Articles | Volume 13, issue 7
https://doi.org/10.5194/gmd-13-3347-2020
https://doi.org/10.5194/gmd-13-3347-2020
Development and technical paper
 | 
30 Jul 2020
Development and technical paper |  | 30 Jul 2020

Representation of the Denmark Strait overflow in a z-coordinate eddying configuration of the NEMO (v3.6) ocean model: resolution and parameter impacts

Pedro Colombo, Bernard Barnier, Thierry Penduff, Jérôme Chanut, Julie Deshayes, Jean-Marc Molines, Julien Le Sommer, Polina Verezemskaya, Sergey Gulev, and Anne-Marie Treguier

Related authors

Quantifying Variability in Lagrangian Particle Dispersal in Ocean Ensemble Simulations: an Information Theory Approach
Claudio M. Pierard, Siren Rühs, Laura Gómez-Navarro, Michael C. Denes, Florian Meirer, Thierry Penduff, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3847,https://doi.org/10.5194/egusphere-2024-3847, 2024
Short summary
North Atlantic Subtropical Mode Water properties: intrinsic and atmospherically forced interannual variability
Olivier Narinc, Thierry Penduff, Guillaume Maze, Stéphanie Leroux, and Jean-Marc Molines
Ocean Sci., 20, 1351–1365, https://doi.org/10.5194/os-20-1351-2024,https://doi.org/10.5194/os-20-1351-2024, 2024
Short summary
Chaotic oceanic excitation of low-frequency polar motion variability
Lara Börger, Michael Schindelegger, Mengnan Zhao, Rui M. Ponte, Anno Löcher, Bernd Uebbing, Jean-Marc Molines, and Thierry Penduff
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-21,https://doi.org/10.5194/esd-2024-21, 2024
Revised manuscript accepted for ESD
Short summary
Impact of increased resolution on Arctic Ocean simulations in Ocean Model Intercomparison Project phase 2 (OMIP-2)
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024,https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
The mixed-layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023,https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary

Related subject area

Oceanography
DalROMS-NWA12 v1.0, a coupled circulation–ice–biogeochemistry modelling system for the northwest Atlantic Ocean: development and validation
Kyoko Ohashi, Arnaud Laurent, Christoph Renkl, Jinyu Sheng, Katja Fennel, and Eric Oliver
Geosci. Model Dev., 17, 8697–8733, https://doi.org/10.5194/gmd-17-8697-2024,https://doi.org/10.5194/gmd-17-8697-2024, 2024
Short summary
A revised ocean mixed layer model for better simulating the diurnal variation in ocean skin temperature
Eui-Jong Kang, Byung-Ju Sohn, Sang-Woo Kim, Wonho Kim, Young-Cheol Kwon, Seung-Bum Kim, Hyoung-Wook Chun, and Chao Liu
Geosci. Model Dev., 17, 8553–8568, https://doi.org/10.5194/gmd-17-8553-2024,https://doi.org/10.5194/gmd-17-8553-2024, 2024
Short summary
Evaluating an accelerated forcing approach for improving computational efficiency in coupled ice sheet–ocean modelling
Qin Zhou, Chen Zhao, Rupert Gladstone, Tore Hattermann, David Gwyther, and Benjamin Galton-Fenzi
Geosci. Model Dev., 17, 8243–8265, https://doi.org/10.5194/gmd-17-8243-2024,https://doi.org/10.5194/gmd-17-8243-2024, 2024
Short summary
An optimal transformation method for inferring ocean tracer sources and sinks
Jan D. Zika and Taimoor Sohail
Geosci. Model Dev., 17, 8049–8068, https://doi.org/10.5194/gmd-17-8049-2024,https://doi.org/10.5194/gmd-17-8049-2024, 2024
Short summary
PPCon 1.0: Biogeochemical-Argo profile prediction with 1D convolutional networks
Gloria Pietropolli, Luca Manzoni, and Gianpiero Cossarini
Geosci. Model Dev., 17, 7347–7364, https://doi.org/10.5194/gmd-17-7347-2024,https://doi.org/10.5194/gmd-17-7347-2024, 2024
Short summary

Cited articles

Almansi, M., Haine, T., Pickart, R. S., Magaldi, M., Gelderloos, R., and Mastropole, D.: High-Frequency Variability in the Circulation and Hydrography of the Denmark Strait Overflow from a High-Resolution Numerical Mode, J. Phys. Oceanogr., 47, 2999–3013, https://doi.org/10.1175/JPO-D-17-0129.1, 2017. a, b
Baines, P. G., and Condie, S. A.: Observations and modelling of Antarctic downslope flows: A review, in: Ocean, Ice and Atmosphere: Interactions at the Antarctic Continental Margin, edited by: Jacobs, S. and Weiss, R., Amer. Geophys. Union, 75, 29–49, 1998. a
Baringer, M. O. and Price, J. F.: Mixing and Spreading of the Mediterranean Outflow, J. Phys. Oceanogr., 27, 1654–1677, 1997. a
Barnier, B., Madec, G., Penduff, T., Molines, J., Treguier, A., Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C. W., Dengg, J., Derval, C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud, M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution, Ocean Dynam., 56, 543–567, 2006. a, b
Barnier, B., Domina, A., Gulev, S., Molines, J.-M., Maitre, T., Penduff, T., Le Sommer, J., Brasseur, P., Brodeau, L., and Colombo, P.: Modelling the impact of flow-driven turbine power plants on great wind-driven ocean currents and the assessment of their energy potential, Nat. Energy, 5, 240–249, https://doi.org/10.1038/s41560-020-0580-2, 2020. a
Download
Short summary
In the ocean circulation model NEMO, the representation of the overflow of dense Arctic waters through the Denmark Strait is investigated. In this z-coordinate context, sensitivity tests show that the mixing parameterizations preferably act along the model grid slope. Thus, the representation of the overflow is more sensitive to resolution than to parameterization and is best when the numerical grid matches the local topographic slope.