Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
GMD | Articles | Volume 12, issue 11
Geosci. Model Dev., 12, 4627–4659, 2019
https://doi.org/10.5194/gmd-12-4627-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 4627–4659, 2019
https://doi.org/10.5194/gmd-12-4627-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model description paper 07 Nov 2019

Model description paper | 07 Nov 2019

Description and evaluation of the tropospheric aerosol scheme in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS-AER, cycle 45R1)

Samuel Rémy et al.

Related authors

An aerosol climatology for global models based on the tropospheric aerosol scheme in the Integrated Forecasting System of ECMWF
Alessio Bozzo, Angela Benedetti, Johannes Flemming, Zak Kipling, and Samuel Rémy
Geosci. Model Dev., 13, 1007–1034, https://doi.org/10.5194/gmd-13-1007-2020,https://doi.org/10.5194/gmd-13-1007-2020, 2020
Short summary
The CAMS reanalysis of atmospheric composition
Antje Inness, Melanie Ades, Anna Agustí-Panareda, Jérôme Barré, Anna Benedictow, Anne-Marlene Blechschmidt, Juan Jose Dominguez, Richard Engelen, Henk Eskes, Johannes Flemming, Vincent Huijnen, Luke Jones, Zak Kipling, Sebastien Massart, Mark Parrington, Vincent-Henri Peuch, Miha Razinger, Samuel Remy, Michael Schulz, and Martin Suttie
Atmos. Chem. Phys., 19, 3515–3556, https://doi.org/10.5194/acp-19-3515-2019,https://doi.org/10.5194/acp-19-3515-2019, 2019
Short summary
Status and future of numerical atmospheric aerosol prediction with a focus on data requirements
Angela Benedetti, Jeffrey S. Reid, Peter Knippertz, John H. Marsham, Francesca Di Giuseppe, Samuel Rémy, Sara Basart, Olivier Boucher, Ian M. Brooks, Laurent Menut, Lucia Mona, Paolo Laj, Gelsomina Pappalardo, Alfred Wiedensohler, Alexander Baklanov, Malcolm Brooks, Peter R. Colarco, Emilio Cuevas, Arlindo da Silva, Jeronimo Escribano, Johannes Flemming, Nicolas Huneeus, Oriol Jorba, Stelios Kazadzis, Stefan Kinne, Thomas Popp, Patricia K. Quinn, Thomas T. Sekiyama, Taichu Tanaka, and Enric Terradellas
Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018,https://doi.org/10.5194/acp-18-10615-2018, 2018
Short summary
Using the Fire Weather Index (FWI) to improve the estimation of fire emissions from fire radiative power (FRP) observations
Francesca Di Giuseppe, Samuel Rémy, Florian Pappenberger, and Fredrik Wetterhall
Atmos. Chem. Phys., 18, 5359–5370, https://doi.org/10.5194/acp-18-5359-2018,https://doi.org/10.5194/acp-18-5359-2018, 2018
Short summary
Profiling of Saharan dust from the Caribbean to western Africa – Part 2: Shipborne lidar measurements versus forecasts
Albert Ansmann, Franziska Rittmeister, Ronny Engelmann, Sara Basart, Oriol Jorba, Christos Spyrou, Samuel Remy, Annett Skupin, Holger Baars, Patric Seifert, Fabian Senf, and Thomas Kanitz
Atmos. Chem. Phys., 17, 14987–15006, https://doi.org/10.5194/acp-17-14987-2017,https://doi.org/10.5194/acp-17-14987-2017, 2017

Related subject area

Atmospheric Sciences
Image-processing-based atmospheric river tracking method version 1 (IPART-1)
Guangzhi Xu, Xiaohui Ma, Ping Chang, and Lin Wang
Geosci. Model Dev., 13, 4639–4662, https://doi.org/10.5194/gmd-13-4639-2020,https://doi.org/10.5194/gmd-13-4639-2020, 2020
Short summary
Simulating the forest fire plume dispersion, chemistry, and aerosol formation using SAM-ASP version 1.0
Chantelle R. Lonsdale, Matthew J. Alvarado, Anna L. Hodshire, Emily Ramnarine, and Jeffrey R. Pierce
Geosci. Model Dev., 13, 4579–4593, https://doi.org/10.5194/gmd-13-4579-2020,https://doi.org/10.5194/gmd-13-4579-2020, 2020
Short summary
A mass- and energy-conserving framework for using machine learning to speed computations: a photochemistry example
Patrick Obin Sturm and Anthony S. Wexler
Geosci. Model Dev., 13, 4435–4442, https://doi.org/10.5194/gmd-13-4435-2020,https://doi.org/10.5194/gmd-13-4435-2020, 2020
Short summary
The urban dispersion model EPISODE v10.0 – Part 1: An Eulerian and sub-grid-scale air quality model and its application in Nordic winter conditions
Paul D. Hamer, Sam-Erik Walker, Gabriela Sousa-Santos, Matthias Vogt, Dam Vo-Thanh, Susana Lopez-Aparicio, Philipp Schneider, Martin O. P. Ramacher, and Matthias Karl
Geosci. Model Dev., 13, 4323–4353, https://doi.org/10.5194/gmd-13-4323-2020,https://doi.org/10.5194/gmd-13-4323-2020, 2020
Short summary
Can machine learning improve the model representation of turbulent kinetic energy dissipation rate in the boundary layer for complex terrain?
Nicola Bodini, Julie K. Lundquist, and Mike Optis
Geosci. Model Dev., 13, 4271–4285, https://doi.org/10.5194/gmd-13-4271-2020,https://doi.org/10.5194/gmd-13-4271-2020, 2020
Short summary

Cited articles

Agustí-Panareda, A., Massart, S., Chevallier, F., Boussetta, S., Balsamo, G., Beljaars, A., Ciais, P., Deutscher, N. M., Engelen, R., Jones, L., Kivi, R., Paris, J.-D., Peuch, V.-H., Sherlock, V., Vermeulen, A. T., Wennberg, P. O., and Wunch, D.: Forecasting global atmospheric CO2, Atmos. Chem. Phys., 14, 11959–11983, https://doi.org/10.5194/acp-14-11959-2014, 2014. a
Agusti-Panareda, A., Diamantakis, M., Bayona, V., Klappenbach, F., and Butz, A.: Improving the inter-hemispheric gradient of total column atmospheric CO2 and CH4 in simulations with the ECMWF semi-Lagrangian atmospheric global model, Geosci. Model Dev., 10, 1–18, https://doi.org/10.5194/gmd-10-1-2017, 2017. a
Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U., Kurganskiy, A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos, N., Rao, S. T., Savage, N., Seigneur, C., Sokhi, R. S., Solazzo, E., Solomos, S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., and Zhang, Y.: Online coupled regional meteorology chemistry models in Europe: current status and prospects, Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, 2014. a
Bechtold, P. and Bidlot, J.-R.: Parametrization of convective gusts, ECMWF newsletter, 119, 15–18, 2009. a
Bechtold, P., Semane, N., Lopez, P., Chaboureau, J.-P., Beljaars, A., and Bormann, N.: Representing Equilibrium and nonequilibrium convection in large-scale models, J. Atmos. Sci., 71, 734–753, 2014. a
Publications Copernicus
Download
Short summary
This article describes the IFS-AER aerosol module used operationally in the Integrated Forecasting System (IFS) cycle 45R1, operated by the ECMWF in the framework of the Copernicus Atmospheric Monitoring Services (CAMS). We describe the different parameterizations for aerosol sources, sinks, and how the aerosols are integrated in the larger atmospheric composition forecasting system. The skill of PM and AOD simulations against observations is improved compared to the older cycle 40R2.
This article describes the IFS-AER aerosol module used operationally in the Integrated...
Citation