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Abstract. Along with the higher demand for bias-corrected
data for climate impact studies, the number of available
data sets has largely increased in recent years. For instance,
the Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP) constitutes a framework for consistently project-
ing the impacts of climate change across affected sectors and
spatial scales. These data are very attractive for any impact
application since they offer worldwide bias-corrected data
based on global climate models (GCMs). In a complemen-
tary way, the CORDEX initiative has incorporated experi-
ments based on regionally downscaled bias-corrected data by
means of debiasing and quantile mapping (QM) methods. In
light of this situation, it is challenging to distil the most ac-
curate and useful information for climate services, but at the
same time it creates a perfect framework for intercomparison
and sensitivity analyses.

In the present study, the trend-preserving ISIMIP method
and empirical QM are applied to climate model simula-
tions that were carried out at different spatial resolutions
(CMIP5 GCM and EURO-CORDEX regional climate mod-
els (RCMs), at approximately 150, 50 and 12 km horizontal
resolution) in order to assess the role of downscaling and bias
correction in a multivariate framework. The analysis is car-
ried out for the wet-bulb globe temperature (WBGT), a heat
stress index that is commonly used in the context of work-
ing people and labour productivity. WBGT for shaded condi-
tions depends on air temperature and dew-point temperature,
which in this work are individually bias corrected prior to

the index calculation. Our results show that the added value
of RCMs with respect to the driving GCM is limited after
bias correction. The two bias correction methods are able to
adjust the central part of the WBGT distribution, but some
added value of QM is found in WBGT percentiles and in the
inter-variable relationships. The evaluation in present climate
of such multivariate indices should be performed with cau-
tion since biases in the individual variables might compen-
sate, thus leading to better performance for the wrong rea-
son. Climate change projections of WBGT reveal a larger in-
crease in summer mean heat stress for the GCM than for the
RCMs, related to the well-known reduced summer warming
of the EURO-CORDEX RCMs. These differences are low-
ered after QM, since this bias correction method modifies
the change signals and brings the results for the GCM and
RCMs closer to each other. We also highlight the need for
large ensembles of simulations to assess the feasibility of the
derived projections.

1 Introduction

In the last years the amount of available climate projec-
tion data has largely increased thanks to the development
of intercomparison projects (Coupled Model Intercompari-
son Project – CMIP, Taylor et al., 2011; Inter-Sectoral Impact
Model Intercomparison Project – ISIMIP, Warszawski et al.,
2014) and other initiatives (CORDEX; Giorgi et al., 2009;

Published by Copernicus Publications on behalf of the European Geosciences Union.



3420 A. Casanueva et al.: Climate projections of a multivariate heat stress index

Jones et al., 2011; CORDEX-Adjust). Due to this, there have
been many efforts towards the distillation of climate data into
usable climate information (Hewitson et al., 2014; Fernán-
dez et al., 2018). This is largely hampered by the large enve-
lope of uncertainty, which grows in the subsequent steps in
the production of climate information, the so-called “uncer-
tainty cascade” (Wilby and Dessai, 2010). In this work we
assess the role of downscaling and bias correction as key el-
ements in the development of climate information. For this
purpose, we intercompare climate change projections of heat
stress in Europe coming from different data sources, at dif-
ferent spatial resolution and corrected with two different bias
correction methods, in order to identify the major sources of
uncertainty in terms of present and future climate.

Global climate models (GCMs) are able to reproduce the
main features of the climate system and are commonly used
to examine changes in climate on a global scale (Taylor et
al., 2011). Despite recent improvements, systematic biases
remain and the model resolution is still too coarse to ade-
quately describe mesoscale processes (Giorgi and Mearns,
1991). Regional climate models (RCMs) are frequently used
to bridge the gap between the GCM and the regional to local
scales (Giorgi, 2006; Feser et al., 2011). They solve the gov-
erning equations of the climate system in a limited spatial
domain using initial and boundary conditions from GCMs
(reanalysis for model evaluation experiments). Despite the
increased horizontal resolution, RCMs, similar to GCMs, in-
clude physical parameterisations for subgrid processes which
occur at spatial scales smaller than the model grid spacing
(microphysics, convection, radiation, etc.). RCMs add valu-
able information with respect to their driving GCM due to
more detailed spatial patterns and the better representation of
local processes, e.g. high precipitation frequencies (see e.g.
Maraun et al., 2010; Warrach-Sagi et al., 2013). However,
both GCMs and RCMs are prone to systematic biases and
some sort of bias adjustment or correction is typically needed
before they are used in impact modelling (Christensen et al.,
2008; Hagemann et al., 2011). Bias correction (BC) meth-
ods typically adjust some features of the model distribution
(e.g. the mean or percentiles) towards the observed counter-
parts, partly removing systematic errors in the model out-
put. However, the added value of bias-corrected RCM simu-
lations with respect to the bias-corrected GCM counterparts
remains unclear. The same question applies for the difference
between bias-corrected high-resolution RCM simulations (at
approximately 12 km) and the coarser counterparts (at ap-
proximately 50 km). For the latter, Casanueva et al. (2016)
showed that the added value (in terms of mean, percentiles
and precipitation frequency) is not statistically significant af-
ter applying simple (scaling) bias correction methods.

Many BC methods with different characteristics have been
described in the literature (Maraun et al., 2010; Piani et al.,
2010; Gutiérrez et al., 2019): empirical or parametric meth-
ods, variable-specific (e.g. assuming a certain distribution) or
nonspecific methods, multivariate or univariate methods, and

seamless or for specific time horizons (e.g. the correction of
ensemble spread in monthly–seasonal forecasts). All of them
consist of a training phase (in which the correction function
is calibrated) and an application phase under different condi-
tions. Note that the correction functions (calibrated in present
climate) are assumed to be invariant on time (stationarity as-
sumption). Moreover, in a climate change context, the way
the correction is applied in future climate might affect the
climate change signal.

A specific bias correction method was developed in the
framework of the ISIMIP initiative (Warszawski et al., 2014).
This project attempted to offer a consistent framework for
cross-sectoral, cross-scale modelling of the impacts of cli-
mate change in order to ease the application of climate model
data and meet user-specific needs. The ISIMIP method
(Hempel et al., 2013; ISIMIP2b, Frieler et al., 2017) was
applied to several GCMs from CMIP5 (the Coupled Model
Intercomparison Project Phase 5; Taylor et al., 2011). The
ready-to-use, bias-corrected data have been used to produce
impact model simulations for different sectors such as agri-
culture, biomes, forests and fisheries permafrost, as well as
to derive climate impact indices, including heat stress (Kjell-
strom et al., 2018).

Among other BC methods, empirical quantile mapping
stands out as one of the most widely used methods. Despite
its limitations and shortcomings (Maraun et al., 2017; Lan-
zante et al., 2018), it is one of the best-performing bias cor-
rection and statistical downscaling methods in evaluation ex-
periments (Gutiérrez et al., 2019; Hertig et al., 2019). One
reason for this might be that it is often favoured by the eval-
uation metrics – commonly based on moments of the prob-
ability density function – considered in intercomparison ex-
periments. Quantile mapping is, by construction, able to cor-
rect for intensity-dependent biases (i.e. biases that change
throughout the distribution; Gobiet et al., 2015). As a conse-
quence, it can modify the raw model climate change signal,
which might be debatable (Gobiet et al., 2015; Casanueva et
al., 2018; Ivanov et al., 2018). In contrast, the main objective
of the ISIMIP correction is to preserve the trend of the raw
data in the calibration period.

In the present work, we consider CMIP5 and EURO-
CORDEX (European branch of CORDEX) simulations, the
latter at the two available spatial resolutions (approximately
12 and 50 km), and the ISIMIP correction and empirical
quantile mapping as bias correction methods for the follow-
ing purposes:

– to assess the added value of a more complex (in terms
of the number of parameters calibrated) bias correction
method (empirical quantile mapping) with respect to the
ISIMIP correction;

– to assess the added value of RCMs compared to their
driving GCM after bias correction; and
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– to assess the impact of downscaling and bias correction
in the climate change signal.

The added value is examined by evaluating several statistics
under present climate conditions and exploring the feasibil-
ity of climate change projections. All analyses are applied
in the context of climate change projections of heat stress
in Europe. Heat stress depends mainly on temperature and
humidity (low wind speed and high solar radiation also con-
tribute to heat stress but are not considered in this work).
Whereas empirical quantile mapping is a univariate bias cor-
rection method (typically with the same core implementa-
tion for all variables when it is applied in a multivariate con-
text), the ISIMIP correction includes dependencies between
some variables (e.g. mean temperature is needed to correct
maximum–minimum temperatures) in order to preserve the
physical consistency among them. Hence, the ability of the
methods to reproduce multivariate structures is implicitly in-
vestigated.

2 Data and methods

2.1 Heat stress index

Under very hot and humid conditions, the ability of the hu-
man body to regulate the core temperature and dissipate
heat via sweat evaporation is reduced, provoking heat stress
(Koppe et al., 2004; Parsons, 2014). Other meteorological
variables such as strong radiation or low wind speed can ex-
acerbate heat stress. Such conditions directly affect human
well-being and can develop into heat-related illnesses such
as fatigue, muscle cramps and heat stroke. In the context
of working people, several studies have revealed the neg-
ative impact of heat stress on workers’ health (Pogačar et
al., 2018) and labour productivity (Kjellstrom et al., 2009;
Ioannou et al., 2017). International organisations such as the
International Standards Organization (ISO) and the US Na-
tional Institute for Occupational Safety and Health (NIOSH)
have developed guidelines to protect working people against
heat stress (ISO, 1989, 2017; NIOSH, 2016). The recommen-
dations comprise work–rest cycles and water intake under
specific heat conditions. A combination of technical, regu-
latory and behavioural measures is needed to adapt work-
ers to increasing temperatures at an individual, sectoral and
governmental level (Vivid Economics, 2017). In the con-
text of global warming, the development and dissemina-
tion of heat-health planning and warning systems is now
among the priorities of the World Meteorological Organi-
zation (WMO) and the World Health Organization (WHO;
WMO, 2015), as well as the International Labour Organiza-
tion (UNDP/ILO, 2016) and the International Organization
for Migration (IOM, 2016). Within this framework, the Hori-
zon 2020 HEAT-SHIELD project (https://www.heat-shield.
eu/, last access: 2 August 2019) aims to address the effects of
climate change on the European working population within

an inter-sectoral framework (Nybo et al., 2017). In particu-
lar, one of the specific objectives of the project is to generate
climate change projections of heat stress (Casanueva et al.,
2019).

There are many indices based on meteorological vari-
ables which have been often used to assess occupational heat
stress conditions in the literature (de Freitas and Grigorieva,
2015; Coccolo et al., 2016). The wet-bulb globe temperature
(WBGT) has been chosen in the HEAT-SHIELD project as
the primary heat stress index since it can be computed from
standard meteorological variables available in both observa-
tions and climate models, it can be interpreted by occupa-
tional scientists and physicians by means of the correspond-
ing international (ISO) and national (e.g. NIOSH, 2016) stan-
dards regulations, and it can be adjusted according to the
workers’ clothing.

In this study we focus on the WBGT in the shade (Bernard
and Pourmoghani, 1999; Lemke and Kjellstrom, 2012),
which assumes that there are no strong radiation sources (the
globe temperature equals the air temperature) and wind speed
of 1 m s−1, which corresponds to the movement of arms or
legs during work. Bearing this in mind, the input variables
for the calculation of the WBGT in the shade are air tem-
perature and dew-point temperature. The latter accounts for
the humidity conditions and can be obtained from daily mean
temperature and relative humidity (or specific humidity and
air pressure) in models and observational data sets. In order
to account for the highest daily heat stress, we used daily
maximum temperature and daily mean dew-point tempera-
ture (unlike relative humidity, it usually only slightly varies
along the day) to approximate the daily maximum WBGT
(Casanueva et al., 2019). WBGT is calculated through the R
package HeatStress (see the “Code availability” section).

2.2 Observational data

The observational reference used to validate the climate
models and perform the bias correction is the WFDEI
(WATCH forcing data methodology applied to ERA-Interim;
Weedon et al., 2014) data set, which is based on the ERA-
Interim reanalysis (Dee et al., 2011) corrected by the Cli-
mate Research Unit (CRU) observational data set (or Global
Precipitation Climatology Centre – GPCC – for precipita-
tion). It is developed on a 50 km regular grid and provides 3-
hourly and daily values of temperature, precipitation, humid-
ity, wind and radiation, among others. Its predecessor, WFD,
was used as an observational reference in the ISIMIP 2a ex-
periment (Hempel et al., 2013) and its successor (EWEMBI;
Frieler et al., 2017) in the newer ISIMIP2b. Note that the
WFDEI data are identical to the EWEMBI over land and
for the considered variables (daily maximum and mean tem-
perature, specific humidity, and surface air pressure). In the
present work we use the WFDEI data set over Europe for the
period 1981–2010. Daily maximum temperature is obtained
as the maximum of the 3-hourly values.
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2.3 Global and regional climate model data

The GCM considered in the present analysis is HadGEM2-
ES_r1i1p1 (Collins et al., 2011; denoted as HadGEM along
the paper) from CMIP5, which is one of the GCMs used
in the ISIMIP experiments. Data covering the EURO-
CORDEX domain were extracted considering only land grid
boxes (land area fraction larger than 50 %).

We additionally use the EURO-CORDEX RCM simula-
tions (Jacob et al., 2014; Kotlarski et al., 2014) driven by
HadGEM2-ES accessible via the Earth System Grid Feder-
ation (ESGF archive; https://esgf.llnl.gov, last access: 2 Au-
gust 2019) as of May 2017. These are the same HadGEM-
driven RCM simulations as used by Casanueva et al. (2019)
in a comprehensive study about climate projections of heat
stress in Europe. The RCM simulations were conducted at
two different spatial resolutions which correspond to approx-
imately 12 (EUR-11) and 50 km (EUR-44) grid spacing. The
final set of regional models consists of RACMO, CCLM and
RCA run by the KNMI (Royal Netherlands Meteorological
Institute), CLMcom (Climate Limited-area Modelling Com-
munity) and SMHI (Swedish Meteorological and Hydrolog-
ical Institute), respectively. The historical simulations cover
the common historical period 1981–2005 (the 5 years 2006–
2010 from the scenario simulations are added in this work
to complete the observational period) and future projections
cover the period up to 2099. The available RCPs (Represen-
tative Concentration Pathways) vary for each GCM–RCM
combination (Table 1).

We retrieved GCM and GCM–RCM data for daily max-
imum temperature, as well as daily mean temperature and
relative humidity (or specific humidity and sea level or sur-
face air pressure, depending on the model), which were used
to calculate daily mean dew-point temperature. Note that
HadGEM and the HadGEM-driven RCMs present a 360 d
calendar, so to harmonise this with the observations, five (or
six in a leap year) missing values were included randomly
along each year but keeping the same position for all vari-
ables (to avoid inter-variable modifications), RCPs and mod-
els. All analyses were carried out at the spatial resolution of
the observational grid (regular 50× 50 km). For this reason,
all model simulations (GCM and GCM–RCMs) were conser-
vatively remapped into the WFDEI grid (first-order conser-
vative remapping, as in the ISIMIP experiments). As a conse-
quence, there will be aspects of the added value of the high-
resolution EUR-11 experiments (related to better-resolved,
fine-scale processes; Prein et al., 2016) that can be smoothed
out, but they may still be present after remapping them onto
a coarse resolution (Casanueva et al., 2016).

2.4 Bias correction methods

2.4.1 ISIMIP bias correction

The ISIMIP bias correction was developed in the framework
of ISIMIP (Hempel et al., 2013). It consists of a correction
of the monthly mean biases followed by the correction of
the daily variability around the monthly mean. For temper-
ature the monthly correction is additive, whereas it is mul-
tiplicative for precipitation, radiation and wind. The daily
variability correction consists of a parametric quantile map-
ping adjusting a normal distribution for temperature and a
gamma distribution for precipitation. After ISIMIP (see light
green dashed line in Fig. 1a, b), the mean of the historical
data is adjusted towards the observations (black lines), but
the variance and shape of the raw distribution are mostly re-
tained. The monthly means and monthly variability are ad-
justed using only a constant correction (either an offset or a
multiplicative factor) in the historical and future periods (see
green lines in Fig. 1a, b for an example for temperature; light
and dark green lines represent the historical and future bias-
corrected data through ISIMIP, respectively). Therefore, the
corrections cancel out when calculating the mean (additive or
relative) climate change signal, and the long-term trend of the
raw simulated variables (red arrow in Fig. 1b) is preserved.

The ISIMIP correction includes dependencies between
some variables (e.g. mean temperature and wind speed are
needed to correct maximum–minimum temperatures and
eastward–northward wind components, respectively) in or-
der to preserve the physical consistency among them. How-
ever, there are no implemented dependencies between tem-
perature and relative humidity yet. This BC method is imple-
mented for several variables as part of the R package down-
scaleR (Bedia et al., 2017), included in the R bundle cli-
mate4R (Cofiño et al., 2018; Iturbide et al., 2019). We correct
dew-point temperature following the same procedure as for
daily mean temperature; thus, dependencies with other vari-
ables are not considered. As mentioned before, daily mean
temperature is used in the correction of the daily maximum
temperature in order to maintain the physical consistency
between variables. Although the ISIMIP initiative provides
bias-corrected GCM data, for the sake of consistency we ap-
ply the corrections to the raw GCM as well as RCM data.

2.4.2 Empirical quantile mapping (QM)

In this work we use the implementation from Déqué (2007)
and Rajczak et al. (2016), included in the R package
qmCH2018 (see the “Code availability” section), which con-
sists of the correction of the 99 percentiles of the empirical
distribution of the model towards their observational counter-
parts. The corrections between two consecutive percentiles
are linearly interpolated and constant extrapolation is con-
sidered for the values beyond the calibration range; i.e. the
correction of the 99th (1st) percentile is applied to values
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Table 1. EURO-CORDEX RCMs driven by HadGEM for two spatial resolutions (EUR-11 for approximately 12 km spatial resolution and
EUR-44 for approximately 50 km resolution) and three RCPs (RCP2.6, RCP4.5 and RCP8.5).

EUR-11 EUR-44

RCM RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 Reference

RACMO22E × × × × × × Meijgaard et al. (2008)
RCA4 × × × × × Samuelsson et al. (2011)
CCLM4-8-17 × × × Rockel et al. (2008)

Total no. per RCP 1 3 3 2 2 3

Figure 1. (a–d) Illustrative example of the effect of the two bias correction methods on the empirical cumulative distribution function (a,
c) and the probability density function (b, d) for either RCM or GCM data. Observations are depicted in black and historical (HIST) and
future (FUT) model simulations in light and dark colours, respectively. Raw data are depicted in red, ISIMIP-corrected data in green (a,
b) and QM-corrected data in purple (c, d). The magnitude of the mean change signal is shown with the arrows. This example corresponds
to daily maximum temperature as represented by HadGEM for an exemplary grid box (HIST: 1981–2010, FUT: 2070–2099 for RCP8.5).
(e) Conceptual scheme of the present study.

above (below) the calibration range (Themeßl et al., 2012).
The correction is calibrated for each day of the year with a
91 d moving window. It is a univariate BC method and in this
work it was applied independently to daily maximum tem-
perature and daily mean dew-point temperature.

For a historical simulation (see e.g. light purple dashed
lines in Fig. 1c, d) the corrected data largely resemble the dis-
tribution of the observations. During the application of QM
to a future climate simulation, the model data are mapped
into the percentiles of the training data and the corresponding
correction function is applied (dark purple lines in Fig. 1c, d);
thus, QM would differently correct the future and the histor-
ical distributions if the relative frequencies in the future dif-
fer from the training counterparts (Casanueva et al., 2018).

Therefore, QM is able to correct for intensity-dependent bi-
ases, and subsequently modifications of the raw model cli-
mate change signal may occur. In the example for temper-
ature in Fig. 1d, QM narrows the distribution of the future
simulated data, thus leading to a smaller mean change signal
than the raw counterpart (see purple and red arrows).

2.4.3 Application of the bias correction methods

For both bias correction methods, the corrections are applied
independently to each grid box of each GCM and RCM,
resolution (if applicable), and RCP. These corrections are
calibrated in the period 1981–2010 and are applied (1) to
the same period to evaluate the performance in present cli-
mate and (2) to a future period at the end of the 21st cen-
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tury (2070–2099) to produce bias-corrected climate projec-
tions. Due to the multivariate nature of the WBGT, we sep-
arately correct daily maximum temperature and daily mean
dew-point temperature prior to the WBGT calculation (i.e.
the component-wise approach; Casanueva et al., 2018). Al-
though the BC methods are applied to the full time series
(monthly mean correction for ISIMIP, 91 d moving window
centred on each day of the year for QM), all results shown
refer to the summer season (June, July, August), since it is
the time when extreme heat stress conditions occur.

As shown in Fig. 1e, the ISIMIP bias correction is ap-
plied to the GCM and the RCMs to assess the added value of
the RCMs after bias correction. We additionally correct the
climate models using quantile mapping to assess the added
value of a more complex (in terms of the number of parame-
ters calibrated) bias correction method.

2.5 Evaluation metrics

The performance of the raw and bias-corrected data is firstly
evaluated by using the mean bias (model minus observations)
of several parameters of the distribution, such as the mean
and 95th and 99th percentiles of the WBGT.

Pearson correlation coefficients (Pearson, 1895) between
the daily series of maximum temperature and dew-point tem-
perature are obtained to show the linear dependency between
the two input variables in the modelled and observed data. In
order to further assess the inter-variable relationships, two-
dimensional kernel densities are constructed combining the
distribution of the two input variables. The representation of
the two-dimensional densities shows the probability of hav-
ing different combinations of daily maximum and dew-point
temperatures. Density plots are obtained for the raw and bias-
corrected data and compared to the observation counterparts.
Perkins et al. (2007) introduced a skill score which deter-
mines the similarity between two probability density func-
tions (PDFs). It is a very useful metric since it allows for
a comparison across the entire distribution. It measures the
common area between two PDFs by calculating the cumu-
lative minimum value of two distributions of each binned
value (skill scores of 1 mean perfect performance). Here a
two-dimensional extension of the Perkins skill score is used,
obtained from two-dimensional kernel densities instead of
univariate PDFs. Therefore the cumulative minimum value
is calculated in a two-dimensional field and the score shows
the similarity (overlap) between the modelled joint distribu-
tion of daily maximum and dew-point temperatures and the
observed counterpart.

3 Results

3.1 Evaluation of mean biases of WGBT

The two BC methods (ISIMIP and QM) are applied to the
two primary variables of the heat stress index, namely daily

maximum air temperature and daily mean dew-point tem-
perature, prior to the WBGT calculation. Under no cross-
validation (i.e. the methods are calibrated and validated in
the same period) both BC methods adjust, by construction,
the central part of the distribution (mean for ISIMIP, median
for QM; see Fig. 1a–d). ISIMIP further adjusts the variabil-
ity around the mean, whereas QM additionally adjusts the 99
empirical percentiles. The performance in terms of mean bi-
ases of the two BC methods for individual variables is good
and differences related to the parametric (ISIMIP) or empir-
ical (QM) nature of the method may arise on the tails of the
distribution, for which QM outperforms ISIMIP (not shown).

The suitability of the component-wise BC approach of the
WBGT prior to its application in a climate change context
is assessed by evaluating the corrected WBGT with the ob-
served counterpart for the period 1981–2010. Although the
calibration and validation periods are the same, our approach
can be considered independent since the evaluated aspect (i.e.
multivariate consistency and WBGT statistics) is not directly
tackled by the BC methods. An additional split-sample cross-
validation (cold vs. warm years; not shown) indicates that
WBGT biases are of the same order of magnitude as in the
non-cross-validated analysis.

Mean biases of summer mean WBGT (Fig. 2a) are evi-
dent for the raw GCM and RCMs (blue boxes; note that no
height correction has been applied to the raw data, which
might be mainly responsible for the skewed distribution of
the raw biases). These are largely reduced after both BC
methods, equally well for GCM and RCM data. The eval-
uation of the 95th and 99th percentiles reveals better perfor-
mance for ISIMIP or QM depending on the model (Fig. 2b,
c). QM improves on mean biases and reduces their variabil-
ity in higher percentiles for the GCM, RACMO and RCA,
whereas a cold bias emerges for CCLM. There is no evident
added value of the RCMs with respect to the GCM after bias
correction (see also the spatial pattern of the differences be-
tween bias-corrected GCM and RCMs in Fig. S1 in the Sup-
plement). This is in agreement with the findings for coarser
vs. the higher resolution of RCM simulations by Casanueva
et al. (2016).

The spatial pattern of biases in the 99th percentile of
the WBGT (WBGTp99) is shown in Fig. 3. In general, the
bias correction methods alleviate the biases of the raw mod-
els over Europe (in particular, large biases due to complex
orography), although there are cases in which, in some re-
gions, the biases after bias correction remain as high as or
even higher than for the raw output. For the GCM, biases of
similar magnitude remain after ISIMIP and QM, with com-
pletely different spatial structures. For the RCMs RACMO
and RCA, slightly better results are found for QM compared
to ISIMIP, with biases up to ±1 ◦C. The added value of the
two BC methods with respect to the raw simulations is also
shown in Fig. S2, being larger in areas with complex orog-
raphy and slightly better for QM. The above-mentioned cold
bias for the CCLM after QM is present, especially in eastern

Geosci. Model Dev., 12, 3419–3438, 2019 www.geosci-model-dev.net/12/3419/2019/



A. Casanueva et al.: Climate projections of a multivariate heat stress index 3425

Figure 2. Biases of mean (a), 95th percentile (b) and 99th percentile (c) summer WBGT for the GCM and RCMs at EUR-44 and EUR-11.
Biases are calculated as model minus observations. Each box represents the biases across all grid boxes for raw (blue), ISIMIP corrected
(orange) and QM corrected (green). Due to the different land–sea masks in the observations, the GCM and RCMs (EUR-44 and EUR-11),
all box plots consider the grid boxes common to all data sets.

Europe (Figs. 3m and S2h). The causes for that are analysed
in more detail in the next section.

3.2 Evaluation of inter-variable relationships

The component-wise correction of the WBGT is able to cor-
rect for large biases in some WBGT statistics, but some bi-
ases remain for specific locations and models. We focus on
the eastern European region and select the closest grid box to
the city of Warsaw (Poland), where the original positive bias
of WBGTp99 (0.7 ◦C) turns into a negative bias (−1.4 ◦C)

after QM for CCLM-011 (Fig. 3m). The application of QM
to the input variables of WBGT reduces their raw biases to
less than ±0.3 ◦C for all analysed statistics in that grid box.
QM corrects for distributional biases of each variable, but
the temporal sequence (i.e. day-to-day variability) of the raw
data is not altered and the ranks are preserved. Given that
maximum temperature and dew-point temperature are com-
bined non-linearly to produce the daily sequence of WBGT,
deficient inter-variable relationships may lead to an inac-
curate representation of pairs of input variables and conse-
quently to biases in the WBGT distribution. We assess pairs
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Figure 3. Spatial distribution of the observed 99th percentile of summer WBGT (WBGTp99, a) and model biases for the GCM (b–d) and
RCMs at EUR-11 (e–m) for raw (first column), ISIMIP corrected (second column) and QM corrected (third column). The grid boxes over
Warsaw and Madrid are marked as a reference for subsequent analyses.

of values of maximum temperature and dew-point tempera-
ture that produce the highest values of WBGT (in particular
those above the 95th percentile, WBGTp95) for the observa-
tions and model (raw and bias corrected) data (Fig. 4). Ac-
cording to the observations, the 5 % of days with the high-
est heat stress is produced by high maximum temperatures
(28–36 ◦C) and high dew-point temperature (13–21 ◦C), and
both input variables present a negative linear relation (Pear-
son correlation coefficient of −0.55). Within these ranges,
WBGT can reach values of 23–27 ◦C (see circles in Fig. 4).
The raw models (squares in Fig. 4a, d) present some biases
on the upper tail of the distribution of the two input vari-

ables, which translates into positive biases of the WBGTp99
in the two models. Raw RACMO (Fig. 4a) overestimates
maximum and dew-point temperatures but captures the inter-
variable relationships rather well (r =−0.43), whereas raw
CCLM (Fig. 4d) presents more deficiencies in represent-
ing the inter-variable structure (r =−0.82); in particular, it
shows large positive biases for maximum temperature and
negative biases for dew-point temperature. Overall, the re-
maining biases after the ISIMIP correction (downward trian-
gles in Fig. 4b, e) approximately resemble the original coun-
terparts for RACMO and improve on the raw data for CCLM,
whereas QM (upward triangles in Fig. 4c, f) overcorrects the
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Figure 4. Inter-variable relationship for the observations and (raw and bias corrected) model data for RACMO-011 (a–c) and CCLM-
011 (d–f) for the grid box over Warsaw. Each scatter plot represents pairs of values of daily dew-point temperature (x axis) and maximum
temperature (y axis) which produce summer WBGT values above WBGTp95 (Pearson correlation coefficient between the represented pairs
of dew-point and maximum temperatures, r , is included in the legend). The three coloured markers correspond to WBGT values for the
observations (circles in all panels), raw RCMs (squares in panels a, d), RCM–ISIMIP (downward triangles in panels b, e) and RCM QM
(upward triangles in panels c, f). Isolines also represent WBGT values, and the thicker line depicts the observed WBGTp99.

original biases. For CCLM QM the highest 5 % WBGT val-
ues are produced by lower values of both input variables
compared to the observed pairs, especially dew-point tem-
perature (down to 5 ◦C), leading to an underestimation of
WBGTp99. The stronger negative correlation between the
input variables for QM than for the observations might also
contribute to the negative biases in extreme WBGT, since
high values of maximum temperature would then be linked
to rather low dew-point temperatures (or vice versa), which
may imply lower WBGT. Low dew-point temperatures are
also found for CCLM–ISIMIP, but they are combined with
positively biased maximum temperatures, and thus the biases
(maximum temperatures that are too high – above 38 ◦C –
and dew-point temperatures that are too low – below 12 ◦C;
see top left corner in Fig. 4e) compensate, leading to a
small bias in WBGTp99. Therefore, the evaluation of WBGT
statistics should be done with caution since the results can be
right for the wrong reason, highlighting the need for multi-
variable model evaluations (García-Díez et al., 2015).

To investigate the effects of the downscaling methods on
the full joint probability distribution of the maximum tem-
perature and dew-point temperature in more detail, consider
Fig. 5. It shows the two-dimensional kernel density distribu-
tion (see Sect. 2.5) together with marginal histograms for the
same grid box (Warsaw) as in Fig. 4. Higher values of the ob-
served joint probability (Fig. 5, top panel) are associated with
more likely values of maximum temperature and dew-point
temperatures around the mean of the distribution (approxi-
mately 23 and 10 ◦C, respectively). For the GCM, the distri-
butions of the WBGT input variables are wider than the ob-
served ones, leading to a more diffuse and displaced distribu-
tion of joint probabilities (Fig. 5, second row). In agreement
with the previous results, after ISIMIP the joint probabilities
are centred, but neither the shape nor the maximum values
are well represented. QM systematically narrows the distri-
butions and slightly improves the results, which is consistent
with the higher values of the Perkins score (see Sect. 2.5).
The raw RACMO and RCA outputs tend to better repre-
sent the shape of the joint distribution than the GCM, al-
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Figure 5. Two-dimensional kernel density plots for the grid box over Warsaw. Blue histograms (and x axis) refer to dew-point temperature
and red histograms (and y axis) refer to maximum temperature. The isolines for the observed WBGTp95 and WBGTp99 are also shown as
the thick dashed and solid black lines, respectively. Shadings represent the 2-D density distribution for the observations (first row), the GCM
(second row) and RCMs at EUR-11 (third to fifth rows). Very similar results are found for EUR-44 (not shown). Contour lines represent the
observed probabilities, which are overlaid on the model probabilities for the sake of comparison. r depicts the Pearson correlation coefficient
between all pairs of daily dew-point and maximum temperatures, and S represents the two-dimensional Perkins skill score of distributional
similarity (the closer to 1 the better; see Sect. 2.5).
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though the maximum probabilities are biased towards some-
what lower maximum temperatures for RACMO as well as
towards lower maximum temperature and higher dew-point
temperature for RCA. The ISIMIP correction largely pre-
serves the original structure in the raw data, whereas QM
often narrows the original skewed distributions towards the
observed counterpart. There is, however, an overestimation
of the maximum probabilities after QM. The CCLM raw
simulations (EUR-44 and EUR-11) for this grid box present
more deficiencies in representing the inter-variable structure
in terms of the magnitudes and location of the joint proba-
bilities. The ISIMIP correction brings the CCLM maximum
closer to the observational counterpart, but the joint probabil-
ities are too wide. For instance, unlike the observations, there
is some probability of high values of WBGT (see isoline
denoting observed WBGTp99) associated with rather low
dew-point temperatures and high maximum temperatures (as
also shown in Fig. 4). This problem is very likely inherited
from the raw data and is slightly improved by QM. The re-
maining underestimation of WBGTp99 after QM is also vis-
ible from this plot, since the probability above the observed
WBGTp99 isoline is negligible. In terms of the general struc-
ture, the joint distributions of the RCM QM data are better
than those with the ISIMIP correction, although the perfor-
mance greatly depends on the quality of the raw data.

RACMO (especially EUR-44; not shown) is the best-
performing model in terms of joint probabilities for this spe-
cific grid box, with slightly improved results after QM. The
improvement of QM on the joint probabilities is more notice-
able in RCA, CCLM and the GCM, for which QM is able to
adjust important deficiencies in the inter-variable dependen-
cies. An example for Madrid (Fig. S3) shows that all RCMs
perform equally well after QM.

An overall conclusion about better performance is not ev-
ident since the results depend on each grid box and GCM–
RCM combination, and they might be affected by compen-
sations for biases in the individual variables. A summary for
the evaluation of the inter-variable relationships across Eu-
rope is presented through the Perkins score (Fig. 6). Lower
scores are apparent in the raw GCM and RCM data, espe-
cially in areas with complex orography and southeastern Eu-
rope. The two BC methods are able to improve the represen-
tation of the inter-variable relationships on the whole conti-
nent just by centring the distributions. High Perkins scores
are found, especially along the Atlantic coast. QM improves
on ISIMIP in large areas, although low scores are found in
Scandinavia (0.7–0.8) for the RCMs. The spatial distribu-
tion of the scores qualitatively agrees with biases in the tem-
poral variability of maximum and dew-point temperatures
(Figs. S4–S5). This is a first-order indication that the mis-
representation of the temporal variability of the individual
variables might be responsible for most of the deficiencies
in the inter-variable relationships. Raw model data overesti-
mate the temporal variability, especially in eastern Europe,
leading to Perkins scores lower than 0.6. In other areas, such

as Scandinavia, the models underestimate the temporal vari-
ability of the two input variables and thus present the lowest
scores even after QM. The best results are obtained for GCM
QM, with large scores also in northern Europe (Fig. 6c).

3.3 Future changes of heat stress

For all the models considered (GCM, RCMs and BC meth-
ods) summer mean WBGT and WBGTp99 are projected to
increase by the end of the 21st century under RCP8.5 (Figs. 7
and S4). For a given RCP, the major source of uncertainty in
the magnitude of this change comes from the choice of GCM
or RCM, with a systematically lower change signal in the
RCMs. The differences in the climate change signal between
the GCM and the RCMs may range between 0.5 and 1 ◦C,
depending on the RCM and RCP, for the European averaged
values. It is related to the reduced summer warming in many
EURO-CORDEX RCMs with respect to their driving GCMs
that was noted already in previous works, which pointed to
different circulation patterns, surface energy fluxes and feed-
back mechanisms as possible causes for this (Keuler et al.,
2016; Sørland et al., 2018). The raw GCM projects changes
in summer mean WBGT above 4.5 ◦C over most parts of the
continent, with the highest values in the Alpine area (more
than 6 ◦C), whereas RCMs project increases between 3 and
5 ◦C on most of the continent (Fig. 7; shown are RCMs at
0.11◦ but similar results are found for 0.44◦). The Alps and
north of Scandinavia stand out with larger positive signals.
By construction, ISIMIP approximately preserves the cli-
mate change signals of the input variables (Hempel et al.,
2013), whereas QM can potentially modify them (e.g. Gob-
iet et al., 2015; Ivanov et al., 2018; see also Sect. 2.4). Our
results show that little changes become apparent for the mean
WBGT after ISIMIP (up to half a degree). The effect of the
QM on the WBGT signal is especially noticeable for the case
of the GCM, for which QM reduces the signal by up to 1.5 ◦C
and brings it closer to the RCM counterpart. The large pos-
itive signal over the Alpine area is retained and stands out
(although with smaller magnitude) for the RCM QM. Simi-
lar conclusions can be drawn for the change in WBGTp99,
with a slightly patchier spatial pattern (Fig. S4).

The main conclusions qualitatively hold for the other
RCPs, with quite consistent signals among RCMs and BC
methods (Fig. 8a). Differences between the GCM and RCM
projected signals are also evident for the input variables
(Fig. 8b, c). These differences increase with the RCP and
are larger for maximum temperature than for dew-point tem-
perature. Whereas the RCMs tend to lower the signal of the
GCM for maximum temperature, they increase the signal for
dew-point temperature. That is explained by the opposite be-
haviour of temperature and relative humidity, as well as the
fact that models showing hotter temperatures tend to simu-
late lower relative humidity (Fischer and Knutti, 2013). In
general, QM tends to expand the range of the raw RCM cli-
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Figure 6. Spatial distribution of Perkins skill scores calculated from the two-dimensional distribution of summer values of daily maximum
temperature and daily mean dew-point temperature for the GCM (a–c) and the RCMs at EUR-11 (d–l) for raw (first column), ISIMIP
corrected (second column) and QM corrected (third column).

mate change signals and slightly lower the median for the
two CCLM simulations.

The modification of the climate change signal by BC is
further analysed for the grid boxes over Warsaw (Fig. 9a,
b) and Madrid (Fig. 9c, d), considering the change signals
in the mean variables (Fig. 9a, c) and in the 99th percentile
(Fig. 9b, d). In Warsaw, QM tends to reduce the signal of
the GCM and RCMs towards lower maximum temperatures
(Fig. 9a). These changes in the signal are larger for the GCM
than the RCMs. In this grid box, the effect of QM on mean
dew-point temperature is negligible. As a consequence, the
modification of the signal in mean WBGT is less than 0.5 ◦C
for the RCMs and 1 ◦C for the GCM. Given that the pro-
jected change for mean WBGT is 3.5–5 ◦C for the RCMs
(∼ 5.5 ◦C for the GCM), the impact of the QM can amount to
a maximum of 15 % (18 %) of the raw signal. Modifications
in the climate change signal of the WBGTp99 by QM are
smaller than for the mean, along with smaller changes in the
signal of the 99th percentile of the input variables (Fig. 9b;

note that WBGTp99 is not necessarily linked to the 99th per-
centile of maximum temperature and dew-point temperature
but to some percentile in the upper tail of the distribution). In
this example, however, it is evident that the preservation of
trends by ISIMIP depends on the parameter under considera-
tion, since e.g. the signal in the 99th percentile of dew-point
temperature for CCLM-044 is reduced by 1.3 ◦C after the
application of ISIMIP (see grey lines in Fig. 9b). Again the
modifications of the climate change signal are grid box spe-
cific, and negligible changes are found after QM and ISIMIP
for the grid box closest to Madrid (Fig. 9c, d).

4 Summary and discussion

In the present work we compared global and regional climate
model data at different spatial resolutions and bias corrected
by two bias correction methods (namely, the ISIMIP method
and empirical quantile mapping, QM) in order to assess the
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Figure 7. Spatial distribution of changes in summer mean WBGT under RCP8.5 for the GCM (a–c) and RCMs at EUR-11 (d–l) for raw
(first column), ISIMIP corrected (second column) and QM corrected (third column). The climate change signals are calculated for the period
2070–2099 with respect to 1981–2010.

added value of (1) a more complex BC method, as well as
(2) bias-corrected RCM simulations versus bias-corrected
GCM simulations, and (3) the role of downscaling and BC
on the climate change signal of a multivariate index. For this
purpose, we used GCM data from the CMIP5 HadGEM2-
ES and the HadGEM-driven EURO-CORDEX simulations
at approximately 12 and 50 km horizontal resolution, respec-
tively. The study was performed for the case of heat stress
in Europe, considering as a heat stress index the wet-bulb
globe temperature (WBGT) in shaded conditions. It depends
on air temperature and dew-point temperature, which were
separately corrected prior to the index calculation. The per-
formance of the models and methods in such a multivariate
framework was analysed. The results were examined con-
sidering present climate simulations (reference period 1981–
2010) and future climate projections (2070–2099).

Regarding the performance of the two bias correction
methods, the evaluation results show that both methods are

able to correct for biases in the multivariate WBGT as rep-
resented by the GCM and RCMs, with smaller biases for
ISIMIP or QM depending on the GCM–RCM model chain.
ISIMIP mostly retains the distributional features of the raw
data, whereas QM narrows the two original distributions,
producing some improvement of the joint probability distri-
bution with respect to ISIMIP. The added value of higher cli-
mate model resolution (from GCM to RCM and from EUR-
44 to EUR-11) is not evident in the evaluation of the bias-
corrected WBGT statistics, since the biases of both the GCM
and RCMs become indistinguishable after bias correction.
The joint probabilities are, however, better reproduced by
the RCMs after the two bias corrections, especially due to
a more accurate representation of these relationships in the
raw data. For cases (i.e. grid boxes) for which the raw mod-
els do not represent the inter-variable relationships well (e.g.
CCLM for the grid box closest to Warsaw), some biases in
the joint distribution may remain after bias correction. Large
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Figure 8. Climate change signals for summer mean WBGT (a), daily maximum temperature (Tx, b) and daily mean dew-point temperature
(Td, c) for the period 2070–2099 with respect to 1981–2010 and RCP2.6, 4.5 and 8.5. Each box represents the changes across all grid boxes
in Europe for raw (blue), ISIMIP corrected (orange) and QM corrected (green) for the GCM and the RCMs (EUR-11 and EUR-44). Due to
the different land–sea masks in the observations, the GCM and RCMs (EUR-44 and EUR-11), all box plots consider the grid boxes common
to all data sets.

biases of the raw GCM in the inter-variable dependencies
might be related to biases in large-scale processes and feed-
backs. Further research is needed to understand the causes
for these biases, while the application of BC for those cases
in a multivariate context is then debatable (Piani et al., 2010;
Ehret et al., 2012; Muerth et al., 2013). Other methods and
approaches (i.e. perfect prognosis approach, high-resolution
regional models) are viable alternatives to bias correction in
those cases (Maraun, 2016; Maraun et al., 2017).

Regarding climate change projections of WBGT, the
largest differences for a given RCP come from the use of
GCM versus RCM data, with systematically lower signals

for the RCMs. The GCM–RCM differences amount to 0.5–
1 ◦C for the European averaged signal and increase with the
emission scenario, regardless of the bias correction method
and RCM resolution. QM tends to reduce the signal in both
the GCM and RCMs, bringing the GCM-based and RCM-
based results closer to each other. Some modifications of the
raw RCM signal are visible after QM (up to 20 % of the raw
signal); however, the original signal of the GCM is quali-
tatively retained by the RCM QM, with larger increments
in the Alpine ridge and northern Scandinavia. Although the
ISIMIP method is by construction a trend-preserving BC
method, due to the non-linearities in the WBGT calculation
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Figure 9. Scatter plots showing the effect of BC on the climate change signal for dew-point temperature (x axis), maximum temperature
(y axis) and WBGT (coloured markers) for the grid box over Warsaw (a, b) and Madrid (c, d) for RCP8.5 and the period 2070–2099 with
respect to 1981–2010. Panels (a, c) show results for the change signal of the mean variables and panels (b, d) for the 99th percentiles. Each
marker depicts results for a different data set (squares for the GCM, upwards triangles for RCMs at EUR-44 and downwards triangles for
RCMs at EUR-11). The black arrows point from the value in the raw data (thicker markers) to the change in the QM-corrected data, whereas
the grey arrows point from the raw to the ISIMIP-corrected data (only discernible for the change signal of the 99th percentiles).

some modifications of the signal in WBGT statistics may be-
come apparent after the correction. The modifications of the
climate change signals due to bias correction are generally
smaller than the model uncertainty (spread over the GCM
and RCMs at two resolutions) by the end of the century. The
magnitude of these changes should also be analysed in the
context of natural variability (Räisänen, 2001), since the lat-
ter can mask or enhance long-term trends.

Summarising, there is some added value of QM with re-
spect to ISIMIP in the representation of the inter-variable
structures, whereas the present climate evaluation shows
limited added value of bias-corrected RCM versus bias-
corrected GCM data. Future works including convection-
permitting simulations could help to assess the robustness of
these results. More distinct results between RCMs and the
GCM are obtained regarding climate projections, with sys-
tematically smaller change signals in the RCMs. The bias-
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corrected data qualitatively retain the change signal of the
raw counterparts, although QM tends to decrease the signal
of the WBGT and the input variables.

Some limitations and points for discussion remain. The
use of a single GCM (even downscaled with several RCMs
and bias corrected) for the production of climate projec-
tions does not sample the full uncertainty range, and the
use of large ensembles of simulations is strongly recom-
mended. GCMs typically produce larger estimates for the
change signal of temperature than RCMs due to different cir-
culation patterns, surface energy fluxes and feedback mech-
anisms (Keuler et al., 2016; Sørland et al., 2018). HadGEM
in particular projects an increase in summer mean WBGT
of 5 ◦C (European average, end of 21st century, RCP8.5)
and HadGEM-driven RCM simulations of about 4–4.5 ◦C.
These results are at the upper limit of the uncertainty range
when compared to a large ensemble of GCM–RCM simula-
tions (Casanueva et al., 2019). Therefore, relying only on this
GCM could lead to misleading conclusions when combined
with other factors in impact assessments. This example high-
lights even further the need for ensembles of simulations.

The differences between the two RCM resolutions were
negligible in our study, mainly due to the experimental de-
sign (both resolutions are remapped onto the 50× 50 km ob-
servational grid). The higher-resolution RCMs could show
some potential added value if the evaluation was carried
out at their original resolution. However, there is no pan-
European, high-resolution, observational grid for air tem-
perature or for dew-point temperature (or relative humidity)
to bias correct and evaluate these simulations. While high-
resolution grids for temperature are available at a national
level, the lack of a gridded product for relative humidity re-
mains a limitation. Furthermore, model evaluation can de-
pend on the reference data set employed and observations
play a fundamental role in bias correction, especially in QM
for which the whole distribution is adjusted. Previous stud-
ies have shown that model uncertainty dominates over obser-
vational uncertainty for the case of mean temperature (Kot-
larski et al., 2019a), but dew-point temperature (or relative
humidity) has not been broadly investigated so far. In the
present work, we do not account for observational uncer-
tainty but acknowledge that the reliability and spatial rep-
resentativeness of the reference data set might quantitatively
modify the results. Future works also including a comparison
of different observational data products might shed light on
the robustness of the current results.
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