Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-2309-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-2309-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Earth system model parameter adjustment using a Green's functions approach
Agricultural Research Organization, Rishon Lezion, Israel
Goddard Space Flight Center, Greenbelt, MD, USA
Andrea Molod
Goddard Space Flight Center, Greenbelt, MD, USA
Donifan Barahona
Goddard Space Flight Center, Greenbelt, MD, USA
Atanas Trayanov
Goddard Space Flight Center, Greenbelt, MD, USA
Science Systems and Applications Inc., Greenbelt, MD, USA
Dimitris Menemenlis
Jet Propulsion Laboratory,California Institute of Technology, Pasadena, CA, USA
Gael Forget
Massachusetts Institute of Technology, Cambridge, MA, USA
Related authors
Ofer Cohen, Assaf Hochman, Ehud Strobach, Dorita Rostkier-Edelstein, Hezi Gildor, and Ori Adam
EGUsphere, https://doi.org/10.5194/egusphere-2025-3058, https://doi.org/10.5194/egusphere-2025-3058, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Severe warming and drying in the Eastern Mediterranean makes seasonal prediction of regional rain imperative. The study explores the observed relation of Mediterranean Sea variability to Levant winter precipitation. Ocean heat uptake in the Aegean Sea during summer is found to be a strong predictor of winter Levant precipitation. This connection is mediated by changes in the subtropical jet, which create more favorable conditions for precipitating storms in the Levant during winter.
Yuna Lim, Andrea M. Molod, Randal D. Koster, and Joseph A. Santanello
Hydrol. Earth Syst. Sci., 29, 3435–3445, https://doi.org/10.5194/hess-29-3435-2025, https://doi.org/10.5194/hess-29-3435-2025, 2025
Short summary
Short summary
To better utilize a given set of predictions, identifying “forecasts of opportunity” is valuable as this helps anticipate when prediction skill will be higher. This study shows that when strong land–atmosphere (L–A) coupling is detected 3–4 weeks into a forecast, the surface air temperature prediction skill at this lead time increases across the Midwest and northern Great Plains. Regions experiencing strong L–A coupling exhibit warm and dry anomalies, enhancing predictions of abnormally warm events.
Ofer Cohen, Assaf Hochman, Ehud Strobach, Dorita Rostkier-Edelstein, Hezi Gildor, and Ori Adam
EGUsphere, https://doi.org/10.5194/egusphere-2025-3058, https://doi.org/10.5194/egusphere-2025-3058, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Severe warming and drying in the Eastern Mediterranean makes seasonal prediction of regional rain imperative. The study explores the observed relation of Mediterranean Sea variability to Levant winter precipitation. Ocean heat uptake in the Aegean Sea during summer is found to be a strong predictor of winter Levant precipitation. This connection is mediated by changes in the subtropical jet, which create more favorable conditions for precipitating storms in the Levant during winter.
Ci Song, Daniel T. McCoy, Isabel L. McCoy, Hunter Brown, Andrew Gettelman, Trude Eidhammer, and Donifan Barahona
EGUsphere, https://doi.org/10.5194/egusphere-2025-2009, https://doi.org/10.5194/egusphere-2025-2009, 2025
Short summary
Short summary
This study examines how aerosols from human activities alter cloud microphysical properties. Airborne observations from a field campaign are used to constrain an ensemble of global model configurations and their associated cloud property changes. Results show that airborne in-situ measurements of aerosol and cloud properties do provide insight into global changes in cloud microphysics but are sensitive to uncertainties in both airborne measurements and Earth system model emulators.
Donifan Barahona, Katherine Breen, Karoline Block, and Anton Darmenov
EGUsphere, https://doi.org/10.5194/egusphere-2025-482, https://doi.org/10.5194/egusphere-2025-482, 2025
Short summary
Short summary
Particulate matter impacts Earth's radiation, clouds, and human health, but modeling their size is challenging due to computational and observational limits. We developed a machine learning model to predict aerosol size distributions, which accurately replicates advanced models and field measurements.
Abdullah A. Fahad, Andrea Molod, Krzysztof Wargan, Dimitris Menemenlis, Patrick Heimbach, Atanas Trayanov, Ehud Strobach, and Lawrence Coy
EGUsphere, https://doi.org/10.21203/rs.3.rs-1892797/v2, https://doi.org/10.21203/rs.3.rs-1892797/v2, 2025
Short summary
Short summary
This study used a 1-degree GEOS-MITgcm coupled GCM to analyze the Northern Hemisphere (NH) stratospheric temperature response to external forcing. Results show the NH polar stratospheric temperature increased from 1992 to 2000, contrary to the expectation of stratospheric cooling with rising CO2. However, from 2000 to 2020, the temperature decreased. The study concluded that changes in CO2 and Ozone drive the meridional eddy transport of heat, dictating polar stratospheric temperature behavior.
Ci Song, Daniel McCoy, Andrea Molod, and Donifan Barahona
EGUsphere, https://doi.org/10.5194/egusphere-2024-4108, https://doi.org/10.5194/egusphere-2024-4108, 2025
Short summary
Short summary
The uncertainty in how clouds respond to aerosols limits our ability to predict future warming. This study uses a global reanalysis data, GiOcean, which includes a detailed treatment of cloud microphysics to represent interactions between aerosols and clouds. We evaluate the response of warm clouds to aerosols in GiOcean by comparing variables important for cloud properties from GiOcean with available spaceborne remote sensing observations.
Bror F. Jönsson, Christopher L. Follett, Jacob Bien, Stephanie Dutkiewicz, Sangwon Hyun, Gemma Kulk, Gael L. Forget, Christian Müller, Marie-Fanny Racault, Christopher N. Hill, Thomas Jackson, and Shubha Sathyendranath
Geosci. Model Dev., 16, 4639–4657, https://doi.org/10.5194/gmd-16-4639-2023, https://doi.org/10.5194/gmd-16-4639-2023, 2023
Short summary
Short summary
While biogeochemical models and satellite-derived ocean color data provide unprecedented information, it is problematic to compare them. Here, we present a new approach based on comparing probability density distributions of model and satellite properties to assess model skills. We also introduce Earth mover's distances as a novel and powerful metric to quantify the misfit between models and observations. We find that how 3D chlorophyll fields are aggregated can be a significant source of error.
Elias C. Massoud, Lauren Andrews, Rolf Reichle, Andrea Molod, Jongmin Park, Sophie Ruehr, and Manuela Girotto
Earth Syst. Dynam., 14, 147–171, https://doi.org/10.5194/esd-14-147-2023, https://doi.org/10.5194/esd-14-147-2023, 2023
Short summary
Short summary
In this study, we benchmark the forecast skill of the NASA’s Goddard Earth Observing System subseasonal-to-seasonal (GEOS-S2S version 2) hydrometeorological forecasts in the High Mountain Asia (HMA) region. Hydrometeorological forecast skill is dependent on the forecast lead time, the memory of the variable within the physical system, and the validation dataset used. Overall, these results benchmark the GEOS-S2S system’s ability to forecast HMA hydrometeorology on the seasonal timescale.
Randall V. Martin, Sebastian D. Eastham, Liam Bindle, Elizabeth W. Lundgren, Thomas L. Clune, Christoph A. Keller, William Downs, Dandan Zhang, Robert A. Lucchesi, Melissa P. Sulprizio, Robert M. Yantosca, Yanshun Li, Lucas Estrada, William M. Putman, Benjamin M. Auer, Atanas L. Trayanov, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 15, 8731–8748, https://doi.org/10.5194/gmd-15-8731-2022, https://doi.org/10.5194/gmd-15-8731-2022, 2022
Short summary
Short summary
Atmospheric chemistry models must be able to operate both online as components of Earth system models and offline as standalone models. The widely used GEOS-Chem model operates both online and offline, but the classic offline version is not suitable for massively parallel simulations. We describe a new generation of the offline high-performance GEOS-Chem (GCHP) that enables high-resolution simulations on thousands of cores, including on the cloud, with improved access, performance, and accuracy.
Hector S. Torres, Patrice Klein, Jinbo Wang, Alexander Wineteer, Bo Qiu, Andrew F. Thompson, Lionel Renault, Ernesto Rodriguez, Dimitris Menemenlis, Andrea Molod, Christopher N. Hill, Ehud Strobach, Hong Zhang, Mar Flexas, and Dragana Perkovic-Martin
Geosci. Model Dev., 15, 8041–8058, https://doi.org/10.5194/gmd-15-8041-2022, https://doi.org/10.5194/gmd-15-8041-2022, 2022
Short summary
Short summary
Wind work at the air-sea interface is the scalar product of winds and currents and is the transfer of kinetic energy between the ocean and the atmosphere. Using a new global coupled ocean-atmosphere simulation performed at kilometer resolution, we show that all scales of winds and currents impact the ocean dynamics at spatial and temporal scales. The consequential interplay of surface winds and currents in the numerical simulation motivates the need for a winds and currents satellite mission.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Rachael N. C. Sanders, Daniel C. Jones, Simon A. Josey, Bablu Sinha, and Gael Forget
Ocean Sci., 18, 953–978, https://doi.org/10.5194/os-18-953-2022, https://doi.org/10.5194/os-18-953-2022, 2022
Short summary
Short summary
In 2015, record low temperatures were observed in the North Atlantic. Using an ocean model, we show that surface heat loss in December 2013 caused 75 % of the initial cooling before this "cold blob" was trapped below the surface. The following summer, the cold blob re-emerged due to a strong temperature difference between the surface ocean and below, driving vertical diffusion of heat. Lower than average surface warming then led to the coldest temperature anomalies in August 2015.
Huisheng Bian, Eunjee Lee, Randal D. Koster, Donifan Barahona, Mian Chin, Peter R. Colarco, Anton Darmenov, Sarith Mahanama, Michael Manyin, Peter Norris, John Shilling, Hongbin Yu, and Fanwei Zeng
Atmos. Chem. Phys., 21, 14177–14197, https://doi.org/10.5194/acp-21-14177-2021, https://doi.org/10.5194/acp-21-14177-2021, 2021
Short summary
Short summary
The study using the NASA Earth system model shows ~2.6 % increase in burning season gross primary production and ~1.5 % increase in annual net primary production across the Amazon Basin during 2010–2016 due to the change in surface downward direct and diffuse photosynthetically active radiation by biomass burning aerosols. Such an aerosol effect is strongly dependent on the presence of clouds. The cloud fraction at which aerosols switch from stimulating to inhibiting plant growth occurs at ~0.8.
Yoshihiro Nakayama, Dimitris Menemenlis, Ou Wang, Hong Zhang, Ian Fenty, and An T. Nguyen
Geosci. Model Dev., 14, 4909–4924, https://doi.org/10.5194/gmd-14-4909-2021, https://doi.org/10.5194/gmd-14-4909-2021, 2021
Short summary
Short summary
High ice shelf melting in the Amundsen Sea has attracted many observational campaigns in the past decade. One method to combine observations with numerical models is the adjoint method. After 20 iterations, the cost function, defined as a sum of the weighted model–data difference, is reduced by 65 % by adjusting initial conditions, atmospheric forcing, and vertical diffusivity. This study demonstrates adjoint-method optimization with explicit representation of ice shelf cavity circulation.
Axel Peytavin, Bruno Sainte-Rose, Gael Forget, and Jean-Michel Campin
Geosci. Model Dev., 14, 4769–4780, https://doi.org/10.5194/gmd-14-4769-2021, https://doi.org/10.5194/gmd-14-4769-2021, 2021
Short summary
Short summary
We present a new algorithm developed at The Ocean Cleanup to update ocean plastic models based on measurements from the field to improve future cleaning operations. Prepared in collaboration with MIT researchers, this initial study presents its use in several analytical and real test cases in which two observers in a flow field record regular observations to update a plastic forecast. We demonstrate this improves the prediction, even with inaccurate knowledge of the water flows driving plastic.
Katherine H. Breen, Donifan Barahona, Tianle Yuan, Huisheng Bian, and Scott C. James
Atmos. Chem. Phys., 21, 7749–7771, https://doi.org/10.5194/acp-21-7749-2021, https://doi.org/10.5194/acp-21-7749-2021, 2021
Short summary
Short summary
Increases in atmospheric aerosols affect the scattering and absorption of solar radiation by altering the macrophysical and microphysical processes of clouds. We analyzed aerosol–cloud interactions in response to degassing events from the Kilauea volcano in 2008 and 2018 by comparing satellite and simulated cloud properties. Results showed a threshold response to overcome meteorological effects that is largely controlled by aerosol concentration, composition, plume height, and ENSO state.
Jie Gong, Xiping Zeng, Dong L. Wu, S. Joseph Munchak, Xiaowen Li, Stefan Kneifel, Davide Ori, Liang Liao, and Donifan Barahona
Atmos. Chem. Phys., 20, 12633–12653, https://doi.org/10.5194/acp-20-12633-2020, https://doi.org/10.5194/acp-20-12633-2020, 2020
Short summary
Short summary
This work provides a novel way of using polarized passive microwave measurements to study the interlinked cloud–convection–precipitation processes. The magnitude of differences between polarized radiances is found linked to ice microphysics (shape, size, orientation and density), mesoscale dynamic and thermodynamic structures, and surface precipitation. We conclude that passive sensors with multiple polarized channel pairs may serve as cheaper and useful substitutes for spaceborne radar sensors.
Cited articles
Adcroft, A. and Campin, J.-M.: Rescaled height coordinates for accurate
representation of free-surface flows in ocean circulation models, Ocean
Model., 7, 269–284, https://doi.org/10.1016/j.ocemod.2003.09.003,
2004. a, b
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier,
A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A.,
Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M.,
Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R.,
Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van
Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer,
C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E.,
Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch,
P. J., and Strand, W. G.: The Community Earth System Model Version 2 (CESM2),
J. Adv. Model. Earth Sy., 12, e2019MS001916,
https://doi.org/10.1029/2019MS001916, 2020. a
Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015. a, b, c
Garfinkel, C. I., Molod, A. M., Oman, L. D., and Song, I.-S.: Improvement of
the GEOS-5 AGCM upon updating the air-sea roughness parameterization,
Geophys. Res. Lett., 38, L18702, https://doi.org/10.1029/2011GL048802,
l18702, 2011. a
GMAO: Global Modeling and Assimilation Office, MERRA-2 tavg1_2d_ocn_Nx:
2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation, Ocean Surface Diagnostics
V5.12.4, Goddard Earth Sciences Data and Information
Services Center (GES DISC), Greenbelt, MD, USA,
https://doi.org/10.5067/Y67YQ1L3ZZ4R, 2016. a
Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q.,
Wolfe, J. D., Abeshu, G., Anantharaj, V., Asay-Davis, X. S., Bader, D. C.,
Baldwin, S. A., Bisht, G., Bogenschutz, P. A., Branstetter, M., Brunke,
M. A., Brus, S. R., Burrows, S. M., Cameron-Smith, P. J., Donahue, A. S.,
Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M., Foucar,
J. G., Fyke, J. G., Griffin, B. M., Hannay, C., Harrop, B. E., Hoffman,
M. J., Hunke, E. C., Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones,
P. W., Keen, N. D., Klein, S. A., Larson, V. E., Leung, L. R., Li, H.-Y.,
Lin, W., Lipscomb, W. H., Ma, P.-L., Mahajan, S., Maltrud, M. E., Mametjanov,
A., McClean, J. L., McCoy, R. B., Neale, R. B., Price, S. F., Qian, Y.,
Rasch, P. J., Reeves Eyre, J. E. J., Riley, W. J., Ringler, T. D., Roberts,
A. F., Roesler, E. L., Salinger, A. G., Shaheen, Z., Shi, X., Singh, B.,
Tang, J., Taylor, M. A., Thornton, P. E., Turner, A. K., Veneziani, M., Wan,
H., Wang, H., Wang, S., Williams, D. N., Wolfram, P. J., Worley, P. H., Xie,
S., Yang, Y., Yoon, J.-H., Zelinka, M. D., Zender, C. S., Zeng, X., Zhang,
C., Zhang, K., Zhang, Y., Zheng, X., Zhou, T., and Zhu, Q.: The DOE E3SM
Coupled Model Version 1: Overview and Evaluation at Standard Resolution,
J. Adv. Model. Earth Sy., 11, 2089–2129,
https://doi.org/10.1029/2018MS001603, 2019. a
Helfand, H. M. and Schubert, S. D.: Climatology of the Simulated Great Plains
Low-Level Jet and Its Contribution to the Continental Moisture Budget of the
United States, J. Climate, 8, 784–806,
https://doi.org/10.1175/1520-0442(1995)008<0784:COTSGP>2.0.CO;2, 1995. a
Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q.,
Folini, D., Ji, D., Klocke, D., Qian, Y., Rauser, F., Rio, C., Tomassini, L.,
Watanabe, M., and Williamson, D.: The Art and Science of Climate Model
Tuning, B. Am. Meteorol. Soc., 98, 589–602,
https://doi.org/10.1175/BAMS-D-15-00135.1, 2017. a
Hunke, E. and Lipscomb, W.: CICE: The Los Alamos sea ice model documentation
and software user's manual version 4.0 LA-CC-06-012, Tech. Rep. LA-CC-06-012, http://www.ccpo.odu.edu/~klinck/Reprints/PDF/cicedoc2015.pdf (last access: 15 March 2022),
2010. a
Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability,
Cambridge University Press, https://doi.org/10.1017/CBO9780511802270, 2002. a
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A
review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403, https://doi.org/10.1029/94RG01872, 1994. a
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A
finite-volume, incompressible Navier Stokes model for studies of the ocean on
parallel computers, J. Geophys. Res.-Oceans, 102, 5753–5766,
https://doi.org/10.1029/96JC02775, 1997. a
Mauritsen, T., Stevens, B., Roeckner, E., Crueger, T., Esch, M., Giorgetta, M.,
Haak, H., Jungclaus, J., Klocke, D., Matei, D., Mikolajewicz, U., Notz, D.,
Pincus, R., Schmidt, H., and Tomassini, L.: Tuning the climate of a global
model, J. Adv. Model. Earth Sy., 4, M00A01,
https://doi.org/10.1029/2012MS000154, 2012. a
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R.,
Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S.,
Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann,
S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenéz-de-la
Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S.,
Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner,
K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W. A., Nabel, J. E.
M. S., Nam, C. C. W., Notz, D., Nyawira, S.-S., Paulsen, H., Peters, K.,
Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S.,
Redler, R., Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H.,
Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens,
B., von Storch, J.-S., Tian, F., Voigt, A., Vrese, P., Wieners, K.-H.,
Wilkenskjeld, S., Winkler, A., and Roeckner, E.: Developments in the MPI-M
Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing
CO2, J. Adv. Model. Earth Sy., 11, 998–1038,
https://doi.org/10.1029/2018MS001400, 2019. a
Menemenlis, D., Fukumori, I., and Lee, T.: Using Green's Functions to
Calibrate an Ocean General Circulation Model, Mon. Weather Rev., 133,
1224–1240, https://doi.org/10.1175/MWR2912.1, 2005. a, b
Molod, A., Suarez, M., and Partyka, G.: The impact of limiting ocean roughness
on GEOS-5 AGCM tropical cyclone forecasts, Geophys. Res. Lett., 40,
411–416, https://doi.org/10.1029/2012GL053979, 2013. a
Molod, A., Hackert, E., Vikhliaev, Y., Zhao, B., Barahona, D., Vernieres, G.,
Borovikov, A., Kovach, R. M., Marshak, J., Schubert, S., Li, Z., Lim, Y.-K.,
Andrews, L. C., Cullather, R., Koster, R., Achuthavarier, D., Carton, J.,
Coy, L., Friere, J. L. M., Longo, K. M., Nakada, K., and Pawson, S.: GEOS-S2S
Version 2: The GMAO High-Resolution Coupled Model and Assimilation System for
Seasonal Prediction, J. Geophys. Res.-Atmos., 125,
e2019JD031767, https://doi.org/10.1029/2019JD031767, 2020. a
Osborn, T. J. and Jones, P. D.: The CRUTEM4 land-surface air temperature data set: construction, previous versions and dissemination via Google Earth, Earth Syst. Sci. Data, 6, 61–68, https://doi.org/10.5194/essd-6-61-2014, 2014. a
Posselt, D., Fryxell, B., Molod, A., and Williams, B.: Quantitative Sensitivity
Analysis of Physical Parameterizations for Cases of Deep Convection in the
NASA GEOS-5 Model, J. Climate, 29, 151029073005006,
https://doi.org/10.1175/JCLI-D-15-0250.1, 2015. a, b
Price, J. F., Mooers, C. N. K., and Van Leer, J. C.: Observation and Simulation
of Storm-Induced Mixed-Layer Deepening, J. Phys. Oceanogr., 8,
582–599, https://doi.org/10.1175/1520-0485(1978)008<0582:OASOSI>2.0.CO;2, 1978. a
Roach, L. A., Tett, S. F., Mineter, M. J., Yamazaki, K., and Rae, C. D.:
Automated parameter tuning applied to sea ice in a global climate model,
Clim. Dynam., 50, 51–65, 2018. a
Schmidt, G. A., Bader, D., Donner, L. J., Elsaesser, G. S., Golaz, J.-C., Hannay, C., Molod, A., Neale, R. B., and Saha, S.: Practice and philosophy of climate model tuning across six US modeling centers, Geosci. Model Dev., 10, 3207–3223, https://doi.org/10.5194/gmd-10-3207-2017, 2017. a
Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A.,
O'Connor, F. M., Stringer, M., Hill, R., Palmieri, J., Woodward, S., de Mora,
L., Kuhlbrodt, T., Rumbold, S. T., Kelley, D. I., Ellis, R., Johnson, C. E.,
Walton, J., Abraham, N. L., Andrews, M. B., Andrews, T., Archibald, A. T.,
Berthou, S., Burke, E., Blockley, E., Carslaw, K., Dalvi, M., Edwards, J.,
Folberth, G. A., Gedney, N., Griffiths, P. T., Harper, A. B., Hendry, M. A.,
Hewitt, A. J., Johnson, B., Jones, A., Jones, C. D., Keeble, J., Liddicoat,
S., Morgenstern, O., Parker, R. J., Predoi, V., Robertson, E., Siahaan, A.,
Smith, R. S., Swaminathan, R., Woodhouse, M. T., Zeng, G., and Zerroukat, M.:
UKESM1: Description and Evaluation of the U.K. Earth System Model, J.
Adv. Model. Earth Sy., 11, 4513–4558,
https://doi.org/10.1029/2019MS001739, 2019. a
Stackhouse Jr., P. W., Gupta, S. K., Cox, S. J., Zhang, T., Mikovitz, J. C., and
Hinkelman, L. M.: The NASA/GEWEX surface radiation budget release 3.0:
24.5-year dataset, Gewex news, 21, 10–12, 2011. a
Strobach, E.: Data for the paper: Earth System Model Parameter Adjustment Using a Green's Functions Approach (Version v1), Zenodo [code/data set], https://doi.org/10.5281/zenodo.5507631, 2021. a
Tett, S. F., Mineter, M. J., Cartis, C., Rowlands, D. J., and Liu, P.: Can
top-of-atmosphere radiation measurements constrain climate predictions? Part
I: Tuning, J. Climate, 26, 9348–9366, 2013. a
Tett, S. F. B., Yamazaki, K., Mineter, M. J., Cartis, C., and Eizenberg, N.: Calibrating climate models using inverse methods: case studies with HadAM3, HadAM3P and HadCM3, Geosci. Model Dev., 10, 3567–3589, https://doi.org/10.5194/gmd-10-3567-2017, 2017. a
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A.,
Chevallier, M., Colin, J., Guérémy, J.-F., Michou, M., Moine, M.-P., Nabat,
P., Roehrig, R., Salas y Mélia, D., Séférian, R., Valcke, S., Beau, I.,
Belamari, S., Berthet, S., Cassou, C., Cattiaux, J., Deshayes, J., Douville,
H., Ethé, C., Franchistéguy, L., Geoffroy, O., Lévy, C., Madec, G.,
Meurdesoif, Y., Msadek, R., Ribes, A., Sanchez-Gomez, E., Terray, L., and
Waldman, R.: Evaluation of CMIP6 DECK Experiments With CNRM-CM6-1, J.
Adv. Model. Earth Sy., 11, 2177–2213,
https://doi.org/10.1029/2019MS001683, 2019. a
Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S., Emori, S.,
Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki,
D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe, H., and Kimoto, M.:
Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate
Sensitivity, J. Climate, 23, 6312–6335,
https://doi.org/10.1175/2010JCLI3679.1, 2010.
a
Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M.,
Tanaka, T., Shindo, E., Tsujino, H., Deushi, M., Mizuta, R., Yabu, S., Obata,
A., Nakano, H., Koshiro, T., Ose, T., and Kitoh, A.: A New Global Climate
Model of the Meteorological Research Institute: MRI-CGCM3, J.
Meteorol. Soc. Japan, 90A, 23–64, https://doi.org/10.2151/jmsj.2012-A02,
2012. a
Zhang, T., Li, L., Lin, Y., Xue, W., Xie, F., Xu, H., and Huang, X.: An automatic and effective parameter optimization method for model tuning, Geosci. Model Dev., 8, 3579–3591, https://doi.org/10.5194/gmd-8-3579-2015, 2015. a, b
Zou, L., Qian, Y., Zhou, T., and Yang, B.: Parameter Tuning and Calibration of
RegCM3 with MIT–Emanuel Cumulus Parameterization Scheme over CORDEX East
Asia Domain, J. Climate, 27, 7687–7701,
https://doi.org/10.1175/JCLI-D-14-00229.1, 2014. a
Short summary
The Green's functions methodology offers a systematic, easy-to-implement, computationally cheap, scalable, and extendable method to tune uncertain parameters in models accounting for the dependent response of the model to a change in various parameters. Herein, we successfully show for the first time that long-term errors in earth system models can be considerably reduced using Green's functions methodology. The method can be easily applied to any model containing uncertain parameters.
The Green's functions methodology offers a systematic, easy-to-implement, computationally cheap,...