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Abstract. The ability to monitor, understand, and predict the
dynamics of the terrestrial carbon cycle requires the capac-
ity to robustly and coherently synthesize multiple streams of
information that each provide partial information about dif-
ferent pools and fluxes. In this study, we introduce a new
terrestrial carbon cycle data assimilation system, built on the
PEcAn model–data eco-informatics system, and its applica-
tion for the development of a proof-of-concept carbon “re-
analysis” product that harmonizes carbon pools (leaf, wood,
soil) and fluxes (GPP, Ra, Rh, NEE) across the contiguous
United States from 1986–2019. We first calibrated this sys-
tem against plant trait and flux tower net ecosystem exchange
(NEE) using a novel emulated hierarchical Bayesian ap-
proach. Next, we extended the Tobit–Wishart ensemble filter
(TWEnF) state data assimilation (SDA) framework, a gener-
alization of the common ensemble Kalman filter which ac-
counts for censored data and provides a fully Bayesian esti-
mate of model process error, to a regional-scale system with a
calibrated localization. Combined with additional workflows
for propagating parameter, initial condition, and driver un-
certainty, this represents the most complete and robust uncer-
tainty accounting available for terrestrial carbon models. Our
initial reanalysis was run on an irregular grid of∼ 500 points
selected using a stratified sampling method to efficiently cap-
ture environmental heterogeneity. Remotely sensed observa-
tions of aboveground biomass (Landsat LandTrendr) and leaf

area index (LAI) (MODIS MOD15) were sequentially assim-
ilated into the SIPNET model. Reanalysis soil carbon, which
was indirectly constrained based on modeled covariances,
showed general agreement with SoilGrids, an independent
soil carbon data product. Reanalysis NEE, which was con-
strained based on posterior ensemble weights, also showed
good agreement with eddy flux tower NEE and reduced root
mean square error (RMSE) compared to the calibrated fore-
cast. Ultimately, PEcAn’s new open-source regional data as-
similation framework provides a scalable workflow for har-
monizing multiple data constraints and providing a uniform
synthetic platform for carbon monitoring, reporting, and ver-
ification (MRV) as well as accelerating terrestrial carbon cy-
cle research.

1 Introduction

Accurate assessment of both biogenic carbon stocks and ex-
changes between the biosphere and atmosphere is crucial for
a more complete carbon monitoring, reporting, and verifica-
tion (MRV) framework, as well as understanding climate–
carbon feedbacks. However, quantifying different compo-
nents of the carbon cycle to identify whether different re-
gions and/or landscapes are C sinks or sources has been a
major challenge for Earth scientists (Williams et al., 2005) as
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the sink strength of the terrestrial biosphere is more variable
than the ocean (Battle et al., 2000). For this reason, inves-
tigating the current and future state of the terrestrial carbon
cycle has gained considerable scientific attention.

Substantial time and energy have been devoted to devel-
oping terrestrial carbon data products aimed at MRV and
improving our understanding of the carbon cycle at broader
spatial scales. Some of these products are based on up-
scaled field measurements that interpolate between observa-
tions, such as forest biomass maps based on inventory plots
(Pan et al., 2011), soil carbon maps based on soil cores
(Mikhailova et al., 2016), and carbon flux maps based on
eddy covariance (Xiao et al., 2014). Other products are based
on calibrating remote sensing measurements against in situ
data, such as leaf area index (Liu et al., 2018) and above-
ground biomass (Myneni et al., 2001), or quantifying prop-
erties that correlate strongly with carbon stocks or changes in
those stocks, such as land use and land cover (Schillaci et al.,
2017) or disturbance (Liu et al., 2011). These data products
describe particular processes or features of the terrestrial car-
bon cycle at various spatial scales and have been essential to
improving our understating of plant and soil processes. How-
ever, each of these products reflects a single pool or flux and
is thus only showing us part of the picture about the terres-
trial carbon cycle. It is a highly challenging task to combine
this wealth of observational information into a coherent and
comprehensible view of the carbon cycle and ensure consis-
tency between the available data products (Cavallaro et al.,
2018). Furthermore, many parts of the carbon cycle are hard
to observe at large scales, and our understanding of the pro-
cesses that connect different pools and fluxes is often limited
to smaller numbers of intensively studied sites rather than
large-scale monitoring. Therefore, often times, the full po-
tential of these datasets, as well as their combination, is not
fully exploited (Montzka et al., 2012).

An alternative to the piecewise understanding provided
by derived data products is to use process-based terrestrial
biosphere models (TBMs) to quantify and understand car-
bon cycle dynamics holistically. The strength of TBMs lies
in their ability to represent the carbon cycle in an internally
consistent manner that conserves mass and captures our cur-
rent understanding of physical, chemical, and biological pro-
cesses. However, their weakness comes from the many un-
certainties that are present in such models, most of which
are not formally accounted for in current applications (Raiho
et al., 2020; Dietze, 2017). Most existing terrestrial models
have been developed using deterministic strategies in which
uncertainties associated with model drivers, model parame-
ters, and initial conditions are ignored (Peylin et al., 2016).
In addition, these models can have considerable amounts of
process error, which arises from a combination of inherent
stochasticity (e.g., disturbance, mortality, dispersal), hetero-
geneity in ecosystem processes, and structural uncertainties
that reflect our imperfect knowledge about how to best rep-
resent system processes (Williams et al., 2005). The result

is models that are not well-constrained and are highly prone
to producing large errors (Scholze et al., 2017). Because of
this, it is critical that we properly propagate uncertainties
into TBM predictions and continuously confront those pre-
dictions with observational data to reduce the uncertainties
around TBM predictions (Scholze et al., 2017).

Rather than relying on models or data alone, data assimila-
tion techniques offer a method for combining their strengths
and addressing their weaknesses. Data assimilation (DA)
refers to a robust mathematical framework for constraining
model predictions with observational data within which the
intellectual motivation is to construct an integrated view of a
system. Data assimilation is fundamentally a data-driven ex-
ercise focused on the synthesis of information across differ-
ent data streams and provides a statistical framework for link-
ing data sources with different temporal and spatial resolu-
tions to generate a composite data product that contains sig-
nificantly more information than the individual data sources
(Dietze, 2017). Unlike statistical data fusion approaches, data
assimilation can also link together data about different pools
and fluxes by leveraging the process understanding that is
embedded in models, which in turn is often linked to inten-
sively studied sites. In a data assimilation system, we can
even exploit non-carbon observations to constrain the car-
bon cycle indirectly through the relations implemented in the
process model (Scholze et al., 2017). At the same time, data
assimilation systems act to continually constrain model un-
certainties and continually pull models back to what actually
occurred rather than the many possible futures models may
envision. As such, DA is distinctly different from, and po-
tentially more powerful than, either forward simulations of
calibrated models or derived data products that transform ob-
servations through statistical models alone.

When run as a hindcast, a frequent goal of data assimila-
tion is to produce a “reanalysis” product. The goal of a re-
analysis product is to provide a synthetic, harmonized best
estimate of past pools and fluxes across space and time. Re-
analysis products are popular in many parts of the Earth sys-
tem sciences, such as harmonized climate reanalysis prod-
ucts generated by rerunning weather models constrained by
historical observations. Reanalysis products are studied di-
rectly to better understand system properties, processes, and
spatiotemporal variability as well as to serve as inputs to
other models and analyses. However, despite their clear po-
tential to improve MRV and scientific understanding, there
has been little effort to develop large-scale reanalysis prod-
ucts for the terrestrial carbon cycle. Our goal in this paper is
to demonstrate an initial “proof of concept” for a national-
scale terrestrial carbon reanalysis that spans the contiguous
US over a multi-decadal period (1986–2019) during which
remotely sensed data constraints are available at a large scale.

Among data assimilation approaches to generate a car-
bon cycle reanalysis, sequential data assimilation (SDA), in
which new observations are assimilated iteratively through
time, holds particular promise for combining a suite of
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datasets available on the terrestrial carbon cycle. There are
a number of studies examining different approaches and
applications of DA systems in carbon cycle assessment
(Arakida et al., 2017). However, most studies are limited by
their spatial extent (e.g., single site) (Albergel et al., 2010;
Kivi et al., 2022), the set of uncertainties that are propagated
(e.g., missing some combination of process, driver, or pa-
rameter uncertainty), the number of data constraints, demon-
strated ability to support multiple models, or the assumptions
of their statistical model. Many modeling studies have relied
on an incomplete accounting of model uncertainty. For exam-
ple, some data assimilation studies have relied solely on me-
teorological driver uncertainty to generate ensemble spread
(Fox et al., 2018; Kumar et al., 2019; Ling et al., 2019) or
spin-ups to represent initial condition uncertainty, and fre-
quently, these studies lack parameter uncertainty (Albergel
et al., 2010; Bacour et al., 2015) or model–data process error
(Ling et al., 2019; Kumar et al., 2019; Demarty et al., 2007;
Arakida et al., 2017). Data assimilation might be routinely
done at a single site, but as the number of sites increases new
opportunities and challenges arise (e.g., how to leverage spa-
tiotemporal covariance between the sites) that make devel-
oping a regional system capable of overcoming these limita-
tions challenging. Among studies focused on the use of SDA
for terrestrial carbon analysis, Viskari et al. (2020) continu-
ously updated the Yasso15 model’s state variables to improve
soil organic carbon estimates. Similarly, Viskari et al. (2015)
used tower and satellite observations of phenological state to
improve seasonal carbon fluxes in the ED2 model. Fox et al.
(2018) assimilated leaf area index (LAI) and biomass into
the CLM4.5 model using an ensemble adjustment Kalman
filter and showed that model carbon forecasts in central New
Mexico were improved on monthly and longer timescales.
Raczka et al. (2021) also used the CLM5-DART platform to
assimilate satellite-based estimates of aboveground biomass
and LAI into the CLM5.0 model. They found a reduction in
both photosynthesis and respiration fluxes, mainly because
their adjusted simulation significantly reduced the above-
ground biomass and leaf area. Schürmann et al. (2016) intro-
duced the Max Planck Institute Carbon Cycle Data Assimila-
tion System (MPI-CCDAS) built around the JSBACH model.
They used globally distributed fraction of absorbed photo-
synthetically active radiation (FAPAR) observations and at-
mospheric CO2 to simulate phenology and net land carbon
balance. In another study, (Chen et al., 2008) developed a
joint parameter and state data assimilation method called
SEnKF that not only dramatically reduced the uncertainty
in state variables, but also accounted for the temporal evo-
lution of model parameters. In a site-level study Gao et al.
(2011) used an ensemble Kalman filter (EnKF) in a data as-
similation scheme to forecast the carbon cycle. Overall, these
studies confirm that EnKF can effectively assimilate multiple
datasets into a TBM.

Here, we build on a decade of work on uncertainty propa-
gation and analysis within the PEcAn model–data informat-

ics system (LeBauer et al., 2013; Fer et al., 2020) to gen-
erate the most complete and robust uncertainty accounting
available to date (Raiho et al., 2020). At a high level, we use
an ensemble-based approach to propagate data-driven uncer-
tainty in model drivers, initial conditions, and parameters,
with parameter distributions derived from an across-site hi-
erarchical Bayesian calibration against AmeriFlux NEE and
plant trait data. In addition, within the SDA we rely on the
new Tobit–Wishart ensemble filter (TWEnF) to dynamically
update and propagate a fully Bayesian estimate of the entire
process error covariance matrix. The TWEnF also relaxes
the strong Gaussian assumption behind most data assimila-
tion methods, allowing for both zero truncation (no negative
values) and zero inflation (more zeros than expected by the
Gaussian), both of which are common features of ecological
data.

In this study, we focus on scaling up our previous site-
level SDA (Raiho et al., 2020) to a national-scale terrestrial
carbon reanalysis. In doing so we developed, tested, and cali-
brated a spatial localization algorithm for our covariance ma-
trix (Petrie and Dance, 2010), estimating a 500 km distance
threshold beyond which covariances are set to zero to avoid
spurious correlations. This system can run on an irregular
spatial grid that uses cluster analyses to optimally distribute
points in a multivariate environmental space (i.e., tempera-
ture, precipitation, elevation, estimated actual evapotranspi-
ration – AET, climatic water deficit) that reduces computa-
tional costs and better captures complex terrain than a regular
grid. We also extended the TWEnF to calculate and save the
spatiotemporally varying posterior weights of each ensem-
ble member, which allows us to infer sub-daily fluxes (e.g.,
GPP, NEE) across the simulation region even though our as-
similation was run at an annual timescale. Having developed
this system, we then report on our initial proof-of-concept re-
analysis, which was constrained by MODIS leaf area index
(LAI) and LandTrendr aboveground biomass (AGB). Finally,
we perform an initial validation against AmeriFlux NEE and
SoilGrids soil organic carbon.

2 Material and methods

2.1 PEcAn platform and SIPNET model

We developed our regional state data assimilation frame-
work within an ecological model–data informatics sys-
tem, the Predictive Ecosystem Analyzer (PEcAn) v. 1.7.2,
and under a module named assim.sequential. PEcAn is a
toolbox that provides a unified format and workflow for
processing inputs and outputs, running models, and per-
forming analyses for a wide range of ecological models.
PEcAn tools include sensitivity and uncertainty analysis,
benchmarking, and parameter and state data assimilation
(LeBauer et al., 2013; Fer et al., 2018; Raiho et al., 2020;
Fer et al., 2020). PEcAn also provides a robust proce-
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Figure 1. Carbon cycle representation by the SIPNET model.

dure for sampling and propagating uncertainties by gen-
erating ensembles across initial conditions, model parame-
ters, and model drivers (soil and meteorological forcing). All
methodological developments and tool improvements intro-
duced in this paper have been added to PEcAn, which is
available at https://doi.org/10.5281/zenodo.5557914 and on
GitHub (https://github.com/pecanproject/pecan/, last access:
14 April 2022), as a virtual machine (https://opensource.
ncsa.illinois.edu/projects/artifacts.php?key=PECAN, last ac-
cess: 14 April 2022), or as a series of Docker containers
(https://hub.docker.com/u/pecan, last access: 14 April 2022).
PEcAn documentation is available through the project web
page (https://pecanproject.org, last access: 14 April 2022).

We used the Simplified Photosynthesis and Evapotranspi-
ration model (SIPNET) model (Braswell et al., 2005) within
the PEcAn platform v. 1.7.2 as the process model for our
regional data assimilation exercise. SIPNET was chosen for
this initial proof of concept as it is computationally efficient
but provides a non-trivial representation of carbon pools and
fluxes. SIPNET represents the carbon cycle as a series of
pools and fluxes; it accounts for two vegetation carbon pools
(leaf and wood) and a single aggregated soil carbon pool
(Fig. 1). To reduce the number of parameters in the SIP-
NET model, it makes the assumption that carbon stored in
the leaves remains constant throughout the growing season,
and therefore all fluxes in the carbon cycle (Fig. 1) only affect
the plant wood carbon pool. In addition, rather than a com-
plex carbon allocation and phenology model, SIPNET uses
a simple time-based function to model the phenology; on a
specific day of the year, all leaves appear or fall off in a sin-
gle time step. The simple representation of the carbon cycle
in SIPNET provides the opportunity to fully constrain both
model parameters and state variables.

2.2 Model calibration

To efficiently capture variability in vegetation properties
across the contiguous US (CONUS), we aggregated National
Land Cover Database (NLCD) land cover (Homer et al.,
2012) into four plant functional types (PFTs): deciduous for-

est, evergreen forest, mesic grassland, and arid grassland–
shrubland. For deciduous forest we rely on the previous cali-
bration reported by Fer et al. (2021). The same methods were
used to calibrate the remaining PFTs against a combination
of plant trait data and eddy covariance, as described below.

2.3 Priors and trait meta-analysis

PEcAn takes a fully Bayesian approach to model calibra-
tion. Calibration begins with defining prior distributions for
35 parameters for the grass PFT and 32 parameters for the
evergreen PFT. These priors were then updated using plant
trait data in the BETY-db (LeBauer et al., 2018) by per-
forming a hierarchical Bayesian meta-analysis following the
methods described in LeBauer et al. (2013). Trait data for
seven parameters (SLA, Amax, leafC, leaf respiration rate,
leaf turnover rate, root respiration rate, root turnover rate)
were available from 6 to 213 studies for different parame-
ters. Meta-analysis posteriors were then used as informative
priors in the subsequent sensitivity analysis and calibration,
for which they help ensure the selection of biologically plau-
sible parameter estimates.

2.3.1 Global sensitivity analysis (GSA)

Prior to model calibration, we performed global sensitivity
analyses on the SIPNET model parameters at five grassland
and five evergreen AmeriFlux sites located across different
ecoregions. The aim of this analysis was to reduce the di-
mensionality of the calibration by identifying the dominant
parameters in the model. The informative prior distributions
were sampled to generate 500 ensemble members to test the
sensitivity of net ecosystem exchange (NEE) to change in
each parameter. Runs at each site were done for 15 years us-
ing gap-filled eddy flux tower meteorology as model drivers.
A linear model between the simulated mean NEE and the
sampled parameter values was used to decompose the vari-
ability around NEE and estimate the contribution of each pa-
rameter. The linear model included the main effect for each
parameter as well as its first interactions. Main effects and
total sensitivity indices were calculated using the sum of
squares (SSQ) as follows (Dokoohaki et al., 2018; Wallach
et al., 2019).

Main effect sensitivity indices

S1 =
SS1

SST
;S2 =

SS2

SST
(1)

Interaction sensitivity indices

S1 =
SS12

SST
(2)

Total sensitivity indices

S1 =
SS1+SS12

SST
;S2 =

SS2+SS12

SST
(3)
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SS1 is the SSQ for the first parameter, SS12 is the SSQ of
the interaction between the first and second parameter, and
SST is the total SSQ. Based on the results of these analy-
ses, parameters with a contribution of at least 5 % to the total
variability of NEE were selected for further investigation and
calibration for both conifer and grass PFTs.

2.3.2 Hierarchical parameter data assimilation

The hierarchical Bayesian parameter data assimilation
(HPDA) framework within the PEcAn platform v. 1.7.2 was
employed to constrain the most sensitive parameters of the
SIPNET model found during the sensitivity analysis. We
used HPDA to calibrate model parameters for a combined
mesic and semiarid grassland PFT as well as an evergreen
forest PFT against NEE observations from six eddy covari-
ance towers (Table 1). In contrast to a site-level model or
single-parameter single-site calibration, hierarchical calibra-
tion accounts for site-to-site variability while also borrowing
strength across sites during the parameter estimation proce-
dure. Consequently, parameters are calibrated for all sites at
the same time; generally, the estimated variability across sites
identifies site-sensitive parameters or missing processes in
models (Fer et al., 2018).

Our calibration procedure closely followed Fer et al.
(2018) by developing emulators of the likelihood surface at
the site level. To develop the emulators, we used an adap-
tive sampling approach (Fer et al., 2018) to generate an n-
dimensional grid over the parameter’s space (where n is the
number of parameters) and then ran the SIPNET model at
the n-dimensional points (e.g., knots) in this parameter set.
Model runs were driven by gap-filled tower meteorology and
varied in length from site to site depending on available data
(Table 1). For each run, we then compared the model’s pre-
dicted NEE to the observed NEE (30 min time step, no gap
filling) and calculated a likelihood score for each knot. Ob-
servations were filtered based on u∗, and effective sample
size was corrected for autocorrelation following Fer et al.
(2018). Keeping with previous works (Fer et al., 2018; Reich
and Cotter, 2015), we used an asymmetric heteroscedastic
Laplace likelihood that accounts for the increase in obser-
vation error with the magnitude of the flux and error bias.
In our case, these errors are larger in the positive direction
(nighttime respiration) than the negative. Site-level emula-
tors were then developed by fitting a Gaussian process (GP)
model to the knots to construct a smooth n-dimensional like-
lihood surface in parameter space. After developing the site-
level emulators, the hierarchical calibration was performed
by Markov chain Monte Carlo (MCMC). In the hierarchi-
cal MCMC, site-level parameters are accepted or rejected
using the across-site mean and covariances as priors and us-
ing the emulator to predict the likelihood, while across-site
mean and covariances are updated through Gibbs sampling

(Fer et al., 2018):

µs,i ∼MVN(µg,τ g),

µg ∼MVN(µm,τm),

τ g ∼W(ng,Vg), (4)

where µg and τ g represent the global mean parameter vector
and the site-to-site covariance matrix, while µs,i represents
the i site-level mean parameter vectors for each of n sites. µg
and τ g were assigned uninformative multivariate normal and
Wishart priors, respectively.

Each calibration was run in three iterative rounds with
adaptive sampling following Fer et al. (2018), wherein the to-
tal number of proposed knots per round was set to p× 20 (p
represents the number of parameters). In each round we used
the posterior mean to propose additional knots in the parts of
parameter space needing additional detail, essentially behav-
ing like a nested grid around the posterior mean. Finally, we
used the Nash–Sutcliffe model efficiency (NSE) index and
root mean square error (RMSE) to evaluate the performance
of the model and examine whether the calibration has im-
proved the model’s capacity for simulating NEE following
HPDA. NSE <= 1 indicates the goodness of fit of the simu-
lated series against observations (1 indicates a perfect fit).

2.4 Regional site selection

As previously noted, our data assimilation system runs on an
irregular grid optimized to efficiently capture environmen-
tal variability. For the current proof-of-concept analysis, we
identified a total of 517 sites across CONUS by first selecting
46 AmeriFlux sites that would be used to validate the assimi-
lated fluxes, followed by 471 additional potential sites based
on a cluster analysis of land cover class (NCLD) and climate
variables. The cluster analysis used PRISM 800 m precipi-
tation, maximum and minimum temperature, and elevation,
in addition to estimated actual evapotranspiration (AET), cli-
matic water deficit (WD), total surface radiation, rain, and
snow. Actual evapotranspiration and water deficit are biolog-
ically meaningful parameters that are well correlated with the
distribution of vegetation types across multiple spatial scales
(Stephenson, 1998). We began by using PRISM 800 m eleva-
tion and produced monthly global total irradiance using the
GRASS GIS (v7.8) for CONUS (Šúri and Hofierka, 2004).
It was assumed that total surface radiation remained consis-
tent throughout the study time period as physical topography
and solar distance change little at the decadal timescale. To
estimate AET, WD, rain, and snow, we collected 1 by 1◦ his-
torical monthly wind vector data from CCSM4 (Danabasoglu
et al., 2020) and estimated 1981–2010 monthly normals us-
ing methods reported in Morrison et al. (2019). Using the
radiation and wind speed, along with maximum and mini-
mum temperature and precipitation, we derived climatic (not
biological) AET and WD, which resulted in monthly climate
normals for AET, WD, rain, and snow following methods de-
scribed in Morrison et al. (2019). Next, a k-means sampling
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Table 1. NSE, RMSE, and percentage bias (estimated as sum(sim−obs)
sum(obs) ×100) estimated before and after parameter assimilation for the grass

and coniferous plant functional types across all sites.

RMSE× 10−9 NSE Percentage bias

Site ID AmeriFlux ID PFT Constrained Unconstrained Constrained Unconstrained Constrained Unconstrained

1000000024 US-Fuf Conifer 47 162 0.06 −10.1 −97 −429
1000005131 US-Me2 Conifer 117 117 −1.17 −1.15 −90 −113
729 CA-Ca3 Conifer 48 62 0.55 0.25 −51 −82
1000000139 US-Br1 Grass 190 252 0.02 −0.8 −88 −253
1000000141 US-Br3 Grass 164 207 0.01 −0.6 −67 −240
1000000142 US-Bkg Grass 61 86 −0.11 −1.18 −116 −462

approach was used to determine the number of unique bioen-
vironmental clusters within each USGS Level 1 ecoregion of
CONUS (Omernik, 1987). Maximum and minimum temper-
ature, radiation, AET, WD, rain, snow, and land cover class
pixels for a given ecoregion were applied to a k-means algo-
rithm. We performed multiple cluster analyses by increasing
the value of k by 1 until at least two clusters were no longer
distinct or overlapping one another. The number of unique
clusters for an ecoregion was then determined by the maxi-
mum k value of distinct or non-overlapping cluster runs.

Lastly, each ecoregion’s k value was used as a weight to
determine the number of sites per ecoregion, generating the
additional 471 randomly sampled sites to run in the SDA
workflow, resulting in a total of 517 potential sites. Only
sites with acceptable MODIS LAI quality control (QC) val-
ues were used in the SDA (000 – best result possible, 001
– good, very usable; Myneni and Park, 2015), resulting in a
total of 493 sites to be included in the SDA simulations.

2.5 Sequential state data assimilation

The primary premise of sequential state data assimilation
(SDA) methods is that neither models nor observations are
perfect, but we can reduce uncertainties by finding a com-
mon ground between model simulations and multiple obser-
vations. SDA relies on an iterative cycle between forecasts as
well as updates and analyses that leverage Bayes’ theorem to
update the forecast (prior) based on new observations (likeli-
hood) (Fig. 3). For example, for a given site and time, prior to
collecting data, model forecasts are the best estimates of the
state of a system. The model’s forecast can be summarized
in terms of a mean vector of state variables, µf, and an error
covariance matrix, Pf. Once observations are made, we can
update this prior using the newly observed data Y (with asso-
ciated observation error R) as a component of Bayes’ theo-
rem to calculate a corrected estimate of the state of a system
µa and Pa . This update then serves as the initial conditions
for further projections in time (Fig. 4) (Dietze, 2017).

Classical data assimilation algorithms such as the ensem-
ble Kalman filter (Evensen, 2009) have been used extensively
in weather and ecological forecasting (Raiho et al., 2020;

Figure 2. Distribution of sites with their corresponding plant func-
tional type across CONUS.

Figure 3. PEcAn state data assimilation system: forecast–analysis
cycle. Step 1: uncertainty propagation. Step 2: forward forecast.
Step 3: data preparation. Step 4: data assimilation.

Viskari et al., 2020). However, most of these methods make
strong assumptions about the probability distribution of the
forecasts and observations and lack the ability to estimate
the model process error. For example, the Gaussian assump-
tion in the EnKF algorithm could generate negative soil car-
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Figure 4. (a) Classic ensemble Kalman filter method. (b) Tobit–Wishart ensemble filter. Xf: matrix of model forecasts; µf and Pf: forecast
mean and error covariance matrix; µa and Pa : analysis mean and error covariance matrix; Y and R: observation mean and error covariance
matrix; Qt model process error. Adopted from Raiho et al. (2020).

bon estimates, and the omission of process error may lead to
overconfidence in model forecasts.

To account for censored state variables in our process
model, we used the Tobit–Wishart ensemble filter (TWEnF)
as described in Raiho et al. (2020) to perform the analy-
sis step within our data assimilation workflow (Fig. 4). The
forecast mean, covariance, and the likelihood function were
transformed to the Tobit space to account for the left or right
censored state variables (e.g., carbon pools cannot be nega-
tive). In addition, the prior for our process covariance matrix
was assumed to be Wishart, and prior shape parameters were
stored and updated at each time step. This gave us the flex-
ibility to not only relax the Gaussian assumption behind the
Kalman filter family of data assimilation methods but also to
estimate and propagate model process error over the assimi-
lation period.

The TWEnF algorithm presented in Raiho et al. (2020)
was expanded in this study to allow for regional data assim-
ilation and multiple types of model process error Q in this
study as follows.

Y ∼

{
MVN(X,R) > yL

yL ≤ yL
(5)

X∼MVN(xf,Q) (6)
xf ∼MVN(µf,Pf) (7)
Q∼ Inv-Wishart (αq ,βq), (8)

Here, xf and X are the model estimates for each ensemble
before and after accounting for process error,Q, respectively.
αq and βq are the parameters controlling the shape of the
model process errorQ, and yL represents the lower boundary
for the censored observations, which is set to 0 in the current
application.

By including the model error covariance estimates from
all the sites in one unified model error covariance matrix in
the update step, we can take advantage of the covariability
between state variables at different sites. As a result, state
variables with and without corresponding observations can
be updated through their covariance with other variables at
other sites. For example, this enables updates to LAI at a site

with no direct observations solely based on the covariance es-
timated with a nearby site with LAI observations. However,
the extent to which we allow the sites to update their states
could depend on some measure of dissimilarity such as phys-
ical or environmental distance between sites (Dietze, 2017).
This problem in weather forecasting literature is called the
localization problem (Petrie and Dance, 2010). In this study,
we set up the localization threshold to 500 km; the covari-
ance between sites was adjusted using an exponential decay
function as follows:

Pf = exp
(
−1×d2

2× ν2

)
×Pf, (9)

where d is the distance matrix between all the sites and ν
is the cutoff distance at which covariances will be pushed
towards zero. More details on the localization setup can be
found in Appendix B.

The new regional-scale generalization of the TWEnF anal-
ysis step was implemented in PEcAn v. 1.7.2 and fit in R
statistical software (R Core Team, 2013) using the NIMBLE
package (de Valpine et al., 2017). At every time step, we ran
three chains of MCMC for a total of 100 000 steps and dis-
carded the first 10 000 to account for burn-in. The primary
variables of interest were the posterior estimates of µa and
Pa and the parameter controlling the covariance and shape of
the process error (Q) while assuming the R is known. We re-
duced the total number of unknown parameters by assuming
a shared process error Q among all sites.

Aboveground biomass (AGB) and leaf area index (LAI)
estimates were extracted from satellite imagery to act as our
observational data to assimilate in the SDA algorithm. Esti-
mates of the annual AGB and the pixel-wise standard devia-
tion (SD) for each study site were collected from Landtrendr
(Landsat-based detection of trends in disturbance and recov-
ery) at 30 m resolution from 1983 to 2018 (Kennedy et al.,
2018, 2010). LAI, SD, and QC values were collected from
MODIS MOD15A2H (Moderate Resolution Imaging Spec-
troradiometer) at 500 m resolution every 8 d from 2000–2019
for all sample sites (ORNL DAAC, 2018). LAI and SD obser-
vations with QC values that were not the “best result” (000)
or “good, very usable” (001) were removed from the LAI ob-
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servation dataset and not used for assimilation (Myneni and
Park, 2015). In total, 13 827 AGB observations and 8380 LAI
observations passed quality assessment and were included in
final data assimilation simulations for 419 sites from 1987–
2019. Since the assimilation was run on an annual basis, with
the analysis occurring on 15 July, peak LAI was used as our
annual LAI metric. Peak LAI was defined as the maximum
LAI value within the 95th percentile for a single site and year.
Similarly, the SD of peak LAI was defined as the correspond-
ing SD value associated with the peak LAI value for each site
and year. Any LAI SD value< 0.6 was reassigned a value of
0.6 following Viskari et al. (2015).

At the end of each assimilation cycle, we adjusted the up-
dated state variables by using the ensemble adjustment tech-
nique (Anderson et al., 2009) rather than sampling new en-
semble members from the analysis posterior in order to main-
tain the covariance structure between states, drivers, and pa-
rameters. The goal of ensemble adjustment is to first shift the
ensemble means to have the same mean as the posterior (µa)
and also linearly contract ensembles so they also show the
same variance as the posterior (Pa) (Anderson et al., 2009).

Our reanalysis was performed by running 20 ensemble
members in parallel, each associated with a different set of
species parameters, meteorological drivers, and initial condi-
tions. Each assimilation cycle including the total run time for
the ensemble simulations (performed in parallel, and each
SIPNET simulation took ∼ 5 s for 1 year) and fitting the
GEF model in R software took ≈ 7.8 h on average. More de-
tailed assessment of SIPNET model run time is presented in
Fer et al. (2018). Parameter vectors for each ensemble mem-
ber were drawn from the HPDA distribution for the across-
site mean, µg. The meteorological drivers covered the period
from 1986–2019 and were resampled from the 10-ensemble-
member ERA5 reanalysis product, which has a 3 h time step
and a resolution of 0.5625◦ (62 km). Initial condition distri-
butions were generated by resampling leaf, stem, and soil
carbon pool data extracted from the AmeriFlux Biological,
Ancillary, Disturbance, and Management (BADM) database
on an EPA L1 ecoregion basis.

2.6 Post hoc ensemble weight estimation

To focus our SDA on the model’s state variables (carbon
pools) and minimize the dimensions of X for more efficient
numerical sampling in Eq. (5), we only included the main
carbon cycle state variables (aboveground biomass, leaf area
index, and soil carbon pool) in the X matrix. Therefore, the
model output variables that were not included in the X, such
as carbon and water fluxes, were not adjusted during the anal-
ysis step itself. Instead, these additional outputs were updated
post hoc for each site and time step by estimating the poste-
rior probability of each ensemble member using the follow-
ing equation:

P(X|µa,Pa). (10)

Equation (10) estimates the likelihood of producing the
model simulations given the posterior (analysis) state of the
system. Equation (10) provides a relative weight for each
ensemble member that varies by year and site. A weighted
mean and variance were then estimated for NEE, GPP, au-
totrophic respiration, and heterotrophic respiration using the
estimated weights. These weights are applied not just to the
cumulative sum of the fluxes (annual totals) but to the high-
frequency time series between analysis time points. This ap-
proach was validated by comparing the reanalysis NEE to the
AmeriFlux observed NEE at a subset of points.

2.7 Soil carbon validation

To assess our ability to indirectly infer soil carbon from as-
similation of LAI and AGB into the SIPNET model, we com-
pared our soil organic carbon (SOC) estimates at all sites
against the SoilGrids dataset (Hengl et al., 2017). SoilGrids
is an interpolated data product at 250 m resolution produced
using machine learning models by taking advantage of global
soil profile information and a series of covariate data. We ex-
tracted the average soil carbon estimates from the SoilGrids
database down to 2 m depth to compare against our reanaly-
sis estimates.

3 Results and discussion

3.1 Global sensitivity analysis and HPDA

The main purpose of the sensitivity analysis was to iden-
tify model parameters with a large influence on the behav-
ior of SIPNET output variables such as NEE. The estimated
variability presented in Fig. 5 averages the sensitivity of
NEE to each parameter across multiple years and differ-
ent sites, presenting just the parameters that met our 5 %
variance criteria. Because NEE is the difference between
gross primary productivity (GPP) and total ecosystem res-
piration we expected that parameters that primarily regulate
modeled GPP and respiration would be the most sensitive
with respect to NEE. The soil organic matter (SOM) de-
composition rate, which controls heterotrophic respiration,
was the most sensitivity parameter for both plant functional
types. Following SOM respiration rate, photosynthetic opti-
mum temperature (psnTOpt), photosynthetic maximum ca-
pacity (Amax), growth respiration factor, and soil respira-
tion Q10 were found to be sensitive in both the conifer and
grass PFT. Amax and psnTOpt directly contribute to the
GPP calculation, while the growth respiration factor con-
tributes to autotrophic respiration and determines the frac-
tion of GPP that is available for growth. The soil respiration
Q10 and psnTOpt both demonstrate SIPNET’s high sensi-
tivity to temperature. In addition to shared parameters, the
conifer PFT also showed a high sensitivity of GPP to va-
por pressure deficit (VPD), which is reflected in the impor-
tance of the slope (dVPDSlope) and exponent (dVpdExp) in
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that equation, and to specific leaf area (SLA), which reflects
how much new leaf area a plant can “buy” for an given in-
vestment in leaf carbon. The grass PFT, on the other hand,
showed a high sensitivity to immedEvapFrac, which is the
proportion of incoming precipitation that is intercepted and
re-evaporated rather than being allowed to enter the soil and
become available for transpiration.

Sensitive parameters found in this study are similar to Fer
et al. (2018) wherein the authors estimated the sensitivity of
SIPNET model parameters to NEE and latent heath flux for
temperate deciduous PFT. Even though Fer et al. (2018) used
a local sensitivity analysis approach compared to the GSA
used in this study, SOM respiration rate, psnTOpt, soil respi-
ration Q10, and slope of VPD photosynthesis (dVPDSlope)
were found to be sensitive in both studies. Specifically, the
relative importance of parameters in simulating NEE by SIP-
NET in the grass PFT is similar to what was found by Fer
et al. (2018), confirming the general behavior of the SIPNET
model.

SIPNET is representative of a larger class of models with
simple representations of carbon pools and fluxes, which are
efficient and thus useful for computationally intensive large-
scale data assimilation problems. After constraining the
model against half-hourly flux tower NEE, SIPNET showed
considerable improvement (Fig. 6). Nash–Sutcliffe model ef-
ficiency showed an improvement for all years (2006–2011)
and PFTs (a total of 134 000 combined observations for the
grass PFT and 251 000 observation for conifer) except for
conifers in 2011 (Table 1).

Unconstrained simulations resulted in a large overestima-
tion of NEE in almost all years and for all sites, suggesting
either overestimation of total photosynthesis or underestima-
tion of total respiration. Constraining the photosynthesis and
respiration parameters (Fig. 5) improved the performance of
the model, yet the overall underestimation behavior in the
SIPNET model (Table 1) even after calibration points to the
inadequacies in the model structure to account for complex
interactions among processes.

RMSE estimated in this study for conifer ranged from 39
to 132×10−9 KgC m−2 s−1, while the grass PFT ranged 68 to
174×10−9 KgC m−2 s−1 across 2006–2011. Fer et al. (2018)
estimated a comparable 43×10−9 (KgC m−2 s−1) RMSE for
the temperate deciduous PFT for 2 years of simulation and
across one site. Both model assessment indices suggest that
the SIPNET model is more constrained after calibration and
ready for use within the state data assimilation routine.

3.2 State data assimilation

As mentioned before, SIPNET represents the terrestrial car-
bon budget by keeping track of three carbon pools, which
are plant wood carbon, plant leaf carbon, and soil carbon,
and simulates the major carbon fluxes among these pools (al-
location, turnover) as well as between these pools and the
atmosphere (photosynthesis, autotrophic, and heterotrophic

respiration) (Fig. 1). In our data assimilation procedure, we
sequentially assimilated aboveground biomass into the plant
wood carbon and leaf area index into the plant leaf car-
bon on an annual time step, allowing soil carbon to be con-
strained based on the covariance estimated through the pro-
cess model. Data assimilation was performed at all the sites
at the same time; off-diagonal values in the process model
error covariance were adjusted according to Eq. (9).

As an example of the general behavior of the SDA, Fig. 7
shows the reanalysis for a representative conifer site. The ini-
tial forecast starting from the BADM initial conditions has
a wide posterior distribution and typically a relatively un-
constrained mean forecast. The analysis, on the other hand,
converges quickly towards the observed AGB and remains
thereafter as the compromise between the observation and
the model forecast given their uncertainties. If no observa-
tion was available, for instance in the case of LAI from the
beginning of the simulation until the year 2000 (Fig. 7), the
analysis step relied on the covariance estimated among the
state variables both within a site and for adjacent sites. The
ability to take advantage of the covariances for updating a
state variable with no observation allows the SDA to con-
strain variables, such as soil C, that lack direct, site-level ob-
servations at large scales for data assimilation. At the end of
each time step, ensemble members were adjusted given the
estimated µa and Pa and used as an initial condition for the
next time steps.

Starting in the year 2000, we added a second observational
constraint, MODIS LAI, after which the analysis LAI con-
tracted considerably around the observations. The soil C pool
reanalysis was variable depending on the observation error
or uncertainty in the driving forces for different sites and did
not show an obvious response to the addition of LAI as a
constraint (Fig. 7).

3.2.1 Flux validation and ensemble weighting

The knowledge gained through data assimilation about the
state of the carbon pools at each site and year was then trans-
ferred post hoc to the flux time series over the preceding time
interval by estimating the posterior probability of each en-
semble member and using these probabilities to weight each
ensemble member. At this stage, no additional observations
were used to adjust the model estimates of different carbon
fluxes such as NEE (Fig. A2). For example, at the Black
Hills AmeriFlux site (Fig. A2), the NEE forecast by SIP-
NET, which already accounts for the initial condition con-
straint from the previous SDA step and the parameter con-
straints from the HPDA, closely followed the observed value.
However, adjustment of the model estimates using post hoc
weights further improved the predictability of NEE. The ef-
fect is not huge, as the current SDA constraint reflects n= 2
observations per year; however, the post-adjustment RMSE
was reduced by 7.8 % on average for the time period between
2004 and 2009. Adjusting NEE estimates solely based on the
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Figure 5. Global sensitivity analysis of SIPNET model parameters to NEE prediction for different plant functional types.

Figure 6. A 1 : 1 plot comparison between observed NEE and simulated NEE for coniferous across all sites and years.

weights estimated through data assimilation helped to further
close the gap between our forecast and observed NEE even
after parameter calibration. The improvements provided by
assimilating just two observations per year points to the ob-
vious future directions of increasing both the number of dif-
ferent data constraints and the frequency at which data are
assimilated.

Examining the weights assigned to each ensemble mem-
ber and the flux forecasts associated with them (Fig. A2, top
panels) shows two useful patterns. First, there are ensem-
ble members that get consistently low weight, and this in-
cludes most of the ensemble members that predict unusual
flux time series (e.g., ensemble members 20, 16, and 11).
These ensemble members are likely associated with parame-
ter combinations that are not representative of this site (and
potentially across sites) and point to a future opportunity to
combine simultaneous state estimation and hierarchical pa-
rameter constraints (Dokoohaki et al., 2021). This could be
done by including the parameters in the analysis and ensem-
ble adjustment, effectively nudging parameters toward more
supported values, or through a parameter filtering and resam-
pling, as is done in a particle filter (Dietze, 2017). The sec-
ond pattern that is apparent in the ensemble weights is that
the same ensemble members do not perform the same ev-
ery year. For example, an ensemble member may perform
well one year, only to get very low weight the very next year,
but then perform well again a few years later (i.e., ensemble

members 2 and 5). To the extent that this reflects variations
in parameters, not just initial condition and driver variabil-
ity, this also suggests that the “best” parameters may vary
through time. An important future direction to follow from
this is to perform a more in-depth analysis of how model
parameter weights vary in both space and time to better un-
derstand what parameters are most variable, as this points to
processes that are unaccounted for in the underlying models
(e.g., if SOM respiration rate varies spatiotemporally it sug-
gests the need to add additional terms to account for this vari-
ability). Furthermore, examining the patterns in this variabil-
ity in space and time can provide important clues about the
underlying factors driving variability. Finally, we would need
to extend our hierarchical parameter constraint to account for
spatiotemporal variability in parameters, as opposed to the
current approach that only captures spatial variability.

It is important to note that the patterns of ensemble weights
in Fig. A2 reflect the information contribution from the
MODIS LAI and LandTrendr AGB constraints, not the infor-
mation available from the NEE observations themselves. For
future applications of this approach, there are other options
available to assimilate observed carbon, water, and energy
fluxes. The simplest would be to assimilate the cumulative
fluxes that have occurred over the time since the previous
analysis. We have implemented this approach as part of our
site-scale near-term flux forecast, and it introduces the chal-
lenge of having to gap-fill the observed fluxes to be able to in-
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Figure 7. Site-level example of sequential data assimilation in an eastern temperate forest ecoregion for a coniferous site (longitude =
−89.226, latitude = 33.21).

Figure 8. (a) Weekly NEE predictions for all ensemble members at the Black Hills site. (b) Relative weight estimated for each ensemble
member using Eq. (10) sorted by cumulative weight from highest (top) to lowest (bottom). (c) Weekly average adjusted NEE (analysis)
compared to the observed measurements.

https://doi.org/10.5194/gmd-15-3233-2022 Geosci. Model Dev., 15, 3233–3252, 2022



3244 H. Dokoohaki et al.: Development of an open-source regional data assimilation system

tegrate them. Gap filling introduces uncertainties and causes
the assimilation to be, in part, a model–model comparison
(process model vs. gap-filling algorithm) instead of a model–
data comparison. Assimilating cumulative flux also results
in a loss of temporal information and statistical power. Al-
ternatively, we could calculate the likelihood of the observed
fluxes for each ensemble member and include this as a weight
when calculating the forecast mean and covariance (i.e., µf
and Pf). This approach is similar to a particle filter and to en-
semble variational data assimilation (Pinnington et al., 2020).
For either approach, there are important questions to be ex-
plored about the spatial range at which point-level flux ob-
servations provide a meaningful constraint on flux reanalysis
across landscapes and regions.

3.2.2 Soil C assessment

The degree to which our data assimilation algorithm is able to
constrain the soil C pool, which is not observed directly but
inferred from the other observations, is related to the qual-
ity of AGB and LAI observations at each site, the strength
of the covariances between the plant and soil pools, and the
overall accuracy of the model. A comparison between the
distribution of soil C estimated in this study against the Soil-
Grids database shows slightly higher mean soil C estimates in
this study (13.11 KgC m2 vs. 8.77) but comparable variabil-
ity across all plant functional types (Fig. 9). The median un-
certainty in soil C reanalysis over all sites is between 15 and
20 KgC m−2, and this uncertainty did not change by adding
LAI as a new data constraint. Our reanalysis did reasonably
well at predicting SOC for the conifer PFT but was consis-
tently higher than corresponding SoilGrids estimates across
all other PFTs. Arid grassland showed the largest overesti-
mation with 153 % bias compared to the SoilGrids dataset,
whereas the deciduous PFT showed the lowest deviation with
only 14 % bias. Furthermore, the largest agreement (index of
agreement ∼ 0.7; Willmott, 1981) was also found in conifer
and deciduous PFTs between the two datasets, and the lowest
agreement was found to be 0.28 for arid grassland.

On rare occasions (i.e., two sites in arid and three sites
in mesic grassland) in this study, we produced estimates of
soil C which are not compatible with estimates from other
data products such as SoilGrids. This divergence might be
attributed to instability in our statistical model at sites with
sparse observations. Alternatively, the mismatch between
how the soil C pool is defined (i.e., labile versus recalcitrant)
between different machine learning and process-based mod-
els may complicate the comparison between these data prod-
ucts. It is important to note that this assessment of the perfor-
mance of our reanalysis does not constitute a true validation
because the SoilGrids product is itself a model. But, given
that these two studies showed comparable means of the soil
C pool across∼ 500 sites through two different methods with
different philosophies, our soil carbon data products can be
regarded as a new instrument that allows us to enhance the

observational information and to derive higher-level prod-
ucts. In the future, as the spatial resolution of our reanal-
ysis increases, it will be important to perform a more de-
tailed assessment against a wider array of detailed site-level
soil data, such as the International Soil Carbon Network’s
database (Lawrence et al., 2020), the global soil respiration
database (Blackard et al., 2008), and the National Ecological
Observatory Network.

3.2.3 Forecast uncertainty

One of the notable patterns in our proof-of-concept reanal-
ysis was the tendency for the forecast uncertainty, Pf, to be
fairly large despite finding that our reanalysis posteriors had
fairly high precision. In part, this occurs because this system
is propagating a much broader set of uncertainties than pre-
vious studies. Variability in model forecasts can be attributed
to the uncertainties in meteorological drivers, model param-
eters, initial conditions (i.e., analysis posteriors), and the un-
explained process error (Dietze, 2017).

We did not find substantial shrinkage in average forecast
variability for soil carbon and LAI pools after including the
LAI observations in our data assimilation routine (Fig. 10).
In other words, adding a second data constraint did not re-
sult in a proportional reduction in forecast uncertainty for
LAI and soil carbon. However, we noticed a slight reduction
in forecast uncertainty for aboveground woody biomass af-
ter addition of the second data constraint. Large observation
error in MODIS LAI and the inconsistency in scale between
the LANDSAT and MODIS resolution could be a few rea-
sons for this observation. Similar findings were reported by
Schürmann et al. (2016), wherein multi-stream carbon DA
exercises found that a single data stream fit almost as well as
multi-data stream assimilation, and by Castro-Morales et al.
(2019), wherein the authors found that the largest portion of
information came from the first decade of data assimilation,
similar to what was found in this study. Altogether, this sug-
gests that initial condition uncertainty is not the dominant
driver of forecast uncertainty in the one-step-ahead predic-
tions that occur within the forecast–analysis cycle. Previous
site-scale assimilation within the same framework, but with
a different model (LINKAGES), found process error, Q, to
be a dominant source of forecast uncertainty (Raiho et al.,
2020).

Overall, an important future direction for this work is to
perform a detailed uncertainty analysis of the regional-scale
reanalysis. Similar to Raiho et al. (2020), this should par-
tition the uncertainties among the four major drivers (initial
conditions, drivers, parameters, process error). The dominant
uncertainties should then be further partitioned to better un-
derstand the contributions of individual processes and param-
eters (Dietze, 2017, 2014). This feedback will be important
for further refining the system, for example prioritizing work
among further calibration, additional SDA data constraints,
refinement of the mechanistic model, and refinement of the
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Figure 9. Soil organic carbon analysis comparison to the SoilGrids database for different plant functional types. The solid back line represents
the one-to-one line, and the dashed red line is the linear regression line between reanalysis SOC in this study and SoilGrids SOC.

Figure 10. Average forecast variability (SD) across all sites and all pools at each time step.

process error covariance model. It may also identify the con-
tributions of uncertainties that are less reducible, such as er-
rors in drivers and stochastic disturbances.

3.2.4 Future directions

While SDA is a valuable tool for producing reanalysis prod-
ucts and improving forecasts, it cannot improve how well the
process model represents the system and how often we as-
similate new observations. While a simple model like SIP-
NET presents an opportunity for testing new statistical mod-
els for data assimilation and expanding to larger scales, it
lacks mechanistic detail around features such as disturbance,
phenology, plant carbon partitioning, vegetation composi-
tion, structure, and demography, soil and plant hydraulics,
and soil carbon dynamics. As a future direction, we will be
working towards employing a more advanced vegetation de-
mographic model (Fisher et al., 2018), such as ED2 (Med-
vigy et al., 2009; Moorcroft et al., 2001), in our data assimi-
lation scheme.

In addition to increasing model sophistication, there are
clear arguments for increasing spatial resolution, temporal

resolution, the number of ensemble members, and the num-
ber of data constraints. However, increasing all of these si-
multaneously will greatly increase computational demands,
especially if we also employ more advanced (and slower)
models. Prioritizing which dimensions to focus on first will
depend on a number of factors including formal assessments
of the computational costs associated with each dimension
and the accompanying reductions in uncertainties that each
affords.

In terms of increasing the number of data constraints, there
are a large number of opportunities available to those inter-
ested in carbon cycle reanalysis and forecasting (Baatz et al.,
2018). As mentioned earlier, tower fluxes provide a way
of anchoring reanalysis estimates of fluxes across broader
scales. In addition, there is a clear need to constrain soil C
pools and fluxes using a combination of detailed site-scale
data and more broad spatial data products. One challenge
with assimilating soil C is that most spatial products do not
have specific dates associated with them, but rather aggre-
gate data across a broad time range. To assimilate products
like this, we will leverage an approach we developed for
assimilating fossil pollen data over long timescales (Raiho,
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2019) that spreads information over time by inflating the un-
certainty such that the effective sample size (and thus infor-
mation content) is preserved. For CONUS specifically, the
USFS Forest Inventory and Analysis also provides additional
constraints on biomass and soil C (Blackard et al., 2008).

Beyond field-based measurements, there is also a wealth
of remotely sensed data that provide additional constraints.
For example, there are a wide range of optical multispectral
platforms that could constrain LAI, vegetation type (PFT),
and land use change both deeper in the past (e.g., AVHRR,
Landsat) and moving forward (e.g., VIIRS, Sentinel-2). Ac-
tive sensors like lidar (i.e., GEDI, ICESat) and radar (i.e.,
PalSAR, BIOMASS, NISAR) also provide additional con-
straints on vegetation height and aboveground biomass. In
terms of fluxes, solar-induced fluorescence (i.e., OCO-2,
OCO-3, GOME-2, TROPOMI) provides a constraint on GPP,
while the same sensors provide column-averaged CO2 esti-
mates that potentially provide a flux constraint on NEE. CO2
concentrations are usually related to land fluxes via complex
atmospheric inversions (Ciais et al., 2010), and here, terres-
trial carbon reanalyses provide an opportunity to formally
reconcile top-down inversion and bottom-up inventory esti-
mates of carbon fluxes and sink attribution.

In addition to direct carbon constraints, there are also a
number of remote data products that provide indirect con-
straints on carbon pools and fluxes. In particular, carbon and
water are tightly coupled in many ecosystems (Schlesinger
et al., 2016), such as the trade-offs between photosynthetic
C update and water loss through transpiration that is mea-
surable via eddy covariance latent heat flux. Microwave re-
mote sensing (e.g., SMAP, SMOS, Sentinel-1C) provides es-
timates of both soil moisture and vegetation optical depth, the
latter providing information on both vegetation biomass and
moisture status (Konings et al., 2017, 2019). Finally, imaging
spectroscopy (e.g., AVIRIS, DESIS, SBG) provides detailed
information about composition, stress, and canopy proper-
ties, including the ability to constrain many of the parameters
critical to terrestrial ecosystem models (e.g., SLA, Vcmax,
leaf N) (Roberts et al., 1997; Shiklomanov et al., 2021).

The localization scheme employed in this study was
adopted from climate forecasting research (Reich and Cot-
ter, 2015), wherein the system the authors try to simulate is
similar in neighboring cells or simulation blocks. However,
a measure of physical distance alone may not be adequate
for data assimilation in ecological systems, as two adjacent
modeling blocks could represent completely different eco-
logical systems such as different plant functional types or
forest stand types. We found that this may substantially af-
fect the process error in the absence of direct observations.
This reveals a need and also an opportunity for further ex-
ploration of different and more efficient localization schemes
in ecological forecasting. Understanding the ability to scale
information across space is particularly important for extend-
ing this proof of concept to other regions of the world that are
less data-dense.

4 Conclusions

In this study, we presented a proof of concept for a new, syn-
thetic “reanalysis” data product that harmonizes the differ-
ent components of carbon cycle across the contiguous United
States. Overall, our system, which is open-source and exten-
sible to other models, successfully scaled up the new TWEnF
assimilation algorithm and PEcAn workflows to provide an
unprecedented level of error accounting, including the first
estimates of model process error covariance at a national
scale. To do so, we developed an efficient approach for as-
similating data on an irregular grid and an ensemble weight-
ing approach for updating high-temporal-resolution fluxes.
Before running the assimilation, we successfully constrained
SIPNET model parameters in a hierarchical Bayesian pa-
rameter data assimilation framework using NEE observa-
tions from six sites for two PFTs. Next, MODIS LAI and
LandTrendr aboveground biomass were sequentially assimi-
lated into the SIPNET model across a network of 493 sites to
constrain estimates of carbon pools (leaf, wood, and soil C)
and fluxes (GPP, Ra, Rh, NEE). The comparison between our
SOC estimates and the SoilGrids data product showed that
we have been able to successfully constrain the SOC pools,
while comparisons to eddy covariance demonstrated that we
were able to constrain net ecosystem exchange. Ultimately,
carbon cycle reanalysis should be scalable to a global extent,
providing a uniform synthetic platform for carbon monitor-
ing, reporting, and verification (MRV) as well as accelerating
terrestrial carbon cycle research.
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Appendix A: Supplementary materials

Figure A1. Posterior and prior density of optimized parameters for (a) conifer PFT and (b) grass PFT.

Figure A2. Residual density of NEE simulation by the SIPNET model for sites presented in Fig. 6.
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Appendix B: Localization

Localization has been found to be one of the most important
determining factors in the success of high-dimensional data
assimilation problems, especially EnKF (Farchi and Boc-
quet, 2019). Localization is often applied to either the ob-
servation or forecast error covariance matrix with the goal
of reducing or removing the spurious correlations that might
be generated due to low sample and/or ensemble size. In this
study, we used a local support localization method (Eq. 9)
adopted from Kalnay and Li (2010), wherein the localization
function returns nonzero values for small distances (local re-
gion) and zero elsewhere. In order to explore the effect of the
scaling factor in Eq. (9), we set up an experimental data as-
similation simulation with all 49 AmeriFlux sites and a series
of scaling factors (ranging from 0 to 900 km) for the time pe-
riod between 1989 and 2000. In this experiment, we were in-
terested in finding a scaling factor such that it would produce
the lowest spatial autocorrelation in the residuals after the
data assimilation. Given our simulation setup, we found that
increasing the scaling factor from 0 to 900 km would initially
decrease the spatial autocorrelations (Fig. B1) from ν = 0
to ν = 500 km, and then the autocorrelation would plateau
and slightly increase form ν greater than 500 km. Using the
ν = 500 km with lowest spatial autocorrelation on one hand
ensures that our data assimilation algorithm takes advantage
of local correlation among similar sites, while, on the other
hand it ignores or removes the spurious correlation estimated
at larger distances.

Figure B1. Significant spatial autocorrelation (p value < 0.05) found for different values of scaling factors (ν) in Eq. (9) across a range of
distances and years (1989–2000).
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Code and data availability. The full PEcAn code can be found at
https://doi.org/10.5281/zenodo.5557914 (LeBauer et al., 2021).

In addition, pull request numbers 2045, 2481, 2293, 2233,
and 2066 on the pecan GitHub repository (https://github.com/
pecanproject/pecan/) contain the largest contribution of this work
to the PEcAn project. Leaf C, wood C, soil C, NEE, GPP, and
autotrophic and heterotrophic respiration data products can also
be found using the following link: https://osf.io/efcv5/?view_only=
f2eeea87a6504abbae81164efd2b481c (Serbin et al., 2020).
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