Articles | Volume 12, issue 8
Geosci. Model Dev., 12, 3419–3438, 2019
https://doi.org/10.5194/gmd-12-3419-2019
Geosci. Model Dev., 12, 3419–3438, 2019
https://doi.org/10.5194/gmd-12-3419-2019
Model evaluation paper
05 Aug 2019
Model evaluation paper | 05 Aug 2019

Climate projections of a multivariate heat stress index: the role of downscaling and bias correction

Ana Casanueva et al.

Related authors

Statistical downscaling with the downscaleR package (v3.1.0): contribution to the VALUE intercomparison experiment
Joaquín Bedia, Jorge Baño-Medina, Mikel N. Legasa, Maialen Iturbide, Rodrigo Manzanas, Sixto Herrera, Ana Casanueva, Daniel San-Martín, Antonio S. Cofiño, and José Manuel Gutiérrez
Geosci. Model Dev., 13, 1711–1735, https://doi.org/10.5194/gmd-13-1711-2020,https://doi.org/10.5194/gmd-13-1711-2020, 2020
Short summary
Evaluation and projection of daily temperature percentiles from statistical and dynamical downscaling methods
A. Casanueva, S. Herrera, J. Fernández, M. D. Frías, and J. M. Gutiérrez
Nat. Hazards Earth Syst. Sci., 13, 2089–2099, https://doi.org/10.5194/nhess-13-2089-2013,https://doi.org/10.5194/nhess-13-2089-2013, 2013

Related subject area

Climate and Earth system modeling
Added value of EURO-CORDEX high-resolution downscaling over the Iberian Peninsula revisited – Part 1: Precipitation
João António Martins Careto, Pedro Miguel Matos Soares, Rita Margarida Cardoso, Sixto Herrera, and José Manuel Gutiérrez
Geosci. Model Dev., 15, 2635–2652, https://doi.org/10.5194/gmd-15-2635-2022,https://doi.org/10.5194/gmd-15-2635-2022, 2022
Short summary
Added value of EURO-CORDEX high-resolution downscaling over the Iberian Peninsula revisited – Part 2: Max and min temperature
João António Martins Careto, Pedro Miguel Matos Soares, Rita Margarida Cardoso, Sixto Herrera, and José Manuel Gutiérrez
Geosci. Model Dev., 15, 2653–2671, https://doi.org/10.5194/gmd-15-2653-2022,https://doi.org/10.5194/gmd-15-2653-2022, 2022
Short summary
Constraining a land cover map with satellite-based aboveground biomass estimates over Africa
Guillaume Marie, B. Sebastiaan Luyssaert, Cecile Dardel, Thuy Le Toan, Alexandre Bouvet, Stéphane Mermoz, Ludovic Villard, Vladislav Bastrikov, and Philippe Peylin
Geosci. Model Dev., 15, 2599–2617, https://doi.org/10.5194/gmd-15-2599-2022,https://doi.org/10.5194/gmd-15-2599-2022, 2022
Short summary
Analysing the PMIP4-CMIP6 collection: a workflow and tool (pmip_p2fvar_analyzer v1)
Anni Zhao, Chris M. Brierley, Zhiyi Jiang, Rachel Eyles, Damián Oyarzún, and Jose Gomez-Dans
Geosci. Model Dev., 15, 2475–2488, https://doi.org/10.5194/gmd-15-2475-2022,https://doi.org/10.5194/gmd-15-2475-2022, 2022
Short summary
Impacts of a revised surface roughness parameterization in the Community Land Model 5.1
Ronny Meier, Edouard L. Davin, Gordon B. Bonan, David M. Lawrence, Xiaolong Hu, Gregory Duveiller, Catherine Prigent, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2365–2393, https://doi.org/10.5194/gmd-15-2365-2022,https://doi.org/10.5194/gmd-15-2365-2022, 2022
Short summary

Cited articles

Bedia, J., Gutiérrez, J. M., Herrera, S., Iturbide, M., and Manzanas, R.: downscaleR: An R package for bias correction and statistical downscaling. R package version 2.0.4, available at: https://github.com/SantanderMetGroup/downscaleR (last access: 2 August 2019), 2017. 
Bernard, T. E. and Pourmoghani, M.: Prediction of Workplace Wet Bulb Global Temperature, Applied Occupational and Environmental Hygiene, 14, 126–134, 1999. 
Casanueva, A.: HeatStress, Zenodo, https://doi.org/10.5281/zenodo.3264930, 2019a. 
Casanueva, A.: plotFun, Zenodo, https://doi.org/10.5281/zenodo.3265025, 2019b. 
Casanueva, A., Kotlarski, S., Herrera, S., Fernández, J., Gutiérrez, J. M., Boberg, F., Colette, A., Christensen, O. B., Goergen, K., Jacob, D., Keuler, K., Nikulin, G., Teichmann, C., and Vautard, R.: Daily precipitation statistics in a EURO-CORDEX RCM ensemble: added value of raw and bias-corrected high-resolution simulations, Clim. Dynam., 47, 719–737, 2016. 
Download
Short summary
Given the large number of available data sets and products currently produced for climate impact studies, it is challenging to distil the most accurate and useful information for climate services. This work presents a comparison of methods widely used to generate climate projections, from different sources and at different spatial resolutions, in order to assess the role of downscaling and statistical post-processing (bias correction).