Articles | Volume 13, issue 11
https://doi.org/10.5194/gmd-13-5465-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-13-5465-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-grid algorithm for passive tracer transport in the NEMO ocean circulation model: a case study with the NEMO OGCM (version 3.6)
Clément Bricaud
CORRESPONDING AUTHOR
Mercator Ocean International, 31520 Ramonville-Saint-Agne, France
Julien Le Sommer
Univ. Grenoble Alpes, CNRS, IRD, G-INP, IGE, 38000 Grenoble, France
Gurvan Madec
Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN), IPSL, Sorbonne Université, Paris, 75005, France
Christophe Calone
Univ. Grenoble Alpes, CNRS, IRD, G-INP, IGE, 38000 Grenoble, France
Julie Deshayes
Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN), IPSL, Sorbonne Université, Paris, 75005, France
Christian Ethe
Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN), IPSL, Sorbonne Université, Paris, 75005, France
Jérôme Chanut
Mercator Ocean International, 31520 Ramonville-Saint-Agne, France
Marina Levy
Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN), IPSL, Sorbonne Université, Paris, 75005, France
Related authors
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Mathieu Delteil, Marina Lévy, and Laurent Bopp
EGUsphere, https://doi.org/10.5194/egusphere-2025-2805, https://doi.org/10.5194/egusphere-2025-2805, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The ocean is losing oxygen due to climate change, threatening ecosystems, especially in naturally low-oxygen areas called Oxygen Minimum Zones (OMZs). Using the IPSL-CM6A-LR Large Ensemble, this study identifies when climate-driven changes in OMZ volumes and regional deoxygenation emerge from natural variability. We highlight hemispheric asymmetries due to ocean ventilation and provide model-based estimates for the timing of detectable OMZ evolution.
Marina Lévy, Karina von Schuckmann, Patrick Vincent, Bruno Blanke, Joachim Claudet, Patrice Guillotreau, Audrey Hasson, Claire Jolly, Yunne Shin, Olivier Thébaud, Adrien Vincent, and Pierre Bahurel
State Planet, 6-osr9, 1, https://doi.org/10.5194/sp-6-osr9-1-2025, https://doi.org/10.5194/sp-6-osr9-1-2025, 2025
Short summary
Short summary
The Ocean is vital to humanity, but humans are putting it at risk. The Starfish Barometer is a new yearly civic rendezvous that shows how people and the Ocean affect each other. Using science-based facts, it highlights major trends in ocean health, the pressures it faces, the harm to people, and current protection efforts and opportunities. The goal is to raise awareness to secure a better future for the Ocean and humanity.
Madhavan Girijakumari Keerthi, Olivier Aumont, Lester Kwiatkowski, and Marina Levy
Biogeosciences, 22, 2163–2180, https://doi.org/10.5194/bg-22-2163-2025, https://doi.org/10.5194/bg-22-2163-2025, 2025
Short summary
Short summary
We assessed how well climate models replicate sub-seasonal changes in ocean chlorophyll observed by satellites. Models struggle to capture these variations accurately. Some overestimate fluctuations and their impact on annual chlorophyll variability, while others underestimate them. The underestimation is likely due to limited model resolution, while the overestimation may come from internal model oscillations.
David Kamm, Julie Deshayes, and Gurvan Madec
EGUsphere, https://doi.org/10.5194/egusphere-2025-1100, https://doi.org/10.5194/egusphere-2025-1100, 2025
Short summary
Short summary
We propose an idealized model of pole-to-pole ocean dynamics designed as a testbed for eddy parameterizations across a range of horizontal scales. While computationally affordable, it is able to capture key metrics of the climate system. By comparing simulations at low, intermediate and high horizontal resolution, we demonstrate its utility for evaluating eddy parameterizations, both in terms of their effect on the mean-state and by diagnosing the unresolved eddy fluxes they aim to represent.
Stéphane Doléac, Marina Lévy, Roy El Hourany, and Laurent Bopp
Biogeosciences, 22, 841–862, https://doi.org/10.5194/bg-22-841-2025, https://doi.org/10.5194/bg-22-841-2025, 2025
Short summary
Short summary
The marine biogeochemistry components of Coupled Model Intercomparison Project phase 6 (CMIP6) models vary widely in their process representations. Using an innovative bioregionalization of the North Atlantic, we reveal that this model diversity largely drives the divergence in net primary production projections under a high-emission scenario. The identification of the most mechanistically realistic models allows for a substantial reduction in projection uncertainty.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Roy El Hourany, Juan Pierella Karlusich, Lucie Zinger, Hubert Loisel, Marina Levy, and Chris Bowler
Ocean Sci., 20, 217–239, https://doi.org/10.5194/os-20-217-2024, https://doi.org/10.5194/os-20-217-2024, 2024
Short summary
Short summary
Satellite observations offer valuable information on phytoplankton abundance and community structure. Here, we employ satellite observations to infer seven phytoplankton groups at a global scale based on a new molecular method from Tara Oceans. The link has been established using machine learning approaches. The output of this work provides excellent tools to collect essential biodiversity variables and a foundation to monitor the evolution of marine biodiversity.
Fernand Assene, Ariane Koch-Larrouy, Isabelle Dadou, Michel Tchilibou, Guillaume Morvan, Jérôme Chanut, Alex Costa da Silva, Vincent Vantrepotte, Damien Allain, and Trung-Kien Tran
Ocean Sci., 20, 43–67, https://doi.org/10.5194/os-20-43-2024, https://doi.org/10.5194/os-20-43-2024, 2024
Short summary
Short summary
Twin simulations, with and without tides, are used to assess the impact of internal tides (ITs) on ocean temperature off the Amazon mouth at a seasonal scale. We found that in the surface layers, ITs and barotropic tides cause a cooling effect on sea surface temperature, subsequently leading to an increase in the net heat flux between the atmosphere and ocean. Vertical mixing is identified as the primary driver, followed by vertical and horizontal advection.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Alizée Dale, Marion Gehlen, Douglas W. R. Wallace, Germain Bénard, Christian Éthé, and Elena Alekseenko
EGUsphere, https://doi.org/10.5194/egusphere-2023-2538, https://doi.org/10.5194/egusphere-2023-2538, 2023
Preprint archived
Short summary
Short summary
Diatom, which is at the base of a productive food chain that supports valuable fisheries, dominates the total primary production of the Labrador Sea (LS). The synthesis of biogenic silica frustules makes them peculiar among phytoplankton but also dependent on dissolved silicate (DSi). Regular oceanographic surveys show declining DSi concentrations since the mid-1990s. With a model-based approach, we show that weakening deep winter convection was the proximate cause of DSi decline in the LS.
Inès Mangolte, Marina Lévy, Clément Haëck, and Mark D. Ohman
Biogeosciences, 20, 3273–3299, https://doi.org/10.5194/bg-20-3273-2023, https://doi.org/10.5194/bg-20-3273-2023, 2023
Short summary
Short summary
Ocean fronts are ecological hotspots, associated with higher diversity and biomass for many marine organisms, from bacteria to whales. Using in situ data from the California Current Ecosystem, we show that far from being limited to the production of diatom blooms, fronts are the scene of complex biophysical couplings between biotic interactions (growth, competition, and predation) and transport by currents that generate planktonic communities with an original taxonomic and spatial structure.
Saeed Hariri, Sabrina Speich, Bruno Blanke, and Marina Lévy
Ocean Sci., 19, 1183–1201, https://doi.org/10.5194/os-19-1183-2023, https://doi.org/10.5194/os-19-1183-2023, 2023
Short summary
Short summary
This work presents a series of studies conducted by the authors on the application of the Lagrangian approach for the connectivity analysis between different ocean locations in an idealized open-ocean model. We assess how the connectivity properties of typical oceanic flows are affected by the fine-scale circulation and discuss the challenges facing ocean connectivity estimates related to the spatial resolution. Our results are important to improve the understanding of marine ecosystems.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Katherine Hutchinson, Julie Deshayes, Christian Éthé, Clément Rousset, Casimir de Lavergne, Martin Vancoppenolle, Nicolas C. Jourdain, and Pierre Mathiot
Geosci. Model Dev., 16, 3629–3650, https://doi.org/10.5194/gmd-16-3629-2023, https://doi.org/10.5194/gmd-16-3629-2023, 2023
Short summary
Short summary
Bottom Water constitutes the lower half of the ocean’s overturning system and is primarily formed in the Weddell and Ross Sea in the Antarctic due to interactions between the atmosphere, ocean, sea ice and ice shelves. Here we use a global ocean 1° resolution model with explicit representation of the three large ice shelves important for the formation of the parent waters of Bottom Water. We find doing so reduces salt biases, improves water mass realism and gives realistic ice shelf melt rates.
Clément Haëck, Marina Lévy, Inès Mangolte, and Laurent Bopp
Biogeosciences, 20, 1741–1758, https://doi.org/10.5194/bg-20-1741-2023, https://doi.org/10.5194/bg-20-1741-2023, 2023
Short summary
Short summary
Phytoplankton vary in abundance in the ocean over large regions and with the seasons but also because of small-scale heterogeneities in surface temperature, called fronts. Here, using satellite imagery, we found that fronts enhance phytoplankton much more where it is already growing well, but despite large local increases the enhancement for the region is modest (5 %). We also found that blooms start 1 to 2 weeks earlier over fronts. These effects may have implications for ecosystems.
Stephanie Leroux, Jean-Michel Brankart, Aurélie Albert, Laurent Brodeau, Jean-Marc Molines, Quentin Jamet, Julien Le Sommer, Thierry Penduff, and Pierre Brasseur
Ocean Sci., 18, 1619–1644, https://doi.org/10.5194/os-18-1619-2022, https://doi.org/10.5194/os-18-1619-2022, 2022
Short summary
Short summary
The goal of the study is to evaluate the predictability of the ocean circulation
at a kilometric scale, in order to anticipate the requirements of the future operational forecasting systems. For that purpose, ensemble experiments have been performed with a regional model for the Western Mediterranean (at 1/60° horizontal resolution). From these ensemble experiments, we show that it is possible to compute targeted predictability scores, which depend on initial and model uncertainties.
Yona Silvy, Clément Rousset, Eric Guilyardi, Jean-Baptiste Sallée, Juliette Mignot, Christian Ethé, and Gurvan Madec
Geosci. Model Dev., 15, 7683–7713, https://doi.org/10.5194/gmd-15-7683-2022, https://doi.org/10.5194/gmd-15-7683-2022, 2022
Short summary
Short summary
A modeling framework is introduced to understand and decompose the mechanisms causing the ocean temperature, salinity and circulation to change since the pre-industrial period and into 21st century scenarios of global warming. This framework aims to look at the response to changes in the winds and in heat and freshwater exchanges at the ocean interface in global climate models, throughout the 1850–2100 period, to unravel their individual effects on the changing physical structure of the ocean.
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022, https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N fixation and its response to future climate change as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Alain de Verneil, Zouhair Lachkar, Shafer Smith, and Marina Lévy
Biogeosciences, 19, 907–929, https://doi.org/10.5194/bg-19-907-2022, https://doi.org/10.5194/bg-19-907-2022, 2022
Short summary
Short summary
The Arabian Sea is a natural CO2 source to the atmosphere, but previous work highlights discrepancies between data and models in estimating air–sea CO2 flux. In this study, we use a regional ocean model, achieve a flux closer to available data, and break down the seasonal cycles that impact it, with one result being the great importance of monsoon winds. As demonstrated in a meta-analysis, differences from data still remain, highlighting the great need for further regional data collection.
Zouhair Lachkar, Michael Mehari, Muchamad Al Azhar, Marina Lévy, and Shafer Smith
Biogeosciences, 18, 5831–5849, https://doi.org/10.5194/bg-18-5831-2021, https://doi.org/10.5194/bg-18-5831-2021, 2021
Short summary
Short summary
This study documents and quantifies a significant recent oxygen decline in the upper layers of the Arabian Sea and explores its drivers. Using a modeling approach we show that the fast local warming of sea surface is the main factor causing this oxygen drop. Concomitant summer monsoon intensification contributes to this trend, although to a lesser extent. These changes exacerbate oxygen depletion in the subsurface, threatening marine habitats and altering the local biogeochemistry.
Damien Couespel, Marina Lévy, and Laurent Bopp
Biogeosciences, 18, 4321–4349, https://doi.org/10.5194/bg-18-4321-2021, https://doi.org/10.5194/bg-18-4321-2021, 2021
Short summary
Short summary
An alarming consequence of climate change is the oceanic primary production decline projected by Earth system models. These coarse-resolution models parameterize oceanic eddies. Here, idealized simulations of global warming with increasing resolution show that the decline in primary production in the eddy-resolved simulations is half as large as in the eddy-parameterized simulations. This stems from the high sensitivity of the subsurface nutrient transport to model resolution.
Julien Jouanno, Rachid Benshila, Léo Berline, Antonin Soulié, Marie-Hélène Radenac, Guillaume Morvan, Frédéric Diaz, Julio Sheinbaum, Cristele Chevalier, Thierry Thibaut, Thomas Changeux, Frédéric Menard, Sarah Berthet, Olivier Aumont, Christian Ethé, Pierre Nabat, and Marc Mallet
Geosci. Model Dev., 14, 4069–4086, https://doi.org/10.5194/gmd-14-4069-2021, https://doi.org/10.5194/gmd-14-4069-2021, 2021
Short summary
Short summary
The tropical Atlantic has been facing a massive proliferation of Sargassum since 2011, with severe environmental and socioeconomic impacts. We developed a modeling framework based on the NEMO ocean model, which integrates transport by currents and waves, and physiology of Sargassum with varying internal nutrient quota, and considers stranding at the coast. Results demonstrate the ability of the model to reproduce and forecast the seasonal cycle and large-scale distribution of Sargassum biomass.
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA, https://doi.org/10.7289/V5C8276M,
2009. a
Arakawa, A. and Lamb, V. R.: A Potential Enstrophy and Energy Conserving Scheme
for the Shallow Water Equations, Mon. Weather Rev., 109, 18–36, 1981. a
Aumont, O., Orr, J. C., Jamous, D., Monfray, P., Marti, O., and Madec, G.: A
degradation approach to accelerate simulations to steady-state in a 3-D
tracer transport model of the global ocean, Clim. Dynam., 14, 101–116,
https://doi.org/10.1007/s003820050212, 1998. a, b
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. a
Barnier, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M., Sommer,
J. L., Beckmann, A., Biastoch, A., Boning, C., Dengg, J., Derval, C., Durand,
E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud, M., McClean,
J., and Cuevas, B. D.: Impact of partial steps and momentum advection schemes
in a global ocean circulation model at eddy-permitting resolution, Ocean Dynam., 56,
543–567, https://doi.org/10.1007/s10236-006-0082-1, 2006. a, b
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner,
J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K.,
Nelson, S., Pharaoh, A., Trimmer, R., Rosenberg, J. V., Wallace, G., and
Weatherall, P.: Global Bathymetry and Elevation Data at 30 Arc Seconds
Resolution: SRTM30_PLUS, Mar. Geod., 32, 355–371,
https://doi.org/10.1080/01490410903297766, 2009. a
Berthet, S., Séférian, R., Bricaud, C., Chevallier, M., Voldoire, A., and
Ethé, C.: Evaluation of an Online Grid-Coarsening Algorithm in a Global
Eddy-Admitting Ocean Biogeochemical Model, J. Adv. Model.
Earth Sy., 11, 1759–1783, https://doi.org/10.1029/2019MS001644,
2019. a
Blanke, B. and Delecluse, P.: Low frequency variability of the tropical
Atlantic ocean simulated by a general circulation model with mixed layer
physics, J. Phys. Oceanogr., 23, 1363–1388, 1993. a
Bricaud, C.: NEMO v3.6, available at: https://forge.ipsl.jussieu.fr/nemo/browser/NEMO/branches/2018/dev_r5003_MERCATOR6_CRS, last access: 26 October 2018). a
Bricaud, C.: Model outputs for ”Multi-grid algorithm for passive tracer transport in NEMO ocean circulation model” (Version V0) [Data set], Zenodo,
https://doi.org/10.5281/zenodo.3547421, 2019. a
Bricaud, C.:
Code, scripts and input files for ”Multi-grid algorithm for passive tracer transport in NEMO ocean
circulation model: a case study with NEMO OGCM (version 3.6)” paper, Zenodo, https://doi.org/10.5281/zenodo.3615356, 2020. a
Cabré, A., Marinov, I., and Leung, S.: Consistent global responses of marine
ecosystems to future climate change across the IPCC AR5 earth system models,
Clim. Dynam., 45, 1253–1280,
https://doi.org/10.1007/s00382-014-2374-3, 2015. a
Chassignet, E. P., Le Sommer, J., and Wallcraft, A. J.: General circulation models, in: Encyclopedia of Ocean Sciences,
3rd edn., edited by: Cochran, K. J., Bokuniewicz, H. J., and Yager, P. L. , 5, 486–490, https://doi.org/10.1016/B978-0-12-409548-9.11410-1, 2019. a
Cravatte, S., Madec, G., Izumo, T., Menkes, C., and Bozec, A.: Progress in the
3-D circulation of the eastern equatorial Pacific in a climate ocean model,
Oceanogr. Meteorol., 17, 28–48, 2007. a
Dai, A. and Trenberth, K. E.: Estimates of Freshwater Discharge from
Continents: Latitudinal and Seasonal Variations, J. Hydrometeorol.,
3, 660–687, https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2,
2002. a
Debreu, L., Vouland, C., and Blayo, E.: AGRIF: Adaptive grid refinement in
Fortran, Comput. Geosci., 34, 8–13,
https://doi.org/10.1016/j.cageo.2007.01.009,
2008. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Doney, S. C. and Glover, D. M.: Modeling of Ocean Carbon SystemI, edited by: Cochran, J. K., Bokuniewicz, H. J.,
and Yager, P. L., Encyclopedia of Ocean Sciences (Third Edition), Academic Press, 2019, 291-302,
https://doi.org/10.1016/B978-0-12-409548-9.11431-9, 2019. a
d'Ovidio, F., Della Penna, A., Trull, T. W., Nencioli, F., Pujol, M.-I., Rio, M.-H., Park, Y.-H., Cotté, C., Zhou, M., and Blain, S.: The biogeochemical structuring role of horizontal stirring: Lagrangian perspectives on iron delivery downstream of the Kerguelen Plateau, Biogeosciences, 12, 5567–5581, https://doi.org/10.5194/bg-12-5567-2015, 2015. a
Dufour, C. O., Sommer, J. L., Gehlen, M., Orr, J. C., Molines, J.-M., Simeon,
J., and Barnier, B.: Eddy compensation and controls of the enhanced
sea-to-air CO2 flux during positive phases of the Southern Annular Mode,
Global Biogeochem. Cy., 27, 950–961, https://doi.org/10.1002/gbc.20090,
2013. a
Fennel, K., Gehlen, M., Brasseur, P., Brown, C. W., Ciavatta, S., Cossarini,
G., Crise, A., Edwards, C. A., Ford, D., Friedrichs, M. A. M., Gregoire, M.,
Jones, E., Kim, H., Lamouroux, J., Murtugudde, R., Perruche, C., the GODAE
OceanView Marine Ecosystem Analysis, and Team, P. T.: Advancing Marine
Biogeochemical and Ecosystem Reanalyses and Forecasts as Tools for Monitoring
and Managing Ecosystem Health, Front. Mar. Sci., 6, 89,
https://doi.org/10.3389/fmars.2019.00089, 2019. a
Ford, D., Key, S., McEwan, R., Totterdell, I., and Gehlen, M.: Marine
Biogeochemical Modelling and Data Assimilation for Operational Forecasting,
Reanalysis, and Climate Research, New Frontiers In Operational Oceanography, https://doi.org/10.17125/gov2018.ch22,
2018. a
Gruber, N. and Doney, S. C.: Modeling of Ocean Biogeochemistry and Ecology, edited by: Cochran, J. K., Bokuniewicz, H. J., and
Yager, P. L., Encyclopedia of Ocean Sciences, Third Edition, Academic Press, 547–560, https://doi.org/10.1016/B978-0-12-409548-9.11409-5, 2019. a
Hewitt, H. T., Bell, M. J., Chassignet, E. P., Czaja, A., Ferreira, D.,
Griffies, S. M., Hyder, P., McClean, J. L., New, A. L., and Roberts, M. J.:
Will high-resolution global ocean models benefit coupled predictions on
short-range to climate timescales?, Ocean Model., 120, 120–136,
https://doi.org/10.1016/j.ocemod.2017.11.002,
2017. a
Kvale, K. F., Khatiwala, S., Dietze, H., Kriest, I., and Oschlies, A.: Evaluation of the transport matrix method for simulation of ocean biogeochemical tracers, Geosci. Model Dev., 10, 2425–2445, https://doi.org/10.5194/gmd-10-2425-2017, 2017. a
Large, W. G. and Yeager, S. G.: The global climatology of an in-terannually varying air-sea flux data set, Clim. Dynam., 33,
341–364, https://doi.org/10.1007/s00382-008-0441-3, 2009. a
Leclair, M. and Madec, G.: A conservative leapfrog time stepping method, Ocean
Model., 30, 88–94, https://doi.org/10.1016/j.ocemod.2009.06.006,
2009. a
Levier, B., Tréguier, A.-M., Madec, G., and Garnier, V.: Free surface and variable volume in the NEMO
310 code. Tech. rep., MERSEA IP report WP09-CNRS-STR-03-1A, 47 pp., https://doi.org/10.5281/zenodo.3244182, 2007. a
Lévy, M., Estubier, A., and Madec, G.: Choice of an advection scheme for
biogeochemical models, Geophys. Res. Lett., 28, 3725–3728, https://doi.org/10.1029/2001GL012947, 2001. a
Lévy, M., Resplandy, L., Klein, P., Capet, X., Iovino, D., and Ethé, C.: Grid
degradation of submesoscale resolving ocean models: Benefits for offline
passive tracer transport, Ocean Model., 48, 1–9,
https://doi.org/10.1016/j.ocemod.2012.02.004,
2012. a, b
Lévy, M., Franks, P. J., and Smith, K. S.: The role of submesoscale currents
in structuring marine ecosystems, Nat. Commun., 9, 4758,
https://doi.org/10.1038/s41467-018-07059-3, 2018. a
Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud, C., Bruciaferri, D., Calvert, D., Chanut, J., Clementi, E., Coward,
A., Delrosso, D., Ethé, C., Flavoni, S., Graham, T., Harle, J., Iovino, D., Lea, D., Lévy, C., Lovato, T., Martin, N., Masson, S.,
Mocavero, S., Paul, J., Rousset, C., Storkey, D., Storto, A., and Vancoppenolle, M.: NEMO ocean engine (Version v3.6), Notes Du Pôle De Modélisation De L'institut
Pierre-simon Laplace (IPSL), Zenodo, https://doi.org/10.5281/zenodo.1472492, 2017. a, b, c, d, e
Madec, G. and Imbard, M.: A global ocean mesh to overcome the North Pole singularity, Clim. Dynam., 12, 381–388,
https://doi.org/10.1007/BF00211684, 1996. a
Maraldi, C., Chanut, J., Levier, B., Ayoub, N., De Mey, P., Reffray, G., Lyard, F., Cailleau, S., Drévillon, M., Fanjul, E. A., Sotillo, M. G., Marsaleix, P., and the Mercator Research and Development Team: NEMO on the shelf: assessment of the Iberia–Biscay–Ireland configuration, Ocean Sci., 9, 745–771, https://doi.org/10.5194/os-9-745-2013, 2013. a
NEMO System Team: NEMO OGCM website, available at: https://www.nemo-ocean.eu/, last access: 31 October 2020. a
Perruche, C., Hameau, A., Paul, J., Régnier, C., and Drévillon, M.: QUALITY
INFORMATION DOCUMENT For Global Biogeochemical Analysis and Forecast Product, available at:
http://cmems-resources.cls.fr/documents/QUID/CMEMS-GLO-QUID-001-014.pdf (last access: 15 September 2016),
2016. a
Reffray, G., Bourdalle-Badie, R., and Calone, C.: Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO, Geosci. Model Dev., 8, 69–86, https://doi.org/10.5194/gmd-8-69-2015, 2015. a
Resplandy, L., Lévy, M., and McGillicuddy Jr., D. J.: Effects of Eddy-Driven
Subduction on Ocean Biological Carbon Pump, Global Biogeoch. Cy., 33,
1071–1084, https://doi.org/10.1029/2018GB006125,
2019. a
Rickard, G. J., Behrens, E., and Chiswell, S. M.: CMIP5 earth system models
with biogeochemistry: An assessment for the southwest Pacific Ocean, J.
Geophys. Res.-Oceans, 121, 7857–7879, https://doi.org/10.1002/2016JC011736,
2016. a
Rousset, C., Vancoppenolle, M., Madec, G., Fichefet, T., Flavoni, S., Barthélemy, A., Benshila, R., Chanut, J., Levy, C., Masson, S., and Vivier, F.: The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities, Geosci. Model Dev., 8, 2991–3005, https://doi.org/10.5194/gmd-8-2991-2015, 2015. a
Séférian, R., Gehlen, M., Bopp, L., Resplandy, L., Orr, J. C., Marti, O., Dunne, J. P., Christian, J. R., Doney, S. C., Ilyina, T., Lindsay, K., Halloran, P. R., Heinze, C., Segschneider, J., Tjiputra, J., Aumont, O., and Romanou, A.: Inconsistent strategies to spin up models in CMIP5: implications for ocean biogeochemical model performance assessment, Geosci. Model Dev., 9, 1827–1851, https://doi.org/10.5194/gmd-9-1827-2016, 2016. a
Skamarock, W. C.: Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra,
Mon. Weather Rev., 132, 3019–3032, https://doi.org/10.1175/MWR2830.1,
2004. a
Soufflet, Y., Marchesiello, P., Lemarié, F., Jouanno, J., Capet, X., Debreu,
L., and Benshila, R.: On effective resolution in ocean models, Ocean
Model., 98, 36–50, https://doi.org/10.1016/j.ocemod.2015.12.004,
2016. a
Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., and
Maqueda, M. A. M.: Simulating the mass balance and salinity of Arctic and
Antarctic sea ice. 1. Model description and validation, Oceanogr. Meteorol.,
27, 33–53, https://doi.org/10.1016/j.ocemod.2008.10.005, 2009.
a
Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B., Cassou,
C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M.,
Déqué, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G.,
Maisonnave, E., Moine, M.-P., Planton, S., Saint-Martin, D., Szopa, S.,
Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L., and Chauvin,
F.: The CNRM-CM5.1 global climate model: description and basic evaluation,
Clim. Dynam., 40, 2091–2121, https://doi.org/10.1007/s00382-011-1259-y,
2013. a
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A.,
Chevallier, M., Colin, J., Guérémy, J.-F., Michou, M., Moine, M.-P., Nabat,
P., Roehrig, R., Salas y Mélia, D., Séférian, R., Valcke, S., Beau, I.,
Belamari, S., Berthet, S., Cassou, C., Cattiaux, J., Deshayes, J., Douville,
H., Ethé, C., Franchistéguy, L., Geoffroy, O., Lévy, C., Madec, G.,
Meurdesoif, Y., Msadek, R., Ribes, A., Sanchez-Gomez, E., Terray, L., and
Waldman, R.: Evaluation of CMIP6 DECK Experiments With CNRM-CM6-1, J.
Adv. Model. Earth Sy., 11, 2177–2213,
https://doi.org/10.1029/2019MS001683,
2019. a
Ward, B. A., Dutkiewicz, S., Jahn, O., and Follows, M. J.: A size-structured
food-web model for the global ocean, Limnol. Oceanogr., 57,
1877–1891, https://doi.org/10.4319/lo.2012.57.6.1877,
2012. a
Short summary
In order to reduce the cost of ocean biogeochemical models, a multi-grid approach where ocean dynamics and tracer transport are computed with different spatial resolution has been developed in the NEMO v3.6 OGCM. Different experiments confirm that the spatial resolution of hydrodynamical fields can be coarsened without significantly affecting the resolved passive tracer fields. This approach leads to a factor of 7 reduction of the overhead associated with running a full biogeochemical model.
In order to reduce the cost of ocean biogeochemical models, a multi-grid approach where ocean...
Special issue