importance for practitioners
as it allows reinterpretation of data or scenario importance
with respect to geological uncertainty or predictive uncer-
tainty.

3 Uncertainty indicators for categorical or continuous
property fields

The estimation of prediction confidence in geosciences relies
heavily on numerical simulations and requires generation of
an ensemble of models. As indicated by the survey results,
an important aspect of uncertainty quantification is its rep-
resentation. It helps identifying specific features or zones of
interest. Moreover, respondents estimate that such visualisa-
tion tools are missing. The uncertainty indicators presented
hereafter provide a way to identify zones of greater or smaller
uncertainty as well as (dis)similarities between geomodel re-
alisations.

Geomodels can be used to convey very different discrete
or continuous properties. Discrete or categorical properties,
such as lithological formations or classification codes should
be compared carefully. Indeed, while it is straightforward to
state if two values are identical or different, additional infor-
mation is needed to rank dissimilarities. Continuous proper-
ties, such as potential fields or physical properties (e.g. poros-
ity, conductivity) do not present this ambiguity to compare

range of values. One can note that depending on how phys-
ical properties are assigned during modelling, their value
spectrum might be discrete. Some modelling platforms may
produce a discrete physical property value spectrum depend-
ing on how physical properties are assigned or what input
constraints are enforced during model construction.

Local measures of uncertainty provide indicator voxets of
the same dimensions as the voxets of a model ensemble. For
a given voxel, uncertainty indicators are computed from the
distributions of values taken by a given property at the corre-
sponding voxel (same location) across the ensemble of model
realisations. Such local indicators are very convenient for vi-
sualisation: by sharing the same voxet as the model realisa-
tions, it is relatively easy to spot zones of low or high un-
certainty. However, to be useful it requires advanced mod-
elling that integrates some spatial constraints and possibly
computationally expensive, particularly if they are produced
by inversion algorithms. Here, we propose to compute car-
dinality and Shannon’s entropy for discrete properties (e.g.
Wellmann and Regenauer-Lieb, 2012; Pakyuz-Charrier et al.,
2018), and similarly, range, standard deviation and contin-
uous entropy for continuous properties (e.g. Marsh, 2013;
Pirot et al., 2017).

Global measures rely on the computation of summary
statistics or on the identification of feature characteristics, in-
dependently from their locations. The dissimilarities between
summary statistics or characteristics can be estimated via ap-
propriate metrics, such as the Wasserstein distance (Vallen-
der, 1974) or the Jensen-Shannon divergence (Dagan et al.,
1997). The resulting global measures allow comparison of
models with voxets or meshes of different dimensions. How-
ever, the computation of summary statistics might be more
time consuming than local measures. Their main advantage
is that it enables a focus on pattern similarity between mod-
els which might be particularly useful to explore the selec-
tion of alternative scenarios or prior realisations, before data
integration and history matching. In what follows, we pro-
pose a series of dissimilarity measures, applicable to categor-
ical and continuous property fields, based on 1-point statis-
tics (histogram, Dagan et al., 1997), 2-point (geo)statistics
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(semi-variogram, Matheron, 1963), multiple-point statistics
(multiple-point histogram, Boisvert et al., 2010), connectiv-
ity (Renard and Allard, 2013), wavelet decomposition (e.g.
Scheidt et al., 2015) and topology (e.g. Thiele et al., 2016).
Some indicators are similar to exploratory data analysis tech-
niques but here they are applied to model ensemble analysis.

To illustrate the different indicators, inspired by a Precam-
brian geological setting, that is a simplified dataset from the
Hamersley region, Western Australia, we generated synthetic
ensembles of 10 model sets for 3 different scenarios. Each
model set is composed of a lithocode voxet describing the
lithological units (categorical variable), and of its underly-
ing scalar field voxet (continuous variable). The underlying
scalar field is obtained by composition of the different scalar
fields for each unconformable stratigraphic group. Scenario 1
considers all synthetic input data, while scenario 2 keeps only
50 % of the data within a north-south limited band and sce-
nario 3 retains input data with a 50 % probability (see Fig. 5).
For each scenario, the positions and orientations of the input
data are perturbed to provide 10 stochastic realisations. Po-
sitions are perturbed with a Gaussian error of zero mean and
3 m standard deviation. Orientations are perturbed with a von
Mises-Fisher error of κ = 150 (corresponding to about ±5◦

of error). Each 3D model was generated using LoopStruc-
tural (Grose et al., 2021).

3.1 Cardinality

The cardinality of a set in mathematics, is the number of el-
ements of the set. Here, we define the cardinality for a given
voxel as the number of unique elements over the ensemble
of models for the corresponding voxel (Lindsay et al., 2012).
Computed for all voxels, it provides a cardinality voxet of
the same dimensions as the model voxets. It assumes that all
voxets of the model ensemble have the same dimensions. By
definition, this indicator can be computed on discrete or cat-
egorical property fields. For continuous property fields, we
propose to use the range between the minimum and maxi-
mum value, the standard deviation. Eventually, these contin-
uous indicators can be normalised over the voxet and then
averaged or weighted to provide another indicator. Figure 6
shows a cardinality voxet computed from an ensemble of
lithocode voxets as well as the range, standard deviation and
their normalised average from an ensemble of density voxets.

3.2 Entropy

Shannon’s entropy (see Eq. 1) is a specific case of the
Rényi entropy when its parameter α converges to 1 (Rényi,
1961). It has been already been applied to geomodels for
a few decades (Journel and Deutsch, 1993; Wellmann and
Regenauer-Lieb, 2012) and is a finer way than cardinality to
describe uncertainty over an ensemble of models, as it takes
into account the histogram proportions of the unique values
encountered. Let us consider the categorical or discrete vari-

ableX that represents a voxel property and assume that it can
take n distinct values among an ensemble of voxets. By de-
noting the probability of observing the ith possible value as
pi , the entropy H of X is computed as follows:

H(X)=−

n∑
i=1

pi lnpi . (1)

For continuous property fields, one needs to discretise the
continuous domain and integrate along the width of the bins
(Marsh, 2013). Here, for the considered example, we choose
50 regular bins. Figure 7 displays Shannon’s entropy for the
lithocode voxets and the continuous entropy for the other en-
semble of property fields: magnetic field, gravity field, den-
sity and magnetic susceptibility.

3.3 Histogram dissimilarity

Given a pair of voxets VP and VQ, we measure the dis-
similarities between their histograms by computing a sym-
metrised and smooth version of the Kullback-Leibler diver-
gence (Kullback and Leibler, 1951) known as the Jensen-
Shannon divergence or total divergence to the average (Da-
gan et al., 1997). Given two random variables P and Q, the
Jensen-Shannon divergence is computed as JSD(P ||Q)=
1
2 KLD(P ||M)+ 1

2 KLD(Q||M), where M = P+Q
2 and KLD

is the Kullback-Leibler divergence. It requires P and Q to
share the same support X and can be computed for continu-
ous or discrete variables. Here, we assume that for our pair
of voxets VP and VQ, the support of our random variables P
and Q, respectively, is discrete and of size n (possibly n bins
for discretised continuous variables).

Denoting the support of P and Q by (xi)i=1...n,
pi = Prob(P = xi), qi = Prob(Q= xi) and mi =

pi+qi
2 , the

Jensen-Shannon divergence is computed as in Eq. 2.

JSD(P ||Q)=
1
2

n∑
i=1

pi ln
(
pi

mi

)
+

1
2

n∑
i=1

qi ln
(
qi

mi

)
. (2)

3.4 Semi-variogram dissimilarity

Introduced by Matheron (1963), the semi-variogram mea-
sures the dissimilarity of values taken by random variables
at different spatial locations as a function of distance. As-
suming stationarity, it can be written as

γ (h)=
1
2
E
[
(Z(s)−Z(s+h))2

]
,

where s denotes a spatial location vector, h denotes a vector
and Z is the random field of interest.

Using spatial samples of a random variable, and segment-
ing the h space into radial distance lags, it is then possible to
compute an experimental or empirical semi-variogram over
n lags of width δ as follows:

γ̂ (hi)=
1

2Ni

∑
(j,k)

|Z(sj )−Z(sk)|
2,

Geosci. Model Dev., 15, 4689–4708, 2022 https://doi.org/10.5194/gmd-15-4689-2022
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Figure 5. Example model set of lithocode and scalar fields for each of the three scenarios; the left column illustrates input data and model
set for scenario 1 when all data are considered; the middle column illustrates input data and model set for scenario 2 when 50 % of the data
within a band are considered; the right column illustrates input data and model set for scenario 3 where each input data are decimated with a
probability of 50 %.

where hi = (i− 1
2 )δ is the centre of the ith lag, 1≤ i ≤ n and

Ni is the number of pairs (j,k) of points such that (i−1)δ ≤
||sj −sk|| ≤ iδ. Note, that we obtain here an omnidirectional
semi-variogram; it will be less sensitive to anisotropy but
simpler to assess than many directional semi-variograms as
anisotropic directions.

Given two empirical semi-variograms γ̂1 and γ̂2 (see e.g.
Fig. 8), we propose to use a weighted lp norm as defined in
Eq. (3).

||γ̂1− γ̂2||p =

 1∑
1≤i≤n

1
hi

∑
1≤i≤n

1
hi
|γ̂1(hi)− γ̂2(hi)|

p


1
p

, (3)

where p = 2 in the following examples. Note that the weight
is inversely proportional to the lag distance, giving more im-
portance to dissimilarities of the semi-variogram for small
distances. This allows to account for the structural noise and
(dis)continuity of the property fields. Thus, the experimen-
tal semi-variogram is not always well-behaved at short dis-
tances, in particular when dealing with sparse data. However,
this is not a concern when considering fully populated vox-
ets, such as in our case.

3.5 Connectivity dissimilarity

The existence of preferential flow-paths or barriers in the
subsurface often has a strong impact in many geoapplica-
tions. Their characterisation can improve the management
of groundwater quality, the extraction of geothermal energy,
and help mitigate the environmental impact related to either
the production of non-renewable and renewable resources
from the subsurface or the sequestration of carbon dioxide
and waste (e.g nuclear waste). Renard and Allard (2013) have
shown that connectivity cannot be captured by topological
indicators, such as the Euler characteristic, or by 1-point or
2-point statistics (e.g. by histogram or semi-variogram anal-
ysis, respectively). However, they have shown how a global
percolation metric 0(p) and a lag distance connectivity func-
tion τ(h) are useful to characterise the connectivity of bi-
nary, categorical or continuous property fields. Connectiv-
ity indicators have also been used in multiple-point statistics
applications to characterise the quality of stochastic simula-
tions with respect to a training image (Meerschman et al.,
2013) and in hydrogeophysical application for model selec-
tion (Pirot et al., 2019).

Let us consider a binary spatial variable X ∈ 0,1, and a
distance h. Then, the lag distance connectivity function τ(h)
is defined as the probability that two h-distant points s and
s+h, whose value of X = 1, are connected. For a binary

https://doi.org/10.5194/gmd-15-4689-2022 Geosci. Model Dev., 15, 4689–4708, 2022
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Figure 6. Horizontal sections of cardinality voxets for a categorical property field (first row) or similar indicators for a continuous property
field (second–fourth row); the first row shows the cardinality over the ensemble of lithocode voxets, the second row displays the (max-min
range) over the ensemble of scalar field voxets, the third row presents the standard deviation over the ensemble of scalar field voxets, the
fourth row displays the averaged normalised range and standard deviation over the ensemble of scalar field voxets; the left column refers to
scenario 1, the middle column to scenario 2 and the right column to scenario 3.

voxet, two voxels are connected if a path through the face of
successive neighbour voxels with the same property exists.
The lag distance connectivity function (see Fig. 9) can be
written as

τ(h)= Prob
(
s

connected
↔ s+h | X(s)= 1,X(s+h)= 1

)
.

Now let us assume that the percolation threshold p pro-
duces a binary voxet characterised by the binary spatial
variable X ∈ 0,1. The global percolation metric 0(p) (see
Fig. 10) is the proportion of the pairs of voxels that are con-
nected amongst all the pairs of voxels for which X = 1:

0(p)=
1
n2
p

N(Xp)∑
i=1

n2
i =

N(Xp)∑
i=1

p2
i ,

where N(Xp) is the number of distinct connected compo-
nents formed by voxels of value X = 1 and pi = ni/np is
the proportion of voxels forming the ith distinct connected
component, ni being the size in voxels of the ith connected
component and np being the total number of voxels of value
X = 1 in the voxet.

Conversely, for the complementary set of voxels for which
X = 0, we can compute 0(p)c (see Fig. 10). One can note
that the two connectivity metrics are related as

∑
h

τ(h)=

np0(p) (Renard and Allard, 2013).
We propose two measures of connectivity dissimilarity be-

tween voxets, based either on τ(h) or 0(p) and 0(p)c. Let
us denote by Nc the number of considered classes of values.
Note that for a categorical variable voxet, the classes are de-
fined by the category values, while for continuous variable

Geosci. Model Dev., 15, 4689–4708, 2022 https://doi.org/10.5194/gmd-15-4689-2022



G. Pirot et al.: loopUI-0.1: uncertainty indicators 4697

Figure 7. Horizontal sections entropy voxets; (a–c) show Shannon’s entropy over the ensemble of lithocode voxets, (d–f) display the con-
tinuous entropy over the ensemble of scalar field voxets; (a) and (d) refer to scenario 1, (b) and (e) to scenario 2 and (c) and (f) to scenario
3.

Figure 8. Example of experimental semi-variogram for two lithocode voxets, computed for the lithocode value of 2; (a) and (b) show a
horizontal section for each voxet; (c) shows the two corresponding experimental semi-variogram.

voxet, they can be obtained by thresholding with Nc percola-
tion thresholds p. Let us consider Nlag the number of lags
(defined similarly as for the experimental semi-variogram
in the previous subsection), lp = 2 the distance norm and
1τ = 1−10 the indicator allowing to choose between τ or 0
connectivity. Then we can compute the connectivity dissimi-
larity between two voxets as follows in Eq. (4):

dCTY(Voxet1,Voxet2)=
Nc∑
i=1

1
Nc1τ

Nlag∑
h=1

|τ1(h)− τ2(h)|
lp

Nlag

+ (1−1τ )|01(i)−02(i)|
lp

 . (4)

3.6 Multiple-point histogram dissimilarity

Multiple-point histograms (MPH, Boisvert et al., 2010) are
based on pattern recognition and have been primarily used in
the field of geostatistics (Guardiano and Srivastava, 1993) to
quantify the quality of multiple-point statistics simulations.

Patterns are delimited by a search window whose dimension-
ality matches the one of the dataset. One can count unique
patterns; however, the number of unique patterns might be
relatively important, in particular for continuous property
fields. In that case, it might require that the analysis be re-
strained to the most frequent patterns (Meerschman et al.,
2013). An alternative is to base the analysis on pattern cluster
representatives (see Fig. 11). Here, using an l2 norm distance
between patterns and k-means clustering (Pedregosa et al.,
2011, scikit-learn implementation), we classify all patterns
intoNc = 10 clusters. Each cluster centroid or barycentre de-
fines its representative.

In addition, voxets can be easily upscaled, which allows
MPH analysis of potentially large scale features with a small
search window at a high level of upscaling. Note that at a
given level l of upscaling, the size of the dataset is divided
by 2l along each dimension. Here, to avoid property values
smoothing, we perform a stochastic upscaling, i.e. in a 2D
case, the upscaled value of a 2×2 subset of pixels is achieved
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Figure 9. Illustration of the τ(h) connectivity function (b) computed on a 2D horizontal section from a binary 3D voxet (a).

Figure 10. Illustration of a scalar field voxet horizontal section (a) and its global percolation metrics 0(p) and 0c(p) (b) computed over the
2D sections; (c–g) display horizontal sections of binary fields obtained by applying different percolation threshold p[%] to the scalar field
3D voxet; blue areas, above the percolation threshold, contribute to 0(p); yellow areas, below the percolation threshold, are used to compute
0c(p).

by a uniform random draw among the values of the 4 pixels.
Cluster pattern identification is performed at the initial reso-
lution level (l = 0) and at all possible upscaled levels.

For a given upscaling level, once k-means clustering of
patterns has been performed on two voxets or datasets, dis-
tances between cluster representatives of two images can be
computed

d(Ci1,C
j

2 )=

(
Nw∑
w=1

(
Ci1(w)−C

j

2 (w)
)2
) 1

2

,

where Ci1 is the ith cluster representative for voxet 1, Cj2 is
the j th cluster representative for voxet 2 and w denotes the
index of the window search elements.

The cluster representatives between two datasets are
paired by similarity (smallest distance), and reordered such
that ∀i, 1≤ i ≤Nc, and Ci1 is paired with Ci2. To account for
cluster size differences, the distance between paired cluster
representative are weighted by proportion dissimilarities. It
results in an MPH cluster-based distance between voxets or

datasets 1 & 2 defined as in Eq. (5).

dMPH(Voxet1,Voxet2)=
Nc∑
i=1

1
Nc[(

1+ d(Ci1,C
i
2)
)
×

(
1+
|pi1−p

i
2|

pi1+p
i
2

)
− 1

]
, (5)

where pi1 and pi2 are the proportions of the paired clusters Ci1
and Ci2 with respect to voxets 1 & 2, respectively.

One advantage of selecting cluster representatives inde-
pendently between two voxets is to lower computing require-
ments over large ensembles of voxets, performing the anal-
ysis for Nv voxets instead of Nv(Nv−1)

2 pairs. However, per-
forming R pattern clustering on two datasets might provide
a more accurate and precise way to compute a distance be-
tween histograms with the same support of cluster represen-
tatives, thus allowing the use of Jensen-Shannon divergence
for instance. One can note that we accounted for the size of
the clusters but we could also consider the density spread or
concentration around cluster representatives.
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Figure 11. Illustration of multiple-point histogram cluster represen-
tatives and sizes for two scalar field horizontal sections, at the 3rd
upscaling level; the left column shows the two 2D voxets; for the
other columns the first and second rows, and the third and fourth
rows, display the 10 cluster representatives and their size (number of
counted patterns attached to the cluster representative) for the first
voxet and for the second voxet, respectively; their order reflects the
best similarity between the cluster representatives for both voxets.

Figure 12. Illustration of a first level of Haar-wavelet decomposi-
tion and the resulting coefficient histograms for two lithocode voxet
horizontal sections.

3.7 Wavelet decomposition coefficient dissimilarity

Wavelet decomposition is a way to compress images. Each
level of decomposition produces a series of coefficients. If
computed for images to be compared, the dissimilarity of
histograms of coefficients can be computed with the Jensen-
Shannon divergence (Eq. 2). Here, wavelet decomposition
(Fig. 12) is performed with the PyWavelets Python pack-
age (Lee et al., 2019) at all possible levels of decomposition
and using the “Haar” wavelet. Other wavelets could be used;
however, tests have shown that such dissimilarity measures
are not very sensitive to the choice of the wavelet (Pirot et al.,
2019).

Then a wavelet-based dissimilarity measure between two
voxet can be computed as in Eq. (6) by summing the Jensen-
Shannon divergences computed for all pairs of approxima-
tion and decomposition coefficients at all possible levels:

dWVT(Voxet1,Voxet2)=
∑
i,j

JSD(Ci,j1 ||C
i,j

2 )∑
i,j

1
, (6)

where Ci,j1 and Ci,j2 denote the distributions of the ith coef-
ficients at upscaling level j for Voxet1 and Voxet2, respec-
tively.

3.8 Topological dissimilarity

Thiele et al. (2016) give an overview of possible representa-
tions of the topology in the context of 3D geological mod-
elling. Different levels of complexity (e.g. 1st or 2nd or-
ders. . . ) can be used. Nonetheless, any topological indica-
tor is a graph that can take the form of an adjacency matrix.
Therefore, to compute a topological distance between two
3D geological models (for instance as in Giraud et al., 2019),
it seems natural to look at distances defined between graphs.
Donnat and Holmes (2018) provided a comprehensive review
of graph distances used in the study of graph dynamics or
temporal evolution. Although, here, in a geological context,
we aim at comparing the topological diversity of an ensemble
of geological models, we can use similar distances. Donnat
and Holmes (2018) classified graph distances into three main
categories as summarised below.

Low-scale distances capture local changes in the graph
structure. The Hamming (structural) distance is the sum of
the absolute value of differences between two adjacency ma-
trices and requires the same number of vertices (nodes) be-
tween the graphs – note that it is a specific case of the more
general graph edit distance. The Jaccard distance is defined
as the difference between the union and intersection of two
graphs. The graph edit distance belongs to the NP-complete
class of problems, and is not computed here. More informa-
tion is available in (Gao et al., 2010) or in part IV Chapter 15
of the Encyclopedia of Distances (Deza and Deza, 2009, p.
301). Note that some packages and implementations to com-
pute the graph-edit distance exist but have not been tested
here (GMatch4py, last access: 8 June 2022; graphkit-learn,
last access: 8 June 2022; other proposed heuristic, last ac-
cess: 8 June 2022).

High level or spectral distances are global measures and
reflect the smoothness of the overall graph structure changes
by measuring dissimilarities in the eigenvalues of the graph
Laplacian or its adjacency matrix. Some examples are the IM
distance (Ipsen and Mikhailov, 2003), lp distances on eigen-
values and the Kruglov distance on eigenvector coordinates
(Shimada et al., 2016).

Meso-scale distances are a compromise or combination of
low-scale and spectral distances: Hamming-IM (HIM) com-
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Figure 13. Illustration of topological distances and adjacency ma-
trices in the right column for two categorised voxets in the middle
column, derived from two scalar field voxet horizontal sections in
the left column.

bination, heat-wave distance, polynomial distance, neigh-
bourhood level distances and connectivity-based distances.

Here, we propose to build first order adjacency matrices
(see Fig. 13) from 2D or 3D voxet models. For continuous
property fields, the voxet is discretised intoN = 10 classes of
values defined byN equipercentile thresholds over the distri-
bution of the combined voxets. We compute two topological
distances: the structural Hamming distance and the Laplacian
spectral distance (Shimada et al., 2016).

Note that graphs characterising geological model topol-
ogy could be defined as attributed graphs, to contain more
information (edges properties, such as age constraint, type
of contact; vertices properties, such as formation type, geo-
physical properties). Thus, more specific measures could be
developed to take such characteristics into account; however,
it would rely on the ability of geomodelling engines to pro-
vide these topology graphs with each model, and there is no
guarantee that it would be meaningful for the inference of
geochronology from geophysics.

3.9 Results: indicator comparison

Local measures of uncertainty (see Figs. 14 and 15) and
global indicators (see Figs. 17 and 18) have been com-
puted for 2D, 3D, categorical and continuous variable voxets
(lithocode, scalar field) for an ensemble of 30 model sets. We
also provide a comparison of the required computing time for
the different indicators and highlight the contributing factors
or parameters (see Table 2).

One can see from Fig. 14 that Shannon’s entropy and car-
dinality computed from lithocode voxets can have a good
correlation. However, the following equivalent indicators:

continuous entropy, averaged normalised range and standard
deviation computed from scalar field voxets, (Fig. 15) have
very little in common. Indeed, the standard deviation or the
range of values is sensitive to extremely different values,
while the continuous entropy is sensitive to the proportion
of categories of values.

Figure 16 shows that histogram dissimilarities computed
from lithocode or scalar field voxets have a good correlation.
Multidimensional scaling (MDS) plots reveal that dissimilar-
ities are smallest within scenario 1 and then within scenario
3 while they are greatest within scenario 2. The MDS plots
show that scenarios 1 and 3 model sets overlap while scenario
2 model sets are characterised by less similar histograms and
thus the scenario 2 sample cloud of points form a distinct
cluster.

Figure 17 shows some correlation between histogram,
semi-variogram, wavelet and structural Hamming-based
measures from the lithocode voxets. Figure 18 shows a
good correlation between histogram dissimilarity, wavelet-
based dissimilarity and structural Hamming distance from
the scalar field voxets but not as strong as when computed
from the lithocode voxets.

4 Discussion

Several factors might explain why the majority of practition-
ers do not consider input data uncertainty but all are related to
the limited resources available to practitioners (knowledge,
algorithms, computing time, project timeframe or funding).
One of them is that data uncertainty is not quantified at the
time of data acquisition or not available for some measure-
ments, which is the case when only one measurement or ob-
servation of geological data is made at a given location (e.g.
for azimuth, dip, and lithology). Reasonable metadata stan-
dards may help to enforce error quantification, or at the very
least provide some information about the nature of data col-
lection as to infer where and what magnitude of error may
be present but even these are poorly or not recorded. Al-
though repeated independent measurements would provide
uncertainty estimates, procedures and limited time or budget
resources are a hindrance. Sometimes, knowing the survey
set-up and the instrumentation characteristics, such as their
precision and accuracy might avoid repeating field measures
and allow an estimation of measurement uncertainty. Inver-
sion algorithms used for geophysical data integration can
also provide estimates of geophysical data errors.

A second reason is related to the required time and associ-
ated costs of modelling. Indeed, the process of data integra-
tion only uses a very limited amount of automation, thus the
generation of a single model already consumes most of the
practitioners’ resources. In addition, the complexity of real-
world data often leads to a substantial number of parameters.
Thus for high-dimensional problems, uncertainty propaga-
tion requires sufficiently large model ensembles to be rep-
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Figure 14. Comparison of local uncertainty measures for an ensemble of 10 lithocode 3D voxets for scenario 1; 3D visualisation looking
from the NW of the voxet, the top surface of the voxet an EW section at the northern face of the model looking from the south, a NS section
on the western face of the voxet looking from the east.

Figure 15. Comparison of local uncertainty measures for an ensemble of 10 scalar-field 3D voxets for scenario 1; 3D visualisation looking
from the NW of the voxet, the top surface of the voxet an EW section at the northern face of the model looking from the south, a NS section
on the western face of the voxet looking from the east.

resentative, which might not be compatible with the limited
resources available to the practitioners.

A third reason is due to the fact that assumptions, such as
choices in geological interpretations made during the mod-
elling process, are not always tracked and when they are, they
are often “forgotten” at the next stage of the modelling work-
flow (Jessell et al., 2018). When these assumptions or justi-
fications are recorded, they are described in metadata or in
distinct reports. Consequently, conceptual uncertainty, which
describes alternative yet plausible stratigraphy, tectonic and
geodynamic settings, is also ignored.

Another possible reason is that uncertainty is ignored out
of convenience (Ferré, 2017) or by ignorance, lack of knowl-
edge or education about the importance of uncertainty quan-
tification. However, the formulation of the collected answers
suggests that this is not the case for the surveyed practition-
ers, who tend to acknowledge the importance and need for
tools or algorithms to integrate uncertainty quantification in
their modelling workflow.

While about 11 % of the respondents indicated that they
perform a quantitative uncertainty quantification, it is limited
to aleatoric uncertainty, i.e. data measurement errors. How-
ever, the lack of spatial data samples contributes to epistemic
uncertainty and our limited contextual knowledge adds up to
conceptual uncertainty. In addition, it is generally expected
that these sources of uncertainty have a bigger impact on pre-
dictive uncertainty (Pirot et al., 2015). Thus, in addition to
developing tools to facilitate aleatoric uncertainty quantifica-
tion for practitioners, accessible tools integrating epistemic
and conceptual uncertainty quantification need to be devel-
oped and promoted in the minerals industry.

Restricting the survey to a few open questions encouraged
participants to take the survey and to express their uses, needs
and opinion with limited perception bias; however, it did
not allow quantification of the gathered answers, and often
required some interpretation. Nevertheless, it is a first step
in acknowledging the practices and needs of 3D geological
modellers in the minerals industry. Another limitation of the
survey is that it did not look at the practice and needs of
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Figure 16. Comparison of model set histogram dissimilarities across the three scenarios; (a) and (d) display a 2D MDS representation of
histogram dissimilarities computed from lithocode voxets (a–c) and from scalar-field voxets (d–f); samples 0–9 belong to scenario 1, samples
10–19 belong to scenario 2 and samples 20–29 belong to scenario 3; the subplots of (b), (c), (e), and (f) show histogram and density, joint
density and cross-plot between histogram dissimilarities computed from lithocode voxets or from scalar field voxets.

Table 2. Complexity and computing time for local and global measures of uncertainty using a single Intel®Core™ i7-8550 1.80 GHz
processor, based on an ensemble size of N = 10 geological models.

Measures Number of Total CPU time Influential parameters
evaluations (HH:MM:SS)

Cardinality 2 00:00:02 nvoxels, nvoxets
Entropy 2 00:00:05 nvoxels, nvoxets, nbins

Histogram dissimilarity 60 00:00:38 nvoxels, nvoxets
Semi-variogram dissimilarity 60 00:09:42 nvoxels, nvoxets, ncateg, ratesub−sampling
Connectivity dissimilarity 60 00:07:02 nvoxels, nvoxets, ncateg, ratesub−sampling
Multiple-point histogram dissimilarity 870 00:37:45 nvoxels, nvoxets, ratesub−sampling
Wavelet decomposition coefficients dissimilarity 870 00:00:38 nvoxels, nvoxets
Topological distances 870 00:02:49 nvoxels, nvoxets, nbins

other fields, such as the petroleum industry (Scheidt et al.,
2018), geothermal industry (Chen et al., 2015) or hydrogeol-
ogy (Pirot et al., 2019), although they share similar scientific
problems and also propose interesting solutions to deal with
uncertainty quantification.

For model ensembles of size n, the calculation of local
uncertainty indicators, such as cardinality or entropy voxets
seems to be much faster O(n) to compute than global in-
dicators O(n2), in particular when dealing with discrete or
categorical variables. In addition, local indicators are most

convenient to visualise uncertainty in 2D or 3D spaces. How-
ever, they cannot provide information about the variability
of important specific features, such as connectivity or topol-
ogy, that can be estimated with global uncertainty indicators.
Thus, depending on the modelling objectives and relevant
features or characteristics, both local and global uncertainty
indicators should be considered.

Nevertheless, a few recommendations can be made regard-
ing the selection of uncertainty indicators. When looking at
the most shallow learning curve for a typical modeller or
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Figure 17. Comparison of global normalised dissimilarity measures for an ensemble of 30 lithocode 3D voxets across the 3 scenarios; cross-
plots and density plots by pair of normalised dissimilarity measures; his – histogram, 2ps – semi-variogram, mph – multiple-point histogram,
cty – connectivity, wvt – wavelet decomposition coefficients, shd – topological structural Hamming distance, lsg – topological Laplacian
spectral distance.

geologist, a good practice might be to start with cardinal-
ity, which simply states how many different lithologies are
present at a given location. Then entropy will become more
appropriate when the geologist starts to compare ensembles
of models with different stratigraphies (in which case the to-
tal number of lithological units will change, making cardi-
nality inappropriate). A following step in the learning curve
might then be the use of topological or connectivity-based
indicators to better understand the impact of stratigraphic un-
certainty. Alternatively, a good strategy might be to compute
as many indicators as can be afforded in the allocated com-
puting budget (see Table 2 for indicative computing require-
ments). Another possibility would be to select a subset of
voxets from the whole ensemble on which all indicators are
computed and then perform a selection of the most informa-
tive or suitable ones prior to computing them on the whole
set.

Presumably, the presented indicators are not exhaustive
and remain a subjective choice (Wellmann and Caumon,
2018), even though all of them are already used rather in-
dividually in the geomodelling community. Pellerin et al.
(2015), for instance, proposed other specific global geo-

metric indicators. Here, we have focused on indicators that
have shown some usefulness and practicality. Local indi-
cators could be extended to higher moments of the voxel-
valued probability distributions, such as to consider asym-
metry. Global indicators could be extended to dissimilarity
measures of transition probabilities, transiograms or cross-
to-direct indicator variogram ratios as well as measures de-
rived from computer graphics or deep learning techniques.
One could also consider summary metrics of lower dimen-
sional model representations that could be obtained from
discrete-cosine transform (e.g. Ahmed et al., 1974), (kernel)
principal component analysis (e.g. Schölkopf et al., 1997)
or (kernel) auto-encoding (e.g. Laforgue et al., 2019). This
could be particularly appealing as it could reduce indicator
computing costs drastically but might not allow identification
of the specific features of interest in a representation space of
lower dimensions.

Last but not least, it should be noted that we compared en-
sembles of models where the underlying characteristics such
as various lithological units derived from a shared stratig-
raphy and scalar fields generated under similar assumptions
are consistent. However, we must point out that the various
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Figure 18. Comparison of global normalised dissimilarity measures for an ensemble of 30 scalar field 3D voxets across 3 scenarios; cross-
plots and density plots by pairs of normalised dissimilarity measures; his – histogram, 2ps – semi-variogram, mph – multiple-point histogram,
cty – connectivity, wvt – wavelet decomposition coefficients, shd – topological structural Hamming distance, lsg – topological Laplacian
spectral distance.

indicators are compatible with differences in property ranges
or meanings (for categorical variables), and thus it is the re-
sponsibility of the user to ensure the coherence of the model
ensemble used as an input for the uncertainty computation.

5 Conclusions

The survey clearly shows that practitioners acknowledge the
importance of uncertainty quantification; the majority recog-
nise that they do not perform uncertainty quantification at all
and all would like to do better. From this survey we have
identified four main factors preventing practitioners from
performing uncertainty quantification: lack of data uncer-
tainty quantification, computing requirement to generate one
model, poor tracking of assumptions and interpretations and
relative complexity of uncertainty quantification. Here, as a
first response, we have provided the geomodelling commu-
nity with loopUI-0.1, an open-source Python package to
compute local and global uncertainty indicators. Then, to
increase the confidence in predictions from 3D geological
model, efforts should be made to explore conceptual uncer-

tainty (Laurent and Grose, 2020) as well as towards the im-
plementation of systematic geological data uncertainty quan-
tification, and the exploration of parametric and epistemic
uncertainty (Pirot et al., 2020). It should be performed appro-
priately at all scales, across all geoscientific methods, such as
the extraction of additional lithological data from drill hole
databases (Joshi et al., 2021). To encourage uncertainty prop-
agation among practitioners, accessible and compatible algo-
rithms should be offered (1) to automatically extract geolog-
ical data from open databases (Jessell et al., 2021) and (2)
to quickly generate plausible geological models from a given
dataset (Grose et al., 2021) in interaction with geophysical
data integration (Giraud et al., 2021) and at an appropriate
resolution (Scalzo et al., 2021). This special issue (Ailleres,
2020) already provides elements of an answer to these prob-
lems and is expected to host future advances on these topics.

Appendix A: Survey

For each model scale that you encounter in your work, please
answer all the questions of the survey (1–10):
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A1 Part I – scale

1. What are the scale and characteristic dimensions (width,
length, depth and resolution) of the models that you
build or use?

Table A1. Investigation scale.

Mine (< 1 km dimension, ∼ 10 m resolution)
Brownfields (1–10 km dimension, ∼ 100 m resolution)
Greenfields/regional (> 10 km dimension, ∼ 1 km resolution)

2. What are the dimensions and grid cell resolution of your
models?

Table A2. Model dimensions and resolution.

Model width (m)
Model length (m)
Model depth (m)
Horizontal resolution (m)
Vertical resolution (m)
Main purpose (e.g. resource estimation)

A2 Part II

Output

3. Which objectives do geological models help you to
achieve?

4. How are they useful to fulfil other needs (and which
ones)?

Input

5. What kind of input data, and what quantity and
quality metrics (if any) are used to build your ge-
ological models?

Current modelling

6. How is the uncertainty of input data assessed and
taken into account?

7. How is the geologist/modeller’s interpretation
recorded into the model (recorded tracks of as-
sumptions, choices and justifications)?

8. What is the usual modelling workflow and which
tools or algorithms are involved?

9. How are data integration and upscaling performed?
Which tools or algorithms are involved?

Improvements

10. What are the limitations of existing geological
models to achieve your current and future objec-
tives? How do you prioritise them and what kind of
solution would you imagine?

Code and data availability. The detailed survey questions are
available in Appendix A and the gathered anonymised answers
are available on request. The code to compute the uncertainty
indicators and a set of illustrative notebooks are available at
https://doi.org/10.5281/zenodo.5656151 (Pirot, 2021b).
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