Articles | Volume 15, issue 8
https://doi.org/10.5194/gmd-15-3233-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-3233-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of an open-source regional data assimilation system in PEcAn v. 1.7.2: application to carbon cycle reanalysis across the contiguous US using SIPNET
Crop Science Department, University of Illinois at Urbana-Champaign, Urbana–Champaign, IL, USA
Bailey D. Morrison
Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
Ann Raiho
Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
Shawn P. Serbin
Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
Katie Zarada
Earth and Environment Department, Boston University, Boston, MA, USA
Luke Dramko
Institute for Software Research, Carnegie Mellon University, Pittsburgh, PA, USA
Michael Dietze
Earth and Environment Department, Boston University, Boston, MA, USA
Related authors
Marissa Kivi, Noemi Vergopolan, and Hamze Dokoohaki
Hydrol. Earth Syst. Sci., 27, 1173–1199, https://doi.org/10.5194/hess-27-1173-2023, https://doi.org/10.5194/hess-27-1173-2023, 2023
Short summary
Short summary
This study attempts to provide a framework for direct integration of soil moisture observations collected from soil sensors and satellite imagery into process-based crop models for improving the representation of agricultural systems. The performance of this framework was evaluated across 19 sites times years for crop yield, normalized difference vegetation index (NDVI), soil moisture, tile flow drainage, and nitrate leaching.
Konstantin Gregor, Benjamin F. Meyer, Tillmann Gaida, Victor Justo Vasquez, Karina Bett-Williams, Matthew Forrest, João P. Darela-Filho, Sam Rabin, Marcos Longo, Joe R. Melton, Johan Nord, Peter Anthoni, Vladislav Bastrikov, Thomas Colligan, Christine Delire, Michael C. Dietze, George Hurtt, Akihiko Ito, Lasse T. Keetz, Jürgen Knauer, Johannes Köster, Tzu-Shun Lin, Lei Ma, Marie Minvielle, Stefan Olin, Sebastian Ostberg, Hao Shi, Reiner Schnur, Urs Schönenberger, Qing Sun, Peter E. Thornton, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2025-1733, https://doi.org/10.5194/egusphere-2025-1733, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Geoscientific models are crucial for understanding Earth’s processes. However, they sometimes do not adhere to highest software quality standards, and scientific results are often hard to reproduce due to the complexity of the workflows. Here we gather the expertise of 20 modeling groups and software engineers to define best practices for making geoscientific models maintainable, usable, and reproducible. We conclude with an open-source example serving as a reference for modeling communities.
Marissa Kivi, Noemi Vergopolan, and Hamze Dokoohaki
Hydrol. Earth Syst. Sci., 27, 1173–1199, https://doi.org/10.5194/hess-27-1173-2023, https://doi.org/10.5194/hess-27-1173-2023, 2023
Short summary
Short summary
This study attempts to provide a framework for direct integration of soil moisture observations collected from soil sensors and satellite imagery into process-based crop models for improving the representation of agricultural systems. The performance of this framework was evaluated across 19 sites times years for crop yield, normalized difference vegetation index (NDVI), soil moisture, tile flow drainage, and nitrate leaching.
Qianyu Li, Shawn P. Serbin, Julien Lamour, Kenneth J. Davidson, Kim S. Ely, and Alistair Rogers
Geosci. Model Dev., 15, 4313–4329, https://doi.org/10.5194/gmd-15-4313-2022, https://doi.org/10.5194/gmd-15-4313-2022, 2022
Short summary
Short summary
Stomatal conductance is the rate of water release from leaves’ pores. We implemented an optimal stomatal conductance model in a vegetation model. We then tested and compared it with the existing empirical model in terms of model responses to key environmental variables. We also evaluated the model with measurements at a tropical forest site. Our study suggests that the parameterization of conductance models and current model response to drought are the critical areas for improving models.
Alexey N. Shiklomanov, Michael C. Dietze, Istem Fer, Toni Viskari, and Shawn P. Serbin
Geosci. Model Dev., 14, 2603–2633, https://doi.org/10.5194/gmd-14-2603-2021, https://doi.org/10.5194/gmd-14-2603-2021, 2021
Short summary
Short summary
Airborne and satellite images are a great resource for calibrating and evaluating computer models of ecosystems. Typically, researchers derive ecosystem properties from these images and then compare models against these derived properties. Here, we present an alternative approach where we modify a model to predict what the satellite would see more directly. We then show how this approach can be used to calibrate model parameters using airborne data from forest sites in the northeastern US.
Kathryn I. Wheeler and Michael C. Dietze
Biogeosciences, 18, 1971–1985, https://doi.org/10.5194/bg-18-1971-2021, https://doi.org/10.5194/bg-18-1971-2021, 2021
Short summary
Short summary
Monitoring leaf phenology (i.e., seasonality) allows for tracking the progression of climate change and seasonal variations in a variety of organismal and ecosystem processes. Recent versions of the Geostationary Operational Environmental Satellites allow for the monitoring of a phenological-sensitive index at a high temporal frequency (5–10 min) throughout most of the western hemisphere. Here we show the high potential of these new data to measure the phenology of deciduous forests.
Cited articles
Albergel, C., Calvet, J.-C., Mahfouf, J.-F., Rüdiger, C., Barbu, A. L., Lafont, S., Roujean, J.-L., Walker, J. P., Crapeau, M., and Wigneron, J.-P.: Monitoring of water and carbon fluxes using a land data assimilation system: a case study for southwestern France, Hydrol. Earth Syst. Sci., 14, 1109–1124, https://doi.org/10.5194/hess-14-1109-2010, 2010. a, b
Arakida, H., Miyoshi, T., Ise, T., Shima, S., and Kotsuki, S.: Non-Gaussian data assimilation of satellite-based leaf area index observations with an individual-based dynamic global vegetation model, Nonlin. Processes Geophys., 24, 553–567, https://doi.org/10.5194/npg-24-553-2017, 2017. a, b
Baatz, R., Sullivan, P. L., Li, L., Weintraub, S. R., Loescher, H. W., Mirtl, M., Groffman, P. M., Wall, D. H., Young, M., White, T., Wen, H., Zacharias, S., Kühn, I., Tang, J., Gaillardet, J., Braud, I., Flores, A. N., Kumar, P., Lin, H., Ghezzehei, T., Jones, J., Gholz, H. L., Vereecken, H., and Van Looy, K.: Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling, Earth Syst. Dynam., 9, 593–609, https://doi.org/10.5194/esd-9-593-2018, 2018. a
Bacour, C., Peylin, P., MacBean, N., Rayner, P. J., Delage, F., Chevallier, F.,
Weiss, M., Demarty, J., Santaren, D., Baret, F., and Berveiller, D. : Joint assimilation
of eddy covariance flux measurements and FAPAR products over temperate
forests within a process-oriented biosphere model, J. Geophys.
Res.-Biogeosci., 120, 1839–1857, 2015. a
Battle, M., Bender, M., Tans, P. P., White, J., Ellis, J., Conway, T., and
Francey, R.: Global carbon sinks and their variability inferred from
atmospheric O2 and δ13C, Science, 287, 2467–2470, 2000. a
Blackard, J., Finco, M., Helmer, E., Holden, G., Hoppus, M., Jacobs, D.,
Lister, A., Moisen, G., Nelson, M., Riemann, R., Ruefenacht, B., Salajanu, D., Weyermann, D. L., Winterberger, K. C., Breis, T. J., Czaplewski, R. L.,, McRoberts, R. E., Patterson, P. L., and Tymcio, R. P.: Mapping US forest
biomass using nationwide forest inventory data and moderate resolution
information, Remote Sens. Environ., 112, 1658–1677, 2008. a, b
Braswell, B. H., Sacks, W. J., Linder, E., and Schimel, D. S.: Estimating
diurnal to annual ecosystem parameters by synthesis of a carbon flux model
with eddy covariance net ecosystem exchange observations, Glob. Change
Biol., 11, 335–355, 2005. a
Castro-Morales, K., Schürmann, G., Köstler, C., Rödenbeck, C., Heimann, M., and Zaehle, S.: Three decades of simulated global terrestrial carbon fluxes from a data assimilation system confronted with different periods of observations, Biogeosciences, 16, 3009–3032, https://doi.org/10.5194/bg-16-3009-2019, 2019. a
Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M., Najjar, R., Reed, S., and Zhu, Z.: Second state of the carbon cycle report (SOCCR2), in: A Sustained Assessment Report, edited by: Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M. A., Najjar, R. G., Reed, S. C., Romero-Lankao, P., and Zhu, Z., U.S. Global Change Research Program, Washington, DC, USA, 1–4, https://doi.org/10.7930/SOCCR2.2018.Highlights 2018. a
Chen, M., Liu, S., Tieszen, L., and Hollinger, D.: An improved state-parameter
analysis of ecosystem models using data assimilation, ecological modelling,
219, 317–326, 2008. a
Ciais, P., Rayner, P., Chevallier, F., Bousquet, P., Logan, M., Peylin, P., and
Ramonet, M.: Atmospheric inversions for estimating CO2 fluxes: methods and
perspectives, Clim. Change, 103, 69–92, 2010. a
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D., DuVivier, A.,
Edwards, J., Emmons, L., Fasullo, J., Garcia, R., Gettelman, A., and Hannay, C.: The
Community Earth System Model version 2 (CESM2), J. Adv. Model. Earth Sy., 12, e2019MS001916, 2020. a
Demarty, J., Chevallier, F., Friend, A., Viovy, N., Piao, S., and Ciais, P.:
Assimilation of global MODIS leaf area index retrievals within a terrestrial
biosphere model, Geophys. Res. Lett., 34, L15402, https://doi.org/10.1029/2007GL030014, 2007. a
de Valpine, P., Turek, D., Paciorek, C., Anderson-Bergman, C., Temple Lang, D., and Bodik, R.: Programming with models: writing statistical algorithms for general model structures with NIMBLE, J. Comput. Graph. Stat., 26, 403–413, https://doi.org/10.1080/10618600.2016.1172487, 2017. a
Dietze, M. C.: Gaps in knowledge and data driving uncertainty in models of
photosynthesis, Photosynth. Res., 119, 3–14, 2014. a
Dokoohaki, H., Miguez, F. E., Archontoulis, S., and Laird, D.: Use of inverse
modelling and Bayesian optimization for investigating the effect of biochar
on soil hydrological properties, Agr. Water Manage., 208,
268–274, 2018. a
Dokoohaki, H., Kivi, M. S., Martinez-Feria, R. A., Miguez, F. E., and
Hoogenboom, G.: A comprehensive uncertainty quantification of large-scale
process-based crop modeling frameworks, Environ. Res. Lett., 16, 084010, https://doi.org/10.1088/1748-9326/ac0f26, 2021. a
Evensen, G.: The ensemble Kalman filter for combined state and parameter
estimation, IEEE Contr. Syst. Mag., 29, 83–104, 2009. a
Farchi, A. and Bocquet, M.: On the efficiency of covariance localisation of the
ensemble Kalman filter using augmented ensembles, Front. App. M. Stat., 5, 3, https://doi.org/10.3389/fams.2019.00003, 2019. a
Fer, I., Kelly, R., Moorcroft, P. R., Richardson, A. D., Cowdery, E. M., and Dietze, M. C.: Linking big models to big data: efficient ecosystem model calibration through Bayesian model emulation, Biogeosciences, 15, 5801–5830, https://doi.org/10.5194/bg-15-5801-2018, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m
Fer, I., Gardella, A. K., Shiklomanov, A. N., Campbell, E. E., Cowdery, E. M., De Kauwe, M. G., Desai, A., Duveneck, M. J., Fisher, J.B., Haynes, K. D., and Hoffman, F. M.:
Beyond modeling: A roadmap to community cyberinfrastructure for ecological
data-model integration, Glob. Change Biol., 27, 13–26, 2020. a, b
Fer, I., Shiklomanov, A. N., Novick, K. A., Gough, C. M., Arain, M. A., Chen,
J., Murphy, B., Desai, A. R., and Dietze, M. C.: Capturing site-to-site
variability through Hierarchical Bayesian calibration of a process-based
dynamic vegetation model, Cold Spring Harbor Laboratory, bioRxiv, 2021.04.28.441243, https://doi.org/10.1101/2021.04.28.441243, 2021. a
Fisher, R. A., Koven, C. D., Anderegg, W. R., Christoffersen, B. O., Dietze,
M. C., Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox, R. G., Lawrence,
P. J., Lichstein, J. W., Longo, M., Matheny, A. M., Medvigy, D., Muller-Landau, H. C., Powell, T. L., Serbin, S. P., Sato, H., Shuman, J. K., Smith, B., Trugman, A. T., Viskari, T., Verbeeck, H., Weng, E., Xu, C.,
Xu, X., Zhang, T., and Moorcroft, P. R.: Vegetation demographics in Earth System Models: A review of
progress and priorities, Glob. Change Biol., 24, 35–54, 2018. a
Gao, C., Wang, H., Weng, E., Lakshmivarahan, S., Zhang, Y., and Luo, Y.:
Assimilation of multiple data sets with the ensemble Kalman filter to improve forecasts of forest carbon dynamics, Ecol. Appl., 21, 1461–1473,
2011. a
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M.,
Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and Kempen, B.: SoilGrids250m: Global gridded soil
information based on machine learning, PLoS One, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017. a
Homer, C. H., Fry, J. A., and Barnes, C. A.: The national land cover database, US Geological Survey Fact Sheet, 3020, 1–4, 2012. a
Kalnay, E. and Li, H.: Data Assimilation with the Local Ensemble Transform
Kalman Filter addressing model errors, observation errors and adaptive
inflation, Saarbrücken: VDM Verlag Dr. Müller, ISBN 9783639308129, https://nbn-resolving.org/urn:nbn:de:101:1-20101108432 (last access: 14 April 2022), 2010. a
Kennedy, R. E., Yang, Z., and Cohen, W. B.: Detecting trends in forest
disturbance and recovery using yearly Landsat time series: 1.
LandTrendr—Temporal segmentation algorithms, Remote Sens. Environ.,
114, 2897–2910, 2010. a
Kennedy, R. E., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen,
W. B., and Healey, S.: Implementation of the LandTrendr algorithm on google
earth engine, Remote Sens., 10, 691, https://doi.org/10.3390/rs10050691, 2018. a
Kivi, M. S., Blakely, B., Masters, M., Bernacchi, C. J., Miguez, F. E., and
Dokoohaki, H.: Development of a data-assimilation system to forecast
agricultural systems: A case study of constraining soil water and soil
nitrogen dynamics in the APSIM model, Sci. Total Environ., 820, 153192, https://doi.org/10.1016/j.scitotenv.2022.153192, 2022. a
Konings, A. G., Piles, M., Das, N., and Entekhabi, D.: L-band vegetation
optical depth and effective scattering albedo estimation from SMAP, Remote Sens. Environ., 198, 460–470, 2017. a
Konings, A. G., Rao, K., and Steele-Dunne, S. C.: Macro to micro: microwave
remote sensing of plant water content for physiology and ecology, New
Phytol., 223, 1166–1172, 2019. a
Lawrence, C. R., Beem-Miller, J., Hoyt, A. M., Monroe, G., Sierra, C. A., Stoner, S., Heckman, K., Blankinship, J. C., Crow, S. E., McNicol, G., Trumbore, S., Levine, P. A., Vindušková, O., Todd-Brown, K., Rasmussen, C., Hicks Pries, C. E., Schädel, C., McFarlane, K., Doetterl, S., Hatté, C., He, Y., Treat, C., Harden, J. W., Torn, M. S., Estop-Aragonés, C., Asefaw Berhe, A., Keiluweit, M., Della Rosa Kuhnen, Á., Marin-Spiotta, E., Plante, A. F., Thompson, A., Shi, Z., Schimel, J. P., Vaughn, L. J. S., von Fromm, S. F., and Wagai, R.: An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0, Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, 2020. a
LeBauer, D., Kooper, R., Mulrooney, P., Rohde, S., Wang, D., Long, S. P., and
Dietze, M. C.: BETYdb: A yield, trait, and ecosystem service database applied to second-generation bioenergy feedstock production, GCB Bioenergy, 10,
61–71, 2018. a
LeBauer, D., Dietze, M., Kooper, R., Shiklomanov, A., Cowdery, B., Fer, I., Gardella, A., Bond-Lamberty, B., Serbin, S. P., Raiho, A., Thomas, A., Black, C., Simkins, J., Desai, A., Mantooth, J., Kumar, A., Burke, L., Pourmokhtarian, A., Rollinson, C., Agarwal, S., Hardiman, B., De Kauwe, M., Tess McCabe, E., Ragosta, K., Cohen, T., zhangwenx, Viskari, T., Zhao, Y., and Xia, J: The Predictive Ecosystem Analyzer (PEcAn) is an integrated ecological bioinformatics toolbox, (v1.7.2), Zenodo [code], https://doi.org/10.5281/zenodo.5557914, 2021. a
Liu, S., Bond-Lamberty, B., Hicke, J. A., Vargas, R., Zhao, S., Chen, J.,
Edburg, S. L., Hu, Y., Liu, J., McGuire, A. D., Xiao, J., Keane, R., Yuan, W., Tang, J., Luo, Y., Potter, C., and Oeding, J.: Simulating the
impacts of disturbances on forest carbon cycling in North America: Processes,
data, models, and challenges, J. Geophys. Res.-Biogeosci., 116, G00K08, https://doi.org/10.1029/2010JG001585, 2011. a
Liu, Y., Xiao, J., Ju, W., Zhu, G., Wu, X., Fan, W., Li, D., and Zhou, Y.:
Satellite-derived LAI products exhibit large discrepancies and can lead to
substantial uncertainty in simulated carbon and water fluxes, Remote Sens. Environ., 206, 174–188, 2018. a
Medvigy, D., Wofsy, S., Munger, J., Hollinger, D., and Moorcroft, P.:
Mechanistic scaling of ecosystem function and dynamics in space and time:
Ecosystem Demography model version 2, J. Geophys. Res.-Biogeosci., 114, G01002, https://doi.org/10.1029/2008JG000812, 2009. a
Mikhailova, E., Altememe, A., Bawazir, A., Chandler, R., Cope, M., Post, C.,
Stiglitz, R., Zurqani, H., and Schlautman, M.: Comparing soil carbon
estimates in glaciated soils at a farm scale using geospatial analysis of
field and SSURGO data, Geoderma, 281, 119–126, 2016. a
Montzka, C., Pauwels, V., Franssen, H.-J. H., Han, X., and Vereecken, H.:
Multivariate and multiscale data assimilation in terrestrial systems: A
review, Sensors, 12, 16291–16333, 2012. a
Moorcroft, P. R., Hurtt, G. C., and Pacala, S. W.: A method for scaling
vegetation dynamics: the ecosystem demography model (ED), Ecol. Monogr., 71, 557–586, 2001. a
Myneni, R. B., Dong, J., Tucker, C. J., Kaufmann, R. K., Kauppi, P. E., Liski,
J., Zhou, L., Alexeyev, V., and Hughes, M.: A large carbon sink in the woody
biomass of Northern forests, Proc. Natl. Acad. Sci., 98, 14784–14789, 2001. a
Omernik, J. M.: Ecoregions of the conterminous United States, Ann. Assoc. Am. Geogr., 77, 118–125, 1987. a
ORNL DAAC: MODIS and VIIRS Land Products Global Subsetting and Visualization
Tool, ORNL DAAC, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1379, 2018. a
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A.,
Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., Mcguire, A. D., Piao, S., Rautiainen, A., Sitch, S., and Hayes, D.: A
large and persistent carbon sink in the world’s forests, Science, 333,
988–993, 2011. a
Peylin, P., Bacour, C., MacBean, N., Leonard, S., Rayner, P., Kuppel, S., Koffi, E., Kane, A., Maignan, F., Chevallier, F., Ciais, P., and Prunet, P.: A new stepwise carbon cycle data assimilation system using multiple data streams to constrain the simulated land surface carbon cycle, Geosci. Model Dev., 9, 3321–3346, https://doi.org/10.5194/gmd-9-3321-2016, 2016. a
Pinnington, E., Quaife, T., Lawless, A., Williams, K., Arkebauer, T., and Scoby, D.: The Land Variational Ensemble Data Assimilation Framework: LAVENDAR v1.0.0, Geosci. Model Dev., 13, 55–69, https://doi.org/10.5194/gmd-13-55-2020, 2020. a
Raczka, B., Hoar, T. J., Duarte, H. F., Fox, A. M., Anderson, J. L., Bowling,
D. R., and Lin, J. C.: Improving CLM5. 0 biomass and carbon exchange across
the Western United States using a data assimilation system, J. Adv. Model. Earth Sy., 13, e2020MS002421, https://doi.org/10.1029/2020MS002421, 2021. a
Raiho, A.: Seeing the Trees through the Forest: Understanding Community
Ecology’s Influence on Long Term Ecosystem Dynamics, Order No. 27700991, University of Notre
Dame, https://www.proquest.com/dissertations-theses/seeing-trees-through-forest-understanding/docview/2321832430/se-2?accountid=14553 (last access: 19 April 2022), 2019. a
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/ (last access: 14 April 2022), 2013. a
Reich, S. and Cotter, C.: Probabilistic forecasting and Bayesian data
assimilation, Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9781107706804, 2015. a, b
Roberts, D., Green, R., and Adams, J.: Temporal and spatial patterns in
vegetation and atmospheric properties from AVIRIS, Remote Sens. Environ., 62, 223–240, 1997. a
Schillaci, C., Acutis, M., Lombardo, L., Lipani, A., Fantappie, M., Märker,
M., and Saia, S.: Spatio-temporal topsoil organic carbon mapping of a
semi-arid Mediterranean region: The role of land use, soil texture,
topographic indices and the influence of remote sensing data to modelling,
Sci. Total Environ., 601, 821–832, 2017. a
Schlesinger, W. H., Dietze, M. C., Jackson, R. B., Phillips, R. P., Rhoades,
C. C., Rustad, L. E., and Vose, J. M.: Forest biogeochemistry in response to
drought, Glob. Change Biol., 22, 2318–2328, 2016. a
Scholze, M., Buchwitz, M., Dorigo, W., Guanter, L., and Quegan, S.: Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems, Biogeosciences, 14, 3401–3429, https://doi.org/10.5194/bg-14-3401-2017, 2017. a, b, c
Schürmann, G. J., Kaminski, T., Köstler, C., Carvalhais, N., Voßbeck, M., Kattge, J., Giering, R., Rödenbeck, C., Heimann, M., and Zaehle, S.: Constraining a land-surface model with multiple observations by application of the MPI-Carbon Cycle Data Assimilation System V1.0, Geosci. Model Dev., 9, 2999–3026, https://doi.org/10.5194/gmd-9-2999-2016, 2016. a, b
Serbin, S., Dokoohaki, H., Morrison, B., Andrews, A., and Dietze, M.: NASA_CMS_SDA, OSF [data set], https://osf.io/efcv5/?view_only=f2eeea87a6504abbae81164efd2b481c (last access: 14 April 2022), 2020. a
Shiklomanov, A. N., Dietze, M. C., Fer, I., Viskari, T., and Serbin, S. P.: Cutting out the middleman: calibrating and validating a dynamic vegetation model (ED2-PROSPECT5) using remotely sensed surface reflectance, Geosci. Model Dev., 14, 2603–2633, https://doi.org/10.5194/gmd-14-2603-2021, 2021. a
Stephenson, N.: Actual evapotranspiration and deficit: biologically meaningful
correlates of vegetation distribution across spatial scales, J. Biogeogr., 25, 855–870, 1998. a
Šúri, M. and Hofierka, J.: A new GIS-based solar radiation model and
its application to photovoltaic assessments, T. GIS, 8, 175–190, 2004. a
Viskari, T., Laine, M., Kulmala, L., Mäkelä, J., Fer, I., and Liski, J.: Improving Yasso15 soil carbon model estimates with ensemble adjustment Kalman filter state data assimilation, Geosci. Model Dev., 13, 5959–5971, https://doi.org/10.5194/gmd-13-5959-2020, 2020. a, b
Wallach, D., Makowski, D., Jones, J., and Brun, F.: Uncertainty and Sensitivity Analysis, edn. 3, Chap. 6, in: Working with Dynamic Crop
Models, 13–14, https://doi.org/10.1016/B978-0-12-811756-9.09994-9, 2019. a
Willmott, C. J.: On the validation of models, Phys. Geogr., 2, 184–194, 1981. a
Xiao, J., Ollinger, S. V., Frolking, S., Hurtt, G. C., Hollinger, D. Y., Davis,
K. J., Pan, Y., Zhang, X., Deng, F., Chen, J., Baldocchi, D. D., Law, B. E., Arain, M. A., Desai, A. R., Richardson, A. D., Sun, G., Amiro, B.,
Margolis, H., Gu, L., Scott, R. L., Blanken, P. D., and
Suyker, A. E.: Data-driven diagnostics of terrestrial carbon dynamics over North America, Agr. Forest Meteorol., 197, 142–157, 2014. a
Short summary
We present a new terrestrial carbon cycle data assimilation system, built on the PEcAn model–data eco-informatics system, and its application for the development of a proof-of-concept carbon
reanalysisproduct that harmonizes carbon pools (leaf, wood, soil) and fluxes (GPP, Ra, Rh, NEE) across the contiguous United States from 1986–2019. Here, we build on a decade of work on uncertainty propagation to generate the most complete and robust uncertainty accounting available to date.
We present a new terrestrial carbon cycle data assimilation system, built on the PEcAn...