Andrews, T., Gregory, J. M., Webb, M. J., and Taylor, K. E.: Forcing, feedbacks
and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models,
Geophys. Res. Lett., 39, L09712, https://doi.org/10.1029/2012GL051607, 2012. a, b
Assmann, K. M., Bentsen, M., Segschneider, J., and Heinze, C.: An isopycnic
ocean carbon cycle model, Geosci. Model Dev., 3, 143–167,
https://doi.org/10.5194/gmd-3-143-2010, 2010. a
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from
satellite-based chlorophyll concentration, Limnol. Oceanogr., 42,
1–20, https://doi.org/10.4319/lo.1997.42.1.0001, 1997. a, b
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland,
Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson,
J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and
basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720,
https://doi.org/10.5194/gmd-6-687-2013, 2013. a, b, c, d, e, f, g, h, i, j, k, l, m
Bethke, I., Outten, S., Otterå, O. H., Hawkins, E., Wagner, S., Sigl, M.,
and Thorne, P.: Potential volcanic impacts on future climate variability,
Nat. Clim. Change, 7, 799–805, https://doi.org/10.1038/nclimate3394, 2017. a
Bleck, R. and Smith, L. T.: A wind-driven isopycnic coordinate model of the
north and equatorial Atlantic Ocean: 1. Model development and supporting
experiments, J. Geophys. Res.-Oceans, 95, 3273–3285,
https://doi.org/10.1029/JC095iC03p03273, 1990. a
Bleck, R., Rooth, C., Hu, D., and Smith, L. T.: Salinity-driven Thermocline
Transients in a Wind- and Thermohaline-forced Isopycnic Coordinate Model of
the North Atlantic, J. Phys. Oceanogr., 22, 1486–1505, 1992. a
Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B.,
Fohlmeister, J., Frank, N., Andersen, M. B., and Deininger, M.: Strong and
deep Atlantic meridional overturning circulation during the last glacial
cycle, Nature, 517, 73–76, https://doi.org/10.1038/nature14059, 2015. a
Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., and Bladé,
I.: The Effective Number of Spatial Degrees of Freedom of a Time-Varying
Field, J. Climate, 12, 1990–2009,
https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2, 1999. a
Carsey, F. D.: Microwave Observation of the Weddell Polynya, Mon. Weather
Rev., 108, 2032–2044,
https://doi.org/10.1175/1520-0493(1980)108<2032:MOOTWP>2.0.CO;2, 1980. a
Chassignet, E. P. and Marshall, D. P.: Gulf Stream separation in numerical
ocean models, Ocean Modeling in an Eddying Regime, Geophys. Monogr.
Ser., 177, American Geophysical Union, 39–62, https://doi.org/10.1029/177gm05, 2008. a
Counillon, F., Keenlyside, N., Bethke, I., Wang, Y., Billeau, S., Shen, M. L.,
and Bentsen, M.: Flow-dependent assimilation of sea surface temperature in
isopycnal coordinates with the Norwegian Climate Prediction Model, Tellus A,
68, 32437, https://doi.org/10.3402/tellusa.v68.32437, 2016. a
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup,
N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P.,
Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for general
instability of past climate from a 250-kyr ice-core record, Nature, 364,
218–220, https://doi.org/10.1038/364218a0, 1993. a
de Lavergne, C., Palter, J. B., Galbraith, E. D., Bernardello, R., and
Marinov, I.: Cessation of deep convection in the open Southern Ocean under
anthropogenic climate change, Nat. Clim. Change, 4, 278–282,
https://doi.org/10.1038/nclimate2132, 2014. a
Dokken, T. M., Nisancioglu, K. H., Li, C., Battisti, D. S., and Kissel, C.:
Dansgaard-Oeschger cycles: Interactions between ocean and sea ice intrinsic
to the Nordic seas, Paleoceanography, 28, 491–502, https://doi.org/10.1002/palo.20042,
2013. a, b
Eden, C. and Greatbatch, R. J.: Towards a mesoscale eddy closure, Ocean
Modell., 20, 223–239,
https://doi.org/10.1016/j.ocemod.2007.09.002, 2008. a
Eden, C., Jochum, M., and Danabasoglu, G.: Effects of different closures for
thickness diffusivity, Ocean Modell., 26, 47–59,
https://doi.org/10.1016/j.ocemod.2008.08.004, 2009. a
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J. B.:
Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the
COARE Algorithm, J. Climate, 16, 571–591,
https://doi.org/10.1175/1520-0442(2003)016<0571:bpoasf>2.0.co;2, 2003. a
Fasullo, J. T. and Trenberth, K. E.: The Annual Cycle of the Energy Budget.
Part I: Global Mean and Land–Ocean Exchanges, J. Climate, 21,
2297–2312, https://doi.org/10.1175/2007JCLI1935.1, 2008. a
Fetterer, F., Knowles, K., Meier, W., and Savoie, M.: updated daily,
Sea Ice Index, Version 2, Monthly Sea Ice Area Data. Boulder,
Colorado USA. NSIDC: National Snow and Ice Data Center,
https://doi.org/10.7265/N5736NV7 (last access: February 2017), 2016. a, b, c
Fox-Kemper, B., Ferrari, R., and Hallberg, R.: Parameterization of Mixed Layer
Eddies. Part I: Theory and Diagnosis, J. Phys. Oceanogr., 38,
1145–1165, https://doi.org/10.1175/2007jpo3792.1, 2008. a
Ganopolski, A. and Rahmstorf, S.: Rapid changes of glacial climate simulated in
a coupled climate model, Nature, 409, 153–158, https://doi.org/10.1038/35051500, 2001. a
Garcia, H., Locarnini, R., Boyer, T., Antonov, J., Baranova, O., Zweng, M., and
Johnson, D.: Dissolved oxygen, apparent oxygen utilization, and oxygen
saturation, in: World Ocean Atlas 2009, Vol 3., edited by: Levitus, S., NOAA
Atlas NESDIS 70, U.S. Government Printing Office, Washington, D.C., USA, 344
pp., 2010a. a
Garcia, H., Locarnini, R., Boyer, T., Antonov, J., Zweng, M., Baranova, O., and
Johnson, D.: Nutrients (phosphate, nitrate, silicate), in: World Ocean Atlas
2009, Vol. 4, edited by: Levitus, S., NOAA Atlas NESDIS 71, U.S. Government
Printing Office, Washington, D.C., USA, 398 pp., 2010b. a
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O.,
Zweng, M., Reagan, J., and Johnson, D.: World Ocean Atlas 2013, Volume 3:
Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation, edited by:
Levitus, S., A. Mishonov Technical Ed., NOAA Atlas NESDIS 75, 27 pp.,
2014a. a
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O.,
Zweng, M., Reagan, J., and Johnson, D.: World Ocean Atlas 2013, Volume 4:
Dissolved Inorganic Nutrients (phosphate, nitrate, silicate), edited by: Levitus, S.,
A. Mishonov Technical Ed., NOAA Atlas NESDIS 76, 25 pp.,
2014b. a
Gent, P., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne,
S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley,
P. H., Yang, Z.-L., and Zhang, M.: The Community Climate System Model
Version 4, J. Climate, 24, 4973–4991, 2011. a, b, c, d
Gent, P. R. and Mcwilliams, J. C.: Isopycnal Mixing in Ocean Circulation
Models, J. Phys. Oceanogr., 20, 150–155,
https://doi.org/10.1175/1520-0485(1990)020<0150:imiocm>2.0.co;2, 1990. a
Gent, P. R., Willebrand, J., McDougall, T. J., and McWilliams, J. C.:
Parameterizing Eddy-Induced Tracer Transports in Ocean Circulation Models,
J. Phys. Oceanogr., 25, 463–474,
https://doi.org/10.1175/1520-0485(1995)025<0463:peitti>2.0.co;2, 1995. a
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A.,
Thorpe, R. B., Lowe, J. A., Johns, T. C., and Williams, K. D.: A new method
for diagnosing radiative forcing and climate sensitivity, Geophys.
Res. Lett., 31, L03205, https://doi.org/10.1029/2003GL018747, 2004. a
Gröger, M. and Mikolajewicz, U.: Note on the CO2 air–sea gas exchange
at high temperatures, Ocean Modell., 39, 284–290,
https://doi.org/10.1016/j.ocemod.2011.05.003, 2011. a
Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Piotrowski, A. M.,
and Keigwin, L. D.: North Atlantic ocean circulation and abrupt climate
change during the last glaciation, Science, 353, 470–474,
https://doi.org/10.1126/science.aaf5529, 2016. a, b
Ilicak, M., Özgökmen, T. M., Peters, H., Baumert, H. Z., and
Iskandarani, M.: Performance of two-equation turbulence closures in
three-dimensional simulations of the Red Sea overflow, Ocean Modell., 24,
122–139, https://doi.org/10.1016/j.ocemod.2008.06.001, 2008. a, b
Iversen, T., Bentsen, M., Bethke, I., Debernard, J. B., Kirkevåg, A., Seland,
Ø., Drange, H., Kristjansson, J. E., Medhaug, I., Sand, M., and Seierstad, I.
A.: The Norwegian Earth System Model, NorESM1-M – Part 2: Climate response
and scenario projections, Geosci. Model Dev., 6, 389–415,
https://doi.org/10.5194/gmd-6-389-2013, 2013. a, b, c, d
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino,
M., and Potter, G. L.: NCEP–DOE AMIP-II Reanalysis (R-2), B.
Am. Meteorol. Soc., 83, 1631–1643,
https://doi.org/10.1175/BAMS-83-11-1631, 2002. a
Kay, J. E., Holland, M. M., Bitz, C. M., Blanchard-Wrigglesworth, E.,
Gettelman, A., Conley, A., and Bailey, D.: The Influence of Local Feedbacks
and Northward Heat Transport on the Equilibrium Arctic Climate Response to
Increased Greenhouse Gas Forcing, J. Climate, 25, 5433–5450,
https://doi.org/10.1175/JCLI-D-11-00622.1, 2012. a
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister,
J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T.-H.: A global
ocean carbon climatology: Results from Global Data Analysis Project (GLODAP),
Global Biogeochem. Cy., 18, GB4031, https://doi.org/10.1029/2004GB002247, 2004. a
Kirkevåg, A., Iversen, T., Seland, Ø., Hoose, C., Kristjánsson, J. E.,
Struthers, H., Ekman, A. M. L., Ghan, S., Griesfeller, J., Nilsson, E. D.,
and Schulz, M.: Aerosol-climate interactions in the Norwegian Earth System
Model – NorESM1-M, Geosci. Model Dev., 6, 207–244,
https://doi.org/10.5194/gmd-6-207-2013, 2013. a
Kriest, I.: Different parameterizations of marine snow in a 1D-model and their
influence on representation of marine snow, nitrogen budget and
sedimentation, Deep Sea Res. Part I, 49,
2133–2162, https://doi.org/10.1016/S0967-0637(02)00127-9, 2002. a
Kwok, R. and Rothrock, D. A.: Decline in Arctic sea ice thickness from
submarine and ICESat records: 1958–2008, Geophys. Res. Lett., 36,
L15501, https://doi.org/10.1029/2009GL039035, 2009. a
Kwok, R., Cunningham, G. F., Wensnahan, M., Rigor, I., Zwally, H. J., and Yi,
D.: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008,
J. Geophys. Res.-Oceans, 114, C07005,
https://doi.org/10.1029/2009JC005312, 2009. a
Langebroek, P. M. and Nisancioglu, K. H.: Simulating last interglacial
climate with NorESM: role of insolation and greenhouse gases in the timing of
peak warmth, Clim. Past, 10, 1305–1318,
https://doi.org/10.5194/cp-10-1305-2014, 2014. a
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A
review and a model with a nonlocal boundary layer parameterization, Rev.
Geophys., 32, 363, https://doi.org/10.1029/94rg01872, 1994. a, b
Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A., Lin, X.,
Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S.,
Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., Suzuki, T., and
Watelet, S.: A new global interior ocean mapped climatology: the 1∘×1∘
GLODAP version 2, Earth Syst. Sci. Data, 8, 325–340,
https://doi.org/10.5194/essd-8-325-2016, 2016. a
Li, C., Battisti, D. S., Schrag, D. P., and Tziperman, E.: Abrupt climate
shifts in Greenland due to displacements of the sea ice edge, Geophys.
Res. Lett., 32, L19702, https://doi.org/10.1029/2005GL023492, 2005. a
Li, C., Battisti, D. S., and Bitz, C. M.: Can North Atlantic Sea Ice Anomalies
Account for Dansgaard–Oeschger Climate Signals?, J. Climate, 23,
5457–5475, https://doi.org/10.1175/2010JCLI3409.1, 2010. a
Luo, Y., Tjiputra, J., Guo, C., Zhang, Z., and Lippold, J.: Atlantic deep water
circulation during the last interglacial, Sci. Rep., 8, 4401,
https://doi.org/10.1038/s41598-018-22534-z, 2018. a, b, c
Maier-Reimer, E.: Geochemical cycles in an ocean general circulation model.
Preindustrial tracer distributions, Global Biogeochem. Cy., 7,
645–677, https://doi.org/10.1029/93GB01355, 1993. a, b
Maier-Reimer, E., Kriest, I., Segschneider, J., and Wetzel, P.: The HAMburg
Ocean Carbon Cycle Model HAMOCC5.1 – Technical Description Release 1.1, Tech.
rep., Berichte zur Erdsystemforschung, 14, 2005. a, b
Martin, T., Park, W., and Latif, M.: Southern Ocean forcing of the North
Atlantic at multi-centennial time scales in the Kiel Climate Model, Deep Sea
Res. Part II, 114, 39–48,
https://doi.org/10.1016/j.dsr2.2014.01.018, 2015. a
McGregor, S. and Timmermann, A.: The Effect of Explosive Tropical Volcanism on
ENSO, J. Climate, 24, 2178–2191, https://doi.org/10.1175/2010jcli3990.1, 2011. a
Menviel, L., Timmermann, A., Friedrich, T., and England, M. H.: Hindcasting
the continuum of Dansgaard-Oeschger variability: mechanisms, patterns and
timing, Clim. Past, 10, 63–77, https://doi.org/10.5194/cp-10-63-2014, 2014. a
Mitchell, D., AchutaRao, K., Allen, M., Bethke, I., Beyerle, U., Ciavarella,
A., Forster, P. M., Fuglestvedt, J., Gillett, N., Haustein, K., Ingram, W.,
Iversen, T., Kharin, V., Klingaman, N., Massey, N., Fischer, E., Schleussner,
C.-F., Scinocca, J., Seland, Ø., Shiogama, H., Shuckburgh, E., Sparrow, S.,
Stone, D., Uhe, P., Wallom, D., Wehner, M., and Zaaboul, R.: Half a degree
additional warming, prognosis and projected impacts (HAPPI): background and
experimental design, Geosci. Model Dev., 10, 571–583,
https://doi.org/10.5194/gmd-10-571-2017, 2017. a
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying
uncertainties in global and regional temperature change using an ensemble of
observational estimates: The HadCRUT4 data set, J. Geophys.
Res.-Atmos., 117, D08101, https://doi.org/10.1029/2011JD017187, 2012. a, b
Murphy, J. M.: Transient Response of the Hadley Centre Coupled Ocean-Atmosphere
Model to Increasing Carbon Dioxide. Part 1: Control Climate and Flux
Adjustment, J. Climate, 8, 36–56,
https://doi.org/10.1175/1520-0442(1995)008<0036:TROTHC>2.0.CO;2, 1995. a
Nevison, C. D., Manizza, M., Keeling, R. F., Kahru, M., Bopp, L., Dunne, J.,
Tiputra, J., Ilyina, T., and Mitchell, B. G.: Evaluating the ocean
biogeochemical components of Earth system models using atmospheric potential
oxygen and ocean color data, Biogeosciences, 12, 193–208,
https://doi.org/10.5194/bg-12-193-2015, 2015. a
Pedro, J. B., Martin, T., Steig, E. J., Jochum, M., Park, W., and Rasmussen,
S. O.: Southern Ocean deep convection as a driver of Antarctic warming
events, Geophys. Res. Lett., 43, 2192–2199,
https://doi.org/10.1002/2016GL067861, 2016. a
Peltier, W. R. and Vettoretti, G.: Dansgaard-Oeschger oscillations predicted in
a comprehensive model of glacial climate: A “kicked” salt oscillator in the
Atlantic, Geophys. Res. Lett., 41, 7306–7313,
https://doi.org/10.1002/2014gl061413, 2014. a
Pope, S. B.: Turbulent Flows, Cambridge University Press,
https://doi.org/10.1017/cbo9780511840531, 2000. a
Rahmstorf, S.: Ocean circulation and climate during the past 120,000 years,
Nature, 419, 207–214, https://doi.org/10.1038/nature01090, 2002. a
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V.,
Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface
temperature, sea ice, and night marine air temperature since the late
nineteenth century, J. Geophys. Res.-Atmos., 108, 4407,
https://doi.org/10.1029/2002JD002670, 2003. a
Rothrock, D. A., Percival, D. B., and Wensnahan, M.: The decline in arctic
sea-ice thickness: Separating the spatial, annual, and interannual
variability in a quarter century of submarine data, J. Geophys.
Res.-Oceans, 113, C05003, https://doi.org/10.1029/2007JC004252, 2008. a
Schwinger, J., Goris, N., Tjiputra, J. F., Kriest, I., Bentsen, M., Bethke,
I., Ilicak, M., Assmann, K. M., and Heinze, C.: Evaluation of NorESM-OC
(versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the
Norwegian Earth System Model (NorESM1), Geosci. Model Dev., 9, 2589–2622,
https://doi.org/10.5194/gmd-9-2589-2016, 2016. a, b, c, d
Shields, C. A., Bailey, D. A., Danabasoglu, G., Jochum, M., Kiehl, J. T.,
Levis, S., and Park, S.: The Low-Resolution CCSM4, J. Climate, 25,
3993–4014, https://doi.org/10.1175/JCLI-D-11-00260.1, 2012.
a
Steele, M., Morley, R., and Ermold, W.: PHC: A Global Ocean Hydrography with a
High-Quality Arctic Ocean, J. Climate, 14, 2079–2087, 2001. a
Svendsen, L., Keenlyside, N., Bethke, I., Gao, Y., and Omrani, N.-E.: Pacific
contribution to the early twentieth-century warming in the Arctic, Nat.
Clim. Change, 8, 793–797, https://doi.org/10.1038/s41558-018-0247-1, 2018. a
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the
Experiment Design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/bams-d-11-00094.1, 2012. a
Thompson, D. W. J. and Wallace, J. M.: Annular Modes in the Extratropical
Circulation. Part I: Month-to-Month Variability, J. Climate, 13,
1000–1016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2, 2000. a
Tjiputra, J. F., Assmann, K., Bentsen, M., Bethke, I., Otterå, O. H., Sturm,
C., and Heinze, C.: Bergen Earth system model (BCM-C): model description and
regional climate-carbon cycle feedbacks assessment, Geosci. Model Dev., 3,
123–141, https://doi.org/10.5194/gmd-3-123-2010, 2010. a
Tjiputra, J. F., Roelandt, C., Bentsen, M., Lawrence, D. M., Lorentzen, T.,
Schwinger, J., Seland, Ø., and Heinze, C.: Evaluation of the carbon cycle
components in the Norwegian Earth System Model (NorESM), Geosci. Model Dev.,
6, 301–325, https://doi.org/10.5194/gmd-6-301-2013, 2013. a, b, c, d, e, f, g
Tjiputra, J. F., Grini, A., and Lee, H.: Impact of idealized future
stratospheric aerosol injection on the large-scale ocean and land carbon
cycles, J. Geophys. Res.-Biogeosci., 121, 2–27,
https://doi.org/10.1002/2015jg003045, 2016. a
Umlauf, L. and Burchard, H.: Second-order turbulence closure models for
geophysical boundary layers. A review of recent work, Cont. Shelf
Res., 25, 795–827, https://doi.org/10.1016/j.csr.2004.08.004, 2005. a
Visbeck, M., Marshall, J., Haine, T., and Spall, M.: Specification of Eddy
Transfer Coefficients in Coarse-Resolution Ocean Circulation Models, J.
Phys. Oceanogr., 27, 381–402,
https://doi.org/10.1175/1520-0485(1997)027<0381:soetci>2.0.co;2, 1997. a
Williamson, D. L., Olson, J. G., Hannay, C., Toniazzo, T., Taylor, M., and
Yudin, V.: Energy considerations in the Community Atmosphere Model (CAM),
J. Adv. Model. Earth Syst., 7, 1178–1188,
https://doi.org/10.1002/2015ms000448, 2015. a, b
Zhang, Z. S., Nisancioglu, K., Bentsen, M., Tjiputra, J., Bethke, I., Yan,
Q., Risebrobakken, B., Andersson, C., and Jansen, E.: Pre-industrial and
mid-Pliocene simulations with NorESM-L, Geosci. Model Dev., 5, 523–533,
https://doi.org/10.5194/gmd-5-523-2012, 2012. a, b, c
Zhou, L., Zhang, M., Bao, Q., and Liu, Y.: On the incident solar radiation in
CMIP5 models, Geophys. Res. Lett., 42, 1930–1935,
https://doi.org/10.1002/2015gl063239, 2015. a