Articles | Volume 9, issue 11
https://doi.org/10.5194/gmd-9-4029-2016
https://doi.org/10.5194/gmd-9-4029-2016
Model description paper
 | 
11 Nov 2016
Model description paper |  | 11 Nov 2016

The offline Lagrangian particle model FLEXPART–NorESM/CAM (v1): model description and comparisons with the online NorESM transport scheme and with the reference FLEXPART model

Massimo Cassiani, Andreas Stohl, Dirk Olivié, Øyvind Seland, Ingo Bethke, Ignacio Pisso, and Trond Iversen

Related authors

FLEXPART version 11: improved accuracy, efficiency, and flexibility
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024,https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Inferring surface energy fluxes using drone data assimilation in large eddy simulations
Norbert Pirk, Kristoffer Aalstad, Sebastian Westermann, Astrid Vatne, Alouette van Hove, Lena Merete Tallaksen, Massimo Cassiani, and Gabriel Katul
Atmos. Meas. Tech., 15, 7293–7314, https://doi.org/10.5194/amt-15-7293-2022,https://doi.org/10.5194/amt-15-7293-2022, 2022
Short summary
Can statistics of turbulent tracer dispersion be inferred from camera observations of SO2 in the ultraviolet? A modelling study
Arve Kylling, Hamidreza Ardeshiri, Massimo Cassiani, Anna Solvejg Dinger, Soon-Young Park, Ignacio Pisso, Norbert Schmidbauer, Kerstin Stebel, and Andreas Stohl
Atmos. Meas. Tech., 13, 3303–3318, https://doi.org/10.5194/amt-13-3303-2020,https://doi.org/10.5194/amt-13-3303-2020, 2020
Short summary
The Lagrangian particle dispersion model FLEXPART version 10.4
Ignacio Pisso, Espen Sollum, Henrik Grythe, Nina I. Kristiansen, Massimo Cassiani, Sabine Eckhardt, Delia Arnold, Don Morton, Rona L. Thompson, Christine D. Groot Zwaaftink, Nikolaos Evangeliou, Harald Sodemann, Leopold Haimberger, Stephan Henne, Dominik Brunner, John F. Burkhart, Anne Fouilloux, Jerome Brioude, Anne Philipp, Petra Seibert, and Andreas Stohl
Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019,https://doi.org/10.5194/gmd-12-4955-2019, 2019
Short summary
Observation of turbulent dispersion of artificially released SO2 puffs with UV cameras
Anna Solvejg Dinger, Kerstin Stebel, Massimo Cassiani, Hamidreza Ardeshiri, Cirilo Bernardo, Arve Kylling, Soon-Young Park, Ignacio Pisso, Norbert Schmidbauer, Jan Wasseng, and Andreas Stohl
Atmos. Meas. Tech., 11, 6169–6188, https://doi.org/10.5194/amt-11-6169-2018,https://doi.org/10.5194/amt-11-6169-2018, 2018
Short summary

Related subject area

Atmospheric sciences
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024,https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024,https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Observational operator for fair model evaluation with ground NO2 measurements
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024,https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024,https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024,https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary

Cited articles

Alam, J. M. and Lin, J. C: Toward a Fully Lagrangian Atmospheric Modeling System, Mon. Weather Rev, 136, 4653–4667, 2008.
Assmann, K. M., Bentsen, M., Segschneider, J., and Heinze, C.: An isopycnic ocean carbon cycle model, Geosci. Model Dev., 3, 143–167, https://doi.org/10.5194/gmd-3-143-2010, 2010.
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013.
Bleck, R., Rooth, C., Hu, D., and Smith, L. T.: Salinity-driven thermocline transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic, J. Phys. Oceangr., 22, 1486–1505, 1992.
Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P., Angevine, W., Evan, S., Dingwell, A., Fast, J. D., Easter, R. C., Pisso, I., Burkhart, J., and Wotawa, G.: The Lagrangian particle dispersion model FLEXPART-WRF version 3.1, Geosci. Model Dev., 6, 1889–1904, https://doi.org/10.5194/gmd-6-1889-2013, 2013.
Download
Short summary
FLEXPART is a community model used by many scientists. Here, an alternative FLEXPART model version has been developed, tailored to use with the output data generated by the Norwegian Earth System Model (NorESM1-M). The model provides an advanced tool to analyse and diagnose atmospheric transport properties of the climate model NorESM. To validate the model, several tests were performed that offered the possibility to investigate some aspects of offline global dispersion modelling.