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Abstract. We demonstrate the practicality and effectiveness
of using a Green’s functions estimation approach for adjust-
ing uncertain parameters in an Earth system model (ESM).
This estimation approach has previously been applied to
an intermediate-complexity climate model and to individ-
ual ESM components, e.g., ocean, sea ice, or carbon cy-
cle components. Here, the Green’s functions approach is ap-
plied to a state-of-the-art ESM that comprises a global at-
mosphere/land configuration of the Goddard Earth Observ-
ing System (GEOS) coupled to an ocean and sea ice con-
figuration of the Massachusetts Institute of Technology gen-
eral circulation model (MITgcm). Horizontal grid spacing is
approximately 110 km for GEOS and 37–110 km for MIT-
gcm. In addition to the reference GEOS-MITgcm simula-
tion, we carried out a series of model sensitivity experiments,
in which 20 uncertain parameters are perturbed. These “con-
trol” parameters can be used to adjust sea ice, microphysics,
turbulence, radiation, and surface schemes in the coupled
simulation. We defined eight observational targets: sea ice
fraction, net surface shortwave radiation, downward long-
wave radiation, near-surface temperature, sea surface tem-
perature, sea surface salinity, and ocean temperature and
salinity at 300 m. We applied the Green’s functions approach
to optimize the values of the 20 control parameters so as
to minimize a weighted least-squares distance between the
model and the eight observational targets. The new experi-
ment with the optimized parameters resulted in a total cost
reduction of 9 % relative to a simulation that had already
been adjusted using other methods. The optimized experi-

ment attained a balanced cost reduction over most of the
observational targets. We also report on results from a set
of sensitivity experiments that are not used in the final opti-
mized simulation but helped explore options and guided the
optimization process. These experiments include an assess-
ment of sensitivity to the number of control parameters and
to the selection of observational targets and weights in the
cost function. Based on these sensitivity experiments, we se-
lected a specific definition for the cost function. The sensitiv-
ity experiments also revealed a decreasing overall cost as the
number of control variables was increased. In summary, we
recommend using the Green’s functions estimation approach
as an additional fine-tuning step in the model development
process. The method is not a replacement for modelers’ ex-
perience in choosing and adjusting sensitive model parame-
ters. Instead, it is an additional practical and effective tool for
carrying out final adjustments of uncertain ESM parameters.

1 Introduction

Earth system models (ESMs) include various parameters
that govern the representation of unresolved, unrepresented,
or underobserved processes in the models. The most sen-
sitive parameters are typically adjusted during the last step
of model development relative to observational targets. Cur-
rently, there is no agreed-upon methodology to adjust model
parameters. As an illustration of the range of approaches and
observational targets, Schmidt et al. (2017) describe the vast
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range of tuning strategies used for ESM development in US
modeling centers. Parameter adjustment aims to improve the
representation of various processes or key state fields in the
model relative to a predetermined set of observational targets
(Mauritsen et al., 2012; Hourdin et al., 2017).

ESM tuning is often done in a heuristic, trial-and-error
manner, wherein one or more parameters are perturbed to
new values based on diagnosing the causes of systematic er-
ror with the aim of improving the model’s overall behavior
(e.g., Watanabe et al., 2010; Yukimoto et al., 2012; Maurit-
sen et al., 2019; Voldoire et al., 2019; Golaz et al., 2019;
Sellar et al., 2019; Danabasoglu et al., 2020). The observa-
tional targets can include, for example, radiation balance at
the top of the atmosphere, surface temperature, sea ice vari-
ability, tropospheric wind, or even a derived target such as a
“cloud object” (Posselt et al., 2015). In this approach, a typ-
ical tuning exercise comprises several iterations of suites of
sensitivity experiments with one or more perturbed parame-
ters. After each iteration, a comparison is performed against
a set of observations, and another set of sensitivity experi-
ments targeting either the same or another set of parameters
and observations is conducted based on the results. This tun-
ing exercise is highly dependent on the experience and ex-
pertise of model developers and on the application for which
the model will be used.

There are three main drawbacks of heuristic optimization
approaches. The first is that this method necessitates an anal-
ysis step between each sensitivity sweep, a time-consuming
process. The second drawback is the large number of re-
quired simulations, since a new set of experiments is re-
quired for iteration of the process. The third drawback is the
interdependence of each parameter’s effect on the resulting
ESM simulation. For example, both sea ice albedo and pre-
cipitation efficiency could affect the globally averaged radia-
tion balance at the top of the atmosphere. The adjustment of
one parameter or set of parameters at a time is suboptimal,
because estimates of empirical parameters depend on each
other and on model configuration, boundary conditions, etc.

Given unrestricted computer resources, one could ran-
domly explore model parameter space exhaustively and
choose the simulation that best fits all available observations.
In practice, this type of exhaustive parameter exploration is
not feasible, and we need tractable methods that combine ob-
jective methodologies with the model developer’s experience
to arrive at an optimized choice of model parameters.

To mitigate the drawbacks and computational cost of the
above approaches, a number of more objective parameter
calibration methods have been proposed for systematically
choosing or fine-tuning the final set of optimized parame-
ters. These methods include the use of Latin hypercube sam-
pling techniques (Posselt et al., 2015), the downhill sim-
plex method (Zhang et al., 2015), the multiple very fast
simulated annealing (Zou et al., 2014), and Gauss–Newton
line search algorithms (Tett et al., 2013, 2017; Roach et al.,
2018). The above estimation methods require a large suite

of experiments, which are computationally expensive. There-
fore, the sensitivity experiments are typically carried out with
very low resolution, atmosphere-only, or even single-column
model configurations. The direct applicability of these meth-
ods for tuning an ESM may consequently be limited.

Another alternative to heuristic estimation approaches is
the adjoint method. Using the adjoint method, one can ad-
just many parameters simultaneously. A successful exam-
ple is provided by the Estimating the Circulation and Cli-
mate of the Ocean (ECCO) consortium, which used the ad-
joint method to adjust Massachusetts Institute of Technol-
ogy general circulation model (MITgcm) ocean model pa-
rameters, initial conditions, and boundary conditions (Forget
et al., 2015). Although the adjoint method provides robust re-
sults, developing a model’s adjoint is time consuming, even
when using an automatic differentiation software tool. Ad-
ditionally, the adjoint method is computationally expensive
because many forward-adjoint ESM simulations would be
required to optimize a nonlinear model.

In this study, we will explore the applicability of the
Green’s functions approach of Menemenlis et al. (2005) to
the calibration of an ESM – the Goddard Earth Observ-
ing System (GEOS) land/atmosphere model coupled to the
MITgcm ocean model. Compared to other methods, the key
advantages of the Green’s function approach are simplic-
ity of implementation, robustness in the presence of non-
linearities, and explicit computation of the data kernel ma-
trix. Compared to heuristic, trial-and-error approaches, the
Green’s functions approach optimizes uncertain parameters
all at once as opposed to one at a time, hence taking into ac-
count linear dependencies between these parameters. There-
fore, the Green’s functions approach accounts for the com-
bined impact of all the parameters while also establishing the
individual impact of any one parameter on the solution and
with respect to each observational target. Once the forward-
model sensitivity experiments have been carried out, the op-
timization step can be repeated using different observational
targets and weights at very small additional computational
cost. Assuming that the linearization assumptions hold, only
one forward-model sensitivity experiment is required per pa-
rameter to be adjusted, which reduces the computational cost
relative to the heuristic and objective approaches listed in
the previous paragraphs. While the application of an ad-
joint model requires substantial additional model develop-
ment and coding efforts, all that is required to apply the
Green’s function approach is the computation of ESM for-
ward sensitivity experiments. Furthermore, while the adjoint
method would require that the exact tangent linear of the
ESM be well behaved, Green’s functions provide an approxi-
mate linearization, which can be used to reduce the cost func-
tion even when the adjoint model is ill behaved. Finally, the
explicit computation of the data kernel matrix makes avail-
able a vast array of tools from discrete linear inverse theory
for deriving and analyzing the solutions.
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The key drawback of the Green’s function approach is
that computational cost increases linearly with the number
of control parameters. Therefore, the method is only appli-
cable to situations where a small number of control parame-
ters need to be estimated. Despite these drawbacks, we will
demonstrate that the Green’s functions approach can be an
invaluable addition to the repertoire of estimation tools used
to adjust ESM model parameters.

The remainder of the paper is organized as follows: the
mathematical formalism and the Green’s functions method
are presented in the next section. This presentation is fol-
lowed by a description of the model, the experiments, and
the used observational targets. Section 4 presents our cho-
sen configuration results, followed by a section outlining the
motivation for the configuration choices. Summary and con-
clusions are in Sect. 6.

2 Earth system model description

The model used for this study is the GEOS-MITgcm coupled
model. We briefly describe here the particular configurations
of these two models as they are used in our study. The dy-
namical core and suite of physical parameterizations of the
GEOS Atmospheric General Circulation Model (AGCM),
along with the land model and aerosol model, are described
in Molod et al. (2020) and in references therein. The turbu-
lent surface layer parameterization, relevant for this study,
is a modified version of the parameterization documented in
Helfand and Schubert (1995). The wind stress and surface
roughness model was modified by the updates of Garfinkel
et al. (2011) for a mid-range of wind speeds and further mod-
ified by the updates of Molod et al. (2013) for high winds.
The GEOS AGCM’s cubed-sphere grid was configured to
run with a nominal horizontal grid spacing of 100 km. The
vertical grid is a hybrid sigma-pressure grid with 72 levels.
The time step of integration was set to 450 s.

MITgcm has a finite-volume dynamical core (Marshall
et al., 1997). It has a nonlinear free-surface and real freshwa-
ter flux (Adcroft and Campin, 2004) and a nonlocal K-profile
parameterization scheme for mixing (Large et al., 1994). The
MITgcm horizontal grid is the so-called Lat-Lon-Cap (For-
get et al., 2015), and was configured to run with a nominal
grid spacing of 100 km. The vertical grid is the z∗ height co-
ordinates (Adcroft and Campin, 2004) and has 50 vertical
levels. The time step of integration was set to 450 s, similar
to the atmospheric model.

The GEOS-MITgcm atmosphere–ocean interface includes
a skin layer (Price et al., 1978), configured for the simula-
tions described here to impose a 1 d timescale on the inter-
action, and the communication between the ocean and at-
mosphere is updated at every atmospheric model time step
(450 s). The sea ice dynamics model is provided by MIT-
gcm and the sea ice thermodynamics model is from CICE 4.1
(Hunke and Lipscomb, 2010).

3 Mathematical formalism and methodology

Algebraically, the ESM described in Sect. 2 can be expressed
as a set of rules for time stepping a state vector,

x(ti+1)=Mi(x(ti)), (1)

where x(ti) is a discretized representation of the Earth sys-
tem at time ti and function Mi represents ESM time-stepping
rules for advancing the state vector from time ti to ti+1. The
discretized evolution of the true Earth system, xt (ti), is as-
sumed to differ from that of the numerical model by a vector
of stochastic perturbations, η, so that

xt (ti+1)=Mi(x
t (ti),η), (2)

where η is assumed to have zero mean and covariance ma-
trix Q. Consider a set of observations represented by vector
yo, which are related to the discretized, time-evolving Earth
system state vector by measurement function H , that is,

yo
=H(xt (t0),x

t (t1), . . .,x
t (tN ))+ ε, (3)

where ε represents a vector noise process assumed to have
zero mean and covariance matrix R. In addition to measure-
ment errors, vector ε includes all model and estimation “rep-
resentation” errors, i.e., model data residuals that cannot be
represented by Mi and η.

To fit the ESM to the available observations, we aim to
minimize an objective cost function

J = ηT Q−1η+ εT R−1ε, (4)

which penalizes a weighted least-squares distance between
optimized and prior model parameters (ηT Q−1η) and a
weighted least-squares distance between simulation and ob-
servations (εT R−1ε), where T is the transpose operator and
−1 indicates matrix inversion. It can be shown that mini-
mization of Eq. (4) will produce the maximum likelihood
solution for Gaussian inverse problems (Kalnay, 2002). For
the Green’s functions approach, we adjust a small, carefully
chosen set of parameters η. To do this, we combine Eqs. (2)
and (3) to obtain

yo
=G(η)+ ε, (5)

where G represents a function of the combination of obser-
vation operator H with ESM time-stepping rules Mi . We as-
sume that Eq. (5) can be linearized about a reference ESM
simulation so that

yd
= yo
−G(0)=G · η+ ε, (6)

where 0 is a null vector, G(0) represents the reference ESM
simulation sampled by measurement function H , vector yd is
the model data difference between observations and the ref-
erence simulation, and kernel matrix G can be thought of as a
first-order multivariate Taylor expansion of G around η = 0.
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The assumption here is that for a small enough perturbation,
the model response is linear. Kernel matrix G can be derived
by conducting an ESM perturbation experiment for each el-
ement of vector η. Specifically, the j th column of matrix G
is

gj =
G(ej )−G(0)

ej

, (7)

where ej is a perturbation vector filled with zeros except for
element j , which is perturbed by scalar value ej . The mini-
mization of Eq. (4) given Eq. (5) is a discrete linear inverse
problem with solution

ηa
= PGT R−1yd, (8)

where

P= (Q−1
+GT R−1G)−1 (9)

is the uncertainty covariance matrix for the optimized esti-
mate ηa. Mathematically, the Green’s function approach is
equivalent to any linear Gaussian inverse problem, e.g., the
adjoint method.

In practice, the Green’s functions estimation method can
be divided into the following six steps:

1. Run a reference ESM simulation using default values
for model error parameters, i.e., η = 0. The output from
this experiment, sampled by observation operator H ,
provides G(0) in Eqs. (5) and (6).

2. Choose a set of observational targets, i.e., define opera-
tor H and vector yo in Eq. (3).

3. Estimate error covariance matrices Q and R – the model
and observation/representation errors, respectively –
that are needed to define cost function J in Eq. (4).

4. Run a set of model sensitivity experiments, where each
element of vector η is perturbed, one at a time, by scalar
value ej . These sensitivity experiments are used to con-
struct kernel matrix G as per recipe given by Eq. (7).
This step holds the biggest computational cost, far ex-
ceeding other steps.

5. Calculate a set of optimized model error parameters ηa

using Eq. (8). Vector ηa can be used to compute an opti-
mized linear combination and a projected cost under the
assumption of linearity.

6. Run a new simulation using optimized parameters ηa.
This optimized simulation can be compared with the op-
timized linear combination of sensitivity experiments in
order to evaluate the linearization assumption.

Note that the choice of the observational targets and the def-
inition of the covariance matrices (steps 2 and 3) can be later
revised without the need to rerun a new set of experiments
(step 4).

4 Proof of concept optimization

In this section, we illustrate the application of the six steps
listed above.

4.1 Reference experiment

The 10-year reference experiment was configured with refer-
ence values of a set of parameters that we aimed to optimize.
The model was configured to run in “perpetual year” mode,
meaning that the external boundary conditions (solar insola-
tion, greenhouse gas amount, and aerosol emissions) are kept
to those of 2000. The “perpetual year” mode was chosen to
optimize the model’s equilibrium state relative to our clima-
tology observational targets.

4.2 Observational targets

The motivation of this study was to set up a simple, sys-
tematic, reproducible, extensible, and efficient framework for
improving the climatology of the new coupled model both
now and as it undergoes development in the future. To start,
we chose eight key observational targets (Table 1), each one
chosen for the reasons outlined below. Ice fraction is di-
rectly relevant to all sea ice processes, and is important for
an accurate representation of climate variability in the po-
lar regions and climate feedbacks on the global scale. Accu-
rate modeling of shortwave radiation at the surface indicates
that the model can simulate the atmospheric and oceanic
circulations’ driving force. Shortwave radiation and down-
ward longwave radiation indicate the realistic representation
of cloud processes in the atmosphere. Near-surface temper-
ature was added aiming to balance out ocean-only observa-
tional targets. Sea surface temperature (SST) is a fundamen-
tal climate variable that drives the atmosphere. Sea surface
salinity (SSS) controls ocean circulation but is also a tracer
of the global water cycle. Their equivalents at 300 m below
sea level additionally constrain large-scale ocean transports.
The observational targets were calculated separately for each
season – DJF (December, January, February), MAM (March,
April, May), JJA (June, July, August), SON (September, Oc-
tober, November) – and each seasonal mean was compared
with the corresponding model output.

4.3 Definition of cost function

In this study, Q−1 is set to zero, i.e., the cost function does
not explicitly include a priori knowledge about the range
of possible parameter values. Some of the parameters, how-
ever, have intrinsic physical boundaries for the range of val-
ues. For these parameters, the resulting optimized parame-
ters were checked and all were found to lie within the range
of physically acceptable values. The error covariance matrix
R is chosen to be diagonal. Because the estimation problem
is highly overdetermined – the number of parameters to ad-
just is O(10) while the number of observations is O(106) –
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Table 1. List of observational targets and covariance value.

Variable Dataset Years Covariance (R)

Sea ice fraction MERRA-2a 1996–2004 0.14
Net surface shortwave radiation SRBb 1996–2004 2250 [W m−2]2

Downward longwave radiation SRBb 1997–2004 506 [W m−2]2

Near surface temperature HadCRUT4c 1997–2004 35.4 [◦C]2

Sea surface temperature ECCOd 1996–2004 6.67 [◦C]2

Sea surface salinity ECCOd 1996–2004 2.06 [psu]2

THETA at 300 m ECCOd 1996–2004 2.62 [◦C]2

Salt at 300 m ECCOd 1996–2004 0.05 [psu]2

a GMAO (2016); bStackhouse et al. (2011); cOsborn and Jones (2014); dForget et al. (2015)

we expect that the assumption that R is diagonal will have
minimal impact on the optimized estimate ηa. In general, the
addition of non-diagonal elements of R would indicate linear
dependence among observational errors, reducing the effec-
tive degrees of freedom. Since in our case the number of ob-
servations is far larger than the number of optimized parame-
ters, we would still retain a very large number of independent
observations as compared to optimized parameters. The vari-
ance was calculated separately for each observational target
and defined to be the global, area-weighted, mean-squared
difference between the climatology of the reference experi-
ment and observations, that is

Rv =

∑
i,j,s

wi,j ·

(
ŷo
v,i,j,s − x̂r

v,i,j,s

)2
, (10)

where the indices v, i, j , and s represent observation vari-
able, longitude, latitude, and season (winter, spring, summer,
and fall), the hat sign ˆ represents climatological seasonal
mean values, and wi,j is an area weight with

∑
i,jwi,j = 1/4,

giving each season a 1/4 of the weight. The prior error vari-
ance of each variable is, therefore, a constant value. A con-
sequence of our choice of the covariance matrix and the cost
function is that the cost of the reference experiment is equal
to one for each variable. For eight observational targets, the
total cost of the reference experiment is eight. This definition
gives equal weight to each of the eight observational targets
and was found to provide a balanced solution in terms of each
observational target’s overall influence. The cost of the opti-
mized experiment is expected to be smaller than one for each
variable.

4.4 Sensitivity experiments

In addition to the reference experiment, 20 different 10-
year sensitivity experiments were performed using the exact
model configuration as the reference experiment but perturb-
ing one of the uncertain parameters each time. The length of
the simulations needed for the Green’s functions optimiza-
tion is related to the application of the model being opti-
mized. For climate projection applications, where the long-

term equilibrium of the model is paramount, it seems clear
that longer simulations would be warranted in order to allow
for model spin-up time. The primary application of the cou-
pled model presented here is seasonal to decadal prediction,
and so the optimization is done to include (ideally to mini-
mize) the initial model drift.

The reference and perturbed parameter values and a short
description of the parameters are listed in Table 2. We used
the 20 sensitivity experiments to estimate the model’s sen-
sitivity to each of the perturbed parameters based on the
Green’s functions formalism. The perturbed parameter val-
ues where chosen based on expert advice. For some of the
parameters, the value was chosen based on physically real-
istic values from past experience. In some of the cases, the
perturbed value was chosen arbitrarily due to a large param-
eter uncertainty. Note that there is no risk of overfitting due to
the large number of observational targets (eight observational
targets, two-dimensional fields, four seasons ≈ 300000 tar-
gets). Methods to penalize a large number of parameters are
therefore not needed in this case.

4.5 Optimized parameters

The optimized parameters are given in the last column of Ta-
ble 2. It can be seen that only half of the optimized parame-
ter values fall between the reference and the perturbed value,
indicating a large unpredictability in model response to the
change in those parameters. Nevertheless, the difference be-
tween the optimized parameter and the reference value (ηa)
did not exceed the difference between the perturbed parame-
ter value and the reference value (η), except for one param-
eter, i.e., TS_AUTO_ICE. This may indicate that our choice
of the perturbed values was within a realistic range – partic-
ularly when considering that Q−1 was set to zero, suggesting
that the optimized parameter’s range was not constrained by
the cost function.
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Table 2. List of perturbed parameters.

# Parameter name Description Reference Perturbed Optimized

1 AUTscale Liquid autoconversion rate scaling 0.20 0.30 0.27

2 LTS_LOW For LTS higher than LTS_LOW, and in marine re-
gions, the cloud fraction within the PBL is scaled
using a power law, where the power exponent varies
between MIN_EXP and MAX_EXP.

19.0 20.0 19.2

3 MIN_EXP 0.60 0.80 0.73
4 MAX_EXP 1.50 1.70 1.32

5 CICE_AH_MAX Used in calculating the ice albedo threshold 0.30 0.20 0.36

6 ALBICEV Visible band ice albedo 0.73 0.82 0.79

7 ALBICEI Near-IR band ice albedo 0.33 0.40 0.37

8 TURN_RHCRIT The level at which the PDF of total moisture is as-
sumed to change from its “free atmosphere” behav-
ior to its “inside PBL” behavior.

884 750 870

9 CQfactor A factor for the surface moisture exchange coeffi-
cient

1.0 1.5 1.2

10 Charnok1 Governs the relationship between the ocean wind
stress and the wind speed. This parameter governs
the behavior at high wind speed.

2.92× 10−3 2.19× 10−3 3.65× 10−3

11 Charnok2 Governs the relationship between the ocean wind
stress and the wind speed. This parameter governs
the behavior at low wind speed.

−1.10× 10−8
−2.00× 10−8

−1.70× 10−8

12 VSLfactor Scales the impact of the laminar viscous sublayer
over the ocean.

1.00 1.20 0.96

13 MF2CFfactor Mass flux to cloud factor – governs the relationship
between detrained cloud mass flux and cloud frac-
tion.

1.00 0.80 1.14

14 MIN_RHCRIT Determines the width of the assumed PDF of total
water in the free troposphere.

0.90 0.85 0.91

15 TS_AUTO_ICE Autoconversion timescale for ice in multiples of
model time step

4.0 3.0 4.5

16 BC_INFAC The fraction of black carbon number concentration
that is allowed to act as ice-nucleating particles.

1.00 0.50 0.35

17 DUST_INFAC The fraction of dust number concentration that is
allowed to act as ice nucleating particles.

1.00 0.50 0.79

18 DCS Critical diameter for ice autoconversion. 3.5× 10−4 3.0× 10−4 3.8× 10−4

19 UISCALE Scaling for the terminal velocity of ice 1.00 0.90 0.98

20 KHRADFAC Scale factor for negatively buoyant turbulence re-
lated to cloud-top cooling

0.85 0.50 0.95

4.6 Assessing the performance of the Green’s functions
methodology

Once the Green’s functions methodology provides the opti-
mized parameters, a projected cost can be derived directly
from the sensitivity experiments using the optimized param-
eters. This derivation can be done before actually running

the optimized simulation with the optimized parameters. The
projected cost provides a first indication of the expected cost
reduction, assuming linearity. After a new optimized experi-
ment is performed, the projected cost can be compared with
the optimized experiment’s cost to assess the correctness of
the assumption of linearity.
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Figure 1 (and Table 3) shows that the total cost reduction
of the optimized experiment (shown on the right) relative to
the reference experiment (shown on the left) is 9 % (similar
to the cost reduction found in Zhang et al. (2015)). Figure 1
(and Table 3) also shows the projected cost, which is the cost
one would have if the model response to parameter perturba-
tions were entirely linear. Most of the cost reduction seen in
the projected (second from the right) experiment is realized
in the optimized experiment. The total cost of each of the
20 sensitivity experiments is larger than the cost of the sim-
ulation with the optimized parameters. Figure 2 shows the
normalized cost for each of the eight observational targets
in the same order as in Fig. 1. Figure 2 shows that the cost is
lowest in the optimized experiment (the rightmost bar in each
cluster) for five out of the eight observational targets. For one
of the observational targets (sea ice fraction), the cost of the
optimized experiment is smaller than the reference but sev-
eral sensitivity experiments have lower cost. For two obser-
vational targets, the optimized experiment cost is higher than
the cost of the reference experiment. This cost increase hap-
pens for surface temperature over land and downward long-
wave radiation. The longwave radiation had a cost increase
of 2 %. The more considerably increased cost of 16 % in the
surface temperature is related to our choice of observational
targets. Five out of the eight observational targets are ocean-
only variables, only one is land-only, and two cover both land
and ocean. This asymmetry between land and ocean con-
straints seems to have pulled the parameters to values that
benefit the ocean more than the land. The proof of concept
illustrated in this study, although clearly demonstrating the
overall cost reduction with this method, also illustrates the
need to choose the desired observational targets carefully.

The cost reduction was also found to be rather homoge-
neous across many regions around the globe. Figure 3 shows
that for net shortwave radiation, the total cost reduction was
20 % relative to the reference experiment. Most of the oceans
exhibit a large reduction in the cost, particularly over the
Antarctic Circumpolar Current (ACC) and in the stratocumu-
lus regions in the eastern Pacific’s subtropics. In comparison
with these cost reductions over the oceans, the land still ex-
hibits marginal increases in cost over wide regions of North
America and Southeast Asia.

The actual cost reduction of the various variables seen in
the optimized experiment is also generally consistent with
the projected cost. Figure 4 shows the projected cost reduc-
tion for the net shortwave radiation, which is in broad agree-
ment with the actual cost reduction of the optimized experi-
ment seen in Fig. 3c. In this case, the cost of the optimized
experiment was even smaller than the projected cost. Over-
all agreement between the projected cost and optimized ex-
periment cost suggests that the linearity assumption that un-
derlies the Green’s functions methodology holds sufficiently
well for the approach to be useful.

The surface temperature, which exhibits an overall 16 %
increase in cost (Fig. 5), also shows some large regions of

cost reduction over North America and Greenland. However,
the cost in North Asia and Europe is increased. In terms of
the cost’s seasonality, it was found that DJF and MAM had
the highest cost increase, while JJA months had the smallest
overall cost reductions. These results suggest that the mis-
representation of land ice processes in the new and the old
configurations is responsible for the high cost. Surface tem-
perature is the variable that had the least projected cost reduc-
tion; thus, it was expected to exhibit the worst performance
in terms of the optimized experiment cost. Including more
land-related observational targets, such as snow fraction and
soil moisture, could improve the cost of surface temperature.
This inclusion can assist in constraining model performance
above land, balancing the ocean-only constraints. Downward
longwave radiation also exhibits cost increase, but here the
increase is 2 %. In terms of the other variables, the cost of
sea ice fraction was reduced by 8.2 %, and the four ocean-
only variables showed cost reduction between 10 and 25 %,
indicating an improved representation of the ocean circula-
tion.

5 Discussion: motivation for choices in methodology

The parameter estimation experiment presented in the pre-
vious section describes our current best practice, which was
guided by a series of sensitivity experiments with different
configurations, where different variations of the methodol-
ogy were tested. Below, we discuss sensitivity to the choice
of (1) prior covariance matrices, (2) observational targets,
and (3) the number of control parameters. Many other sen-
sitivity experiments can be designed. The goal of this section
is not to cover all the options, but rather to provide an ad-
ditional dimensional depth of the Green’s functions method-
ology. In the end, the future choice of the Green’s functions
“flavor” should reflect the goals of the optimization exercise.

5.1 Sensitivity to choice of prior covariance matrices

In general, the error covariance matrices Q and R are not
known and difficult to estimate. For the Green’s functions
approach, however, the number of observations is generally
much larger than the number of parameters being estimated,
which simplifies the selection of Q and R. First, the small
number of control parameters limits the solution’s degrees of
freedom; therefore, the choice of Q and R, if they are reason-
able, is not expected to change the solution ηa much – but it
will impact posterior uncertainty, P. Second, the data kernel
matrix G is small enough to be defined explicitly; therefore,
many interesting properties of the solution can be derived
and evaluated. Third, the solution of Eqs. (8) and (9), once
the kernel matrix G has been derived, is trivial; therefore, it
is possible to test the impact of particular choices of Q and
R, as is done next.
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Figure 1. The total cost of the reference experiment, the optimized experiment, and the 20 perturbed experiments. Projected cost is also
indicated.

Figure 2. The cost of the reference experiment and the 20 perturbed experiments for each of the observational targets. Projected and optimized
costs are also indicated.

The sensitivity to the choice of covariance matrices Q and
R in Eq. (4) is evaluated using a pared-down configuration,
perturbing only three parameters. The pared-down config-
uration is used to simplify the discussion and better illus-
trate the response of the optimized solution to different co-
variance matrices. The perturbed parameters were AUTscale,
LTS_LOW, and two sea ice parameters (ALBICEV and AL-
BICEI) perturbed together. The output from the methodology
for this choice is a set of scaling factors for the parameters.
When more than one parameter is perturbed in one exper-
iment, the same scaling factor is applied to all the experi-
ment parameters. In this configuration, unlike in our best-

practice configuration, the observational targets were multi-
year means, and the cost was not computed separately for
each season. The observational targets are also similar to the
best-practice configuration, except that the 500 mbar height
was used in place of the surface temperature over land, and
the net radiation replaced the two radiation components.
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Table 3. Explained variance in percentage. Negative values represent reduction of explained variance. TS: near-surface temperature; FR:
sea ice fraction; LW: downward longwave radiation; SW: net surface shortwave radiation; SST: sea surface temperature; SSS: sea surface
salinity; T (300): THETA at 300 m; S (300): salt at 300 m.

TS FR LW SW SST SSS T (300 m) S (300 m) Total

Projected 7.3 12.9 11.3 14.4 36.3 10.0 21.4 11.6 15.6
Optimized −16.0 8.2 −2.0 20.0 25.6 14.5 11.3 10.6 9.0

Figure 3. The net shortwave radiation cost for the reference (a), the optimized experiments (b), and their difference (c).

We tested four different options for the prior error vari-
ance, the diagonal elements of matrix R:

Rv =

∑
i,j,s

wi,j ·

(
ŷo
v,i,j,s − ŷo

v,s

)2
,

where ŷo
v,s =

∑
i,j

wi,j · ŷ
o
v,i,j,s (11a)

Rv,i,j,s =
1
N

N∑
t=1

(
ỹo
v,i,j,s,t − ỹo

v,i,j,s

)2
,

where ỹo
v,i,j,s =

1
N

N∑
t=1

ỹo
v,i,j,s,t (11b)

Rv =

(
max

(
ŷo
v,i,j,s − x̂r

v,i,j,s

))2
(11c)

Rv =

∑
i,j,s

wi,j ·

(
ŷo
v,i,j,s − x̂r

v,i,j,s

)2
(as in Eq. 10), (11d)

where, v, i,j,s, t are the variable, longitude, latitude, sea-
son, time indexes, respectively. The tilde symbol (˜) repre-
sents seasonal means and N is the number of years. The first
option (a) uses the area-weighted variance of the observa-
tions instead of the mean-squared misfits used in Eq. (10).
The second option (b) is the spatially and seasonally variable
time variance of the observations, the third option (c) is the
square of the maximal absolute difference between observa-
tions and the reference experiment, and the fourth option (d)
is an area-weighted variance of the difference between the
observations and the reference experiment. All four estimates
of R are calculated separately for each variable. The four es-
timates of R aim to represent a range of plausible estimates
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Figure 4. Net shortwave radiation cost difference between the pro-
jected value and the reference experiment.

for the actual error variance and allow us to explore the effect
on the resulting parameters and cost.

We calculated optimized parameters, ηa, for each of the
four definitions of R assuming that Q=∞, i.e., no prior
information about the control parameters, and again assum-
ing that Q= I, the identity matrix, meaning that we have the
same amount of confidence in the prior values of each control
parameter. These two estimates of Q represent two extreme
situations.

Table 4 shows the eight different combinations of the pa-
rameters based on the four options for the observations’ co-
variance and two different parameters governing the covari-
ance matrices. In general, all configurations generate realistic
values in terms of the order of magnitude, but parameters dif-
fer in detail. The Q= I case tends to keep parameters closer
to their initial value (relative to Q=∞), as expected.

Table 5 shows the cost associated with each of the eight
experiments. Looking at the Q=∞ cases, defining the cost
based on Eq. (11a) reduced the cost by 7.7 % but the rel-
ative importance of each variable varied substantially. For
example, 500 mbar height cost was very small for the ref-
erence (0.024) and the fact that the optimized experiment
increased the cost by 33.7 % did not affect the total cost.
Also, the sea ice contribution to the cost was much larger
than the temperature and salinity at 300 m below the sea sur-
face. Option (11b) was found to provide only marginal cost
reduction. Option (11c) demonstrated the largest cost reduc-
tion (the smallest ratio in the J_total column). However, most
of the projected cost reduction was restricted to the 500 mbar
height target, while the cost of most of the other variables
was not reduced, particularly in the case of the ocean targets.
This is in contrast with option (11d), for which the cost re-
duction was spread more uniformly across the observational
targets. All of these considerations led to our choice of op-
tion (11d) as the best practice. The Q= I was not chosen
because the range of the parameters is in itself often quite un-
certain and because optimized parameter values were found

to remain reasonable without the need for adding this addi-
tional constraint to the cost function. This choice is certainly
worth revisiting in a future study.

After running a new model simulation with the optimized
parameters based on Eq. (11d) and the Q=∞ case, the to-
tal cost reduction was found to be 6 % – 2.9 % less than the
projected value, but still not small (Table 5). The 500 mbar
height contributes to most of the reduction, and the sea ice
cost was increased by about 25 %. A possible explanation
for the 500 mbar target being the main contributor to the cost
reduction is that there were a small number of grid points
in which the error was reduced substantially, particularly at
high latitudes (not shown). This result suggests an experi-
ment in which a spatially dependent weight is used to reduce
the magnitude of the outliers. The current cost implemen-
tation has dependency on the model squared error. This de-
pendency favors the correction of a small number of points
with large errors relative to a large number of points with
small errors. Choosing absolute error instead of squared er-
ror would have changed the tendency to favor the correction
of a small number of grid points with large errors. Neverthe-
less, the simpler experiment configuration was a successful
choice to explore the sensitivity to the covariance matrix de-
signs.

5.2 Sensitivity to choice of number of parameters

Here, we evaluate the sensitivity of the cost to the number of
optimized parameters. We calculated the projected cost re-
duction for four cases which used a subset of the first 5, 10,
15, and all 20 parameters from Table 2. We focus here on an
optimization based on the multi-year means. An increased
number of parameters is expected to translate into a reduced
cost as we fit the model to more parameters. In the follow-
ing results, we decided to remove the 500 mbar height from
the cost function in order to spread the cost across more vari-
ables. Generally, there is nothing wrong with having most of
the cost reduced in one of the observational targets, but we
decided here to seek a more balanced cost reduction. An ad-
ditional change here and in the following sections is the sep-
aration of the net surface radiation target into net shortwave
and downward longwave radiation, as they are independent
and both have SRB (surface radiation budget) observational
counterparts. The choice of downward longwave radiation
rather than the net was made due to the direct dependence
of upward longwave radiation on the SST (which is already
a constraint).

We tested the projected cost reduction as a function of the
optimized parameter number (Fig. 6). We found that the pro-
jected cost was reduced from 6 to 25 % when going from
5 optimized parameters to 20. The cost reduction was grad-
ual, showing an additional reduction with the increase of the
optimized parameters. The largest cost reduction was found
between 5 and 10 optimized parameters.

Geosci. Model Dev., 15, 2309–2324, 2022 https://doi.org/10.5194/gmd-15-2309-2022



E. Strobach et al.: Earth system model parameter adjustment using a Green’s functions approach 2319

Figure 5. The 2 m temperature cost for the reference (a) and the optimized experiments (b), and their difference (c).

Table 4. Optimized parameters of the three perturbed parameters experiments based on two different definitions of the parameters’ covariance
matrix Q and four definitions of the error covariance matrix (Eq. 11a–11d).

Parameter→
LTS_LOW ALBICEV ALBICEV AUTscale

Experiment ↓

Q=∞

(11a) 18.68 0.846 0.420 0.241
(11b) 18.31 0.774 0.364 0.237
(11c) 17.79 0.871 0.440 0.116
(11d) 18.48 0.855 0.428 0.163

Q= I

(11a) 18.51 0.734 0.333 0.201
(11b) 18.33 0.770 0.361 0.226
(11c) 18.34 0.749 0.345 0.138
(11d) 18.48 0.754 0.348 0.185

ref. 18.5 0.73 0.33 0.2

5.3 Annual mean versus seasonal mean data
constraints

Here, we used nine sensitivity experiments, with nine opti-
mized parameters, to look at the sensitivity of the optimized
parameters to seasonality. Two sets of parameters were calcu-
lated based on multi-year means (annual, Table 6) and based
on multi-year seasonal means (seasonal, Table 6). Calcula-

tion of the optimized parameters comes after performance
of the simulations, so the input simulations are the same for
both options. The only difference between the annual and
seasonal suites is the configuration of the cost function pro-
vided to the Greens’ functions methodology.

The most noteworthy difference between the annual and
seasonal results was found in the Charnock parameter that
controls surface winds. Although the difference between pa-
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Table 5. Cost of the three perturbed parameters experiments based on two different definitions of the parameter covariance matrix Q and
four definitions of the error covariance matrix (Eq. 11a–11d).

Parameter→
J_total J_SEAICE J_H J_RADSRF J_SALT J_SSS J_SST J_THETA

Experiment ↓

Q=∞

(11a)
reference 0.885 0.294 0.024 0.106 0.038 0.370 0.017 0.035
proj./ref. 0.923 0.909 1.337 0.969 0.896 0.886 1.076 0.973

(11b)
reference 445.7 72.1 14.9 30.4 93.1 74.9 42.3 117.8
proj./ref. 0.987 0.964 1.058 1.015 0.976 0.970 0.995 1.003

(11c)
reference 4.283 0.106 4.049 0.052 0.007 0.004 0.039 0.027
proj./ref. 0.445 1.356 0.398 1.174 1.255 0.974 1.160 1.168

(11d)
reference 7 1 1 1 1 1 1 1
proj. / ref. 0.921 1.099 0.689 0.966 0.997 0.872 0.844 0.979
opt./ref. 0.940 1.253 0.523 1.045 1.010 0.864 0.950 0.937

Q= I

(11a)
reference 0.885 0.294 0.024 0.106 0.038 0.370 0.0166 0.0354
proj./ref. 0.961 0.924 1.199 0.991 0.935 0.964 1.048 0.986

(11b)
reference 445.7 72.1 14.9 30.4 93.1 74.9 42.3 117.1
proj./ref. 0.987 0.964 1.056 1.015 0.976 0.970 0.995 1.003

(11c)
reference 4.283 0.106 4.049 0.052 0.007 0.004 0.039 0.027
proj./ref. 0.484 1.289 0.444 1.087 1.215 0.953 1.080 1.084

(11d)
reference 7 1 1 1 1 1 1 1
proj./ref. 0.926 1.062 0.703 0.972 1.007 0.898 0.859 0.982

Figure 6. Cost relative to the reference experiment as a function of
the number of optimized parameters based on annual means.

rameters is smaller than 10 %, the projected cost differences
are large, with the annually based optimization reducing the
cost by about 15 % and the seasonally based optimization
reducing the cost by about 9 %. This result is expected, as
seasonally based data have more variability and we use the
same number of parameters to optimize model results to a
larger number of observations.

Optimizing for seasonal observational targets is expected
to be essential for improving seasonal variability. Therefore,
despite the less efficient cost reduction for the seasonal tar-
gets, we decided to continue to focus on experiments with

seasonal observational targets. For these two sets of experi-
ments, we did not choose to rerun the model with optimized
parameters, but instead decided to increase the number of op-
timized parameters by performing additional simulations.

5.4 Length of the optimization period

This sensitivity test was performed with the 20-parameter
set of simulations. The appropriate length of the sensitivity
experiments was chosen based on the intended application
of our tuned model for seasonal and decadal prediction. It
seems clear that for a different application of the model, say
climate projection, the length of the sensitivity experiments,
optimization, and observational targets must be long enough
to reach a climate equilibrium. Within the scope of seasonal
to decadal prediction, to examine the impact of the optimiza-
tion period, we performed three Green’s function calcula-
tions: one that optimizes the parameters based on the first
5 years of the runs (2000–2005), one that uses the last 5 years
of the runs (2005–2010), and another that uses the whole
10 years (2000–2010) as in Sect. 4. The motivation here was
to learn about the impact of model drift after initialization
on the optimization. The 2000–2005 optimization projected
a 15.3 % cost reduction, the 2005–2010 optimization pro-
jected a 12.4 % cost reduction, and the 2000–2010 optimiza-
tion projected a 15.6 % cost reduction. The optimized exper-
iments were only performed with the total and latter time pe-
riod optimization results, and the 2005–2010 optimized pa-
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Table 6. Optimized parameters of the nine perturbed parameters experiments configured with Q=∞ and option (11d).

Parameter→
AUTscale LTS_LOW CICE_AH_MAX ALBICEV ALBICEI TURN_RHCRIT MAX_RHCRIT CQfactor Charnok1

Experiment ↓

Reference 0.2 19 0.3 0.73 0.33 884 1.0 1.0 2.92× 10−3

Perturbed 0.3 20 0.2 0.82 0.40 750 0.8 1.5 2.19× 10−3

Annual 0.194 19.53 0.354 0.834 1.14 850 1.14 1.25 3.54× 10−3

Seasonal 0.203 19.38 0.334 0.797 1.12 865 1.12 1.23 3.29× 10−3

Table 7. Proj./ref. cost of the nine perturbed parameters experiment configured with Q=∞ and option (11d).

Target→
J_total J_SEAICE J_H J_RADSRF J_SALT J_SSS J_SST J_THETA

Experiment ↓

Annual 0.854 0.822 0.917 0.873 0.938 0.978 0.634 0.815
Seasonal 0.912 0.887 0.933 0.899 0.935 0.973 0.922 0.835

rameters had a cost reduction of 7.1 % relative to 9 % for the
2000–2010 experiment. One of the plausible reasons for less
cost reduction when optimizing the latter period only is that
2005–2010 had fewer than two El Niño cycles, and it was
too short for the calculation of the model climatology. The
10-year experiment had three full El Niño cycles, and its cli-
matology represents the model climatology more adequately.
The 10-year optimization, therefore, is found to enable better
parameter optimization.

6 Summary and Concluding Remarks

This study demonstrates the applicability of the Green’s
functions approach – introduced in Menemenlis et al. (2005)
for a forced ocean simulation – to the adjustment of uncertain
parameters for a coupled ocean—atmosphere simulation. In
this proof-of-concept study, we computed the response of the
coupled ocean–atmosphere simulation to the perturbation of
the 20 parameters listed in Table 1. These 20 perturbation ex-
periments were subsequently used to optimize the values of
the 20 parameters. The observational targets were long-term
seasonal means of the eight fields listed in Table 2. The opti-
mization increased the explained variance by up to 25 % (for
SST in Table 3).

The Green’s functions approach assumes that the response
of the model to small perturbations is approximately linear.
This assumption does not rigorously hold for atmospheric,
oceanic, or coupled ocean–atmosphere models because of
nonlinear weather and climate phenomena such as synop-
tic storms and El Niño–Southern Oscillation (ENSO) vari-
ability. Therefore, a key consideration is that the perturba-
tion experiments be sufficiently long to average out nonlinear
weather and lower-frequency phenomena. This study shows
that 10-year long simulations can be sufficient to enable suc-
cessful application of the Green’s functions approach.

The cost reduction was spread across most of the obser-
vational targets, though our configuration of observational
targets may have been responsible for the cost increase in
two amongst them – the targets associated with land areas
that are underrepresented in our cost function. In the end,
the choice of the observational targets should reflect the ob-
jective of the study and, probably, there is no single set of
observational targets that is adequate for all applications a
priori. Our proof-of-concept study and the experiments that
show the impact of different choices in the details readily
reflect the tradeoffs among data constraints that can be im-
portant considerations.

Increasing the number of optimized parameters reduced
the overall cost, an effect which seems to be quasi-linear
with the number of parameters, but further investigation into
this is required. Increasing the temporal resolution of the
observational targets from annual to seasonal increased the
cost further – a result of the increasing number of observa-
tional targets. Adding seasonality into parameter adjustments
is viewed as one of the next logical steps in this regard. We
also tested four different methods to calculate the error co-
variance matrix, and found that using the error of the refer-
ence experiment produced the most balanced results in terms
of accounting for all observational targets.

This study shows that the Green’s functions methodology
can benefit the earth system modeling community by provid-
ing a more structured yet practical method to tune the com-
plex global models. The Green’s functions methodology has
several advantages that are worth emphasizing here: (a) it is
simple to implement and it does not require internal amend-
ments to the model code; (b) it is relatively cheap for a small
number of parameters – one extra sensitivity experiment per
parameter; (c) one can generate virtual predictions and cal-
culate projected cost for a very large number of cost con-
figurations without running new experiments; (d) it offers a
systematic way to optimize parameters accounting for a pos-
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sible dependent response of the model to a change of differ-
ent parameters; (e) the optimization process can be extended
with more sensitivity experiments and it can also be revis-
ited with a different set of parameters; and (f) the sensitiv-
ity experiments can be done in parallel, suggesting potential
scalability.

Identifying the most important uncertain parameters for
applying Green’s functions methodology still requires close
familiarity with models and there is no replacement for the
experience of the modelers when using this methodology.
Therefore it is viewed as a valuable framework to further
leverage modelers’ expertise to fine-tune model parameters,
standardize practices across the various modeling centers,
and improve model products beyond the present state of the
art.
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